Statistica Inferenziale
          Test Z
          Test T
    Test Chi quadrato
     Test F (ANOVA)
Statistica inferenziale

• Consente di verificare ipotesi sperimentali a
  partire dai dati ottenuti da un campione di
  soggetti estratti casualmente dalla
  popolazione
• A partire da effetti riscontrati nel campione è
  possibile INFERIRE le caratteristiche “vere”
  della popolazione.
Verifica di Ipotesi
Ipotesi Nulla (H0): I valori ottenuti dal campione
  sono dovuti al caso quindi non sono diversi da
  quelli della popolazione
Ipotesi Alternativa (H1): I valori ottenuti dal
  campione non sono dovuti al caso ma attribuibili
  ad una particolare teoria
Bidirezionale: Mi aspetto una differenza tra i dati
  del campione e quelli della popolazione senza
  saperne specificare la direzione
Monodirezionale: Sono in grado di formulare
  ipotesi direzionali
Test statistico
“I test statistici si confrontano con la probabilità che le
   differenze emerse dall’esperimento siano dovute al
   caso. Se questa probabilità è davvero molto bassa
   allora possiamo rigettare l’ipotesi nulla. Possiamo
   quindi accettare l’ipotesi sperimentale che i risultati
   dell’esperimento siano significativi cioè non casuali”
   (Greene e D’Oliveira, 2000)
Test Z           •Ipotesi con una sola variabile ( il confronto è con la popolazione
                 normativa)
Test T           • Ipotesi con due variabili ( il confronto è con un altro gruppo)
Test F
Test “CHI quadrato”
Le tavole statistiche
• Applicata una statistica si ottiene un
  punteggio. Per capire se questo punteggio ci
  consente di accettare o rifiutare l’ipotesi nulla
  dobbiamo fare riferimento alle TAVOLE
  STATISTICHE che consentono di verificare
  l’esatta percentuale di probabilità che i
  risultati siano dovuti al caso. Se l’ipotesi è
  bidirezionale è necessario dimezzare l’alfa, per
  ottenere l’esatta significatività.
Test Z con una sola variabile
       (confronto con la popolazione)
z       0         1         2         3         4         5         6         7         8         9
0,0     0,5     0,4960    0,4920    0,4880    0,4840    0,4801    0,4761    0,4721    0,4681    0,4641
0,1   0,4602    0,4562    0,4522    0,4483    0,4443    0,4404    0,4364    0,4325    0,4286    0,4247
0,2   0,4207    0,4168    0,4129    0,4090    0,4052    0,4013    0,3974    0,3936    0,3897    0,3859
0,3   0,3821    0,3783    0,3745    0,3707    0,3669    0,3632    0,3594    0,3557    0,3520    0,3483
0,4   0,3446    0,3409    0,3372    0,3336    0,3300    0,3264    0,3228    0,3192    0,3156    0,3121
0,5   0,3085    0,3050    0,3015    0,2981    0,2946    0,2912    0,2877    0,2843    0,2810    0,2776
0,6   0,2743    0,2709    0,2676    0,2643    0,2611    0,2578    0,2546    0,2514    0,2483    0,2451
0,7   0,2420    0,2389    0,2358    0,2327    0,2296    0,2266    0,2236    0,2206    0,2177    0,2148
0,8   0,2119    0,2090    0,2061    0,2033    0,2005    0,1977    0,1949    0,1922    0,1894    0,1867
0,9   0,1841    0,1814    0,1788    0,1762    0,1736    0,1711    0,1685    0,1660    0,1635    0,1611
1,0   0,1587    0,1562    0,1539    0,1515    0,1492    0,1469    0,1446    0,1423    0,1401    0,1379
1,1   0,1357    0,1335    0,1314    0,1292    0,1271    0,1251    0,1230    0,1210    0,1190    0,1170
1,2   0,1151    0,1131    0,1112    0,1093    0,1075    0,1056    0,1038    0,1020    0,1003    0,0985
1,3   0,0968    0,0951    0,0934    0,0918    0,0901    0,0885    0,0869    0,0853    0,0838    0,0823
1,4   0,0808    0,0793    0,0778    0,0764    0,0749    0,0735    0,0721    0,0708    0,0694    0,0681
1,5   0,0668    0,0655    0,0643    0,0630    0,0618    0,0606    0,0594    0,0582    0,0571    0,0559
1,6   0,0548    0,0537    0,0526    0,0516    0,0505    0,0495    0,0485    0,0475    0,0465    0,0455
1,7   0,0446    0,0436    0,0427    0,0418    0,0409    0,0401    0,0392    0,0384    0,0375    0,0367
1,8   0,0359    0,0351    0,0344    0,0336    0,0329    0,0322    0,0314    0,0307    0,0301    0,0294
1,9   0,0287    0,0281    0,0274    0,0268    0,0262    0,0256    0,0250    0,0244    0,0239    0,0233
2,0   0,0228    0,0222    0,0217    0,0212    0,0207    0,0202    0,0197    0,0192    0,0188    0,0183
2,1   0,0179    0,0174    0,0170    0,0166    0,0162    0,0158    0,0154    0,0150    0,0146    0,0143
2,2   0,0139    0,0136    0,0132    0,0129    0,0125    0,0122    0,0119    0,0116    0,0113    0,0110
2,3   0,0107    0,0104    0,0102    0,0099    0,0096    0,0094    0,0091    0,0089    0,0087    0,0084
2,4   0,0082    0,0080    0,0078    0,0075    0,0073    0,0071    0,0069    0,0068    0,0066    0,0064
2,5   0,0062    0,0060    0,0059    0,0057    0,0055    0,0054    0,0052    0,0051    0,0049    0,0048
2,6   0,0047    0,0045    0,0044    0,0043    0,0041    0,0040    0,0039    0,0038    0,0037    0,0036
2,7   0,0035    0,0034    0,0033    0,0032    0,0031    0,0030    0,0029    0,0028    0,0027    0,0026
2,8   0,0026    0,0025    0,0024    0,0023    0,0023    0,0022    0,0021    0,0021    0,0020    0,0019
2,9   0,0019    0,0018    0,0018    0,0017    0,0016    0,0016    0,0015    0,0015    0,0014    0,0014
3,0   0,0013    0,0013    0,0013    0,0012    0,0012    0,0011    0,0011    0,0011    0,0010    0,0010
3,1   0,0010    0,0009    0,0009    0,0009    0,0008    0,0008    0,0008    0,0008    0,0007    0,0007
3,2   0,0007    0,0007    0,0006    0,0006    0,0006    0,0006    0,0006    0,0005    0,0005    0,0005
3,3   0,0005    0,0005    0,0005    0,0004    0,0004    0,0004    0,0004    0,0004    0,0004    0,0003
3,4   0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0002
3,5   0,00023   0,00022   0,00022   0,00021   0,00020   0,00019   0,00019   0,00018   0,00017   0,00017
3,6   0,00016   0,00015   0,00015   0,00014   0,00014   0,00013   0,00013   0,00012   0,00012   0,00011
3,7   0,00011   0,00010   0,00010   0,00010   0,00009   0,00009   0,00008   0,00008   0,00008   0,00008
3,8   0,00007   0,00007   0,00007   0,00006   0,00006   0,00006   0,00006   0,00005   0,00005   0,00005
3,9   0,00005   0,00005   0,00004   0,00004   0,00004   0,00004   0,00004   0,00004   0,00003   0,00003
4,0   0,00003   0,00003   0,00003   0,00003   0,00003   0,00003   0,00002   0,00002   0,00002   0,00002
z       0         1         2         3         4         5         6         7         8         9
0,0     0,5     0,4960    0,4920    0,4880    0,4840    0,4801    0,4761    0,4721    0,4681    0,4641
0,1   0,4602    0,4562    0,4522    0,4483    0,4443    0,4404    0,4364    0,4325    0,4286    0,4247
0,2   0,4207    0,4168    0,4129    0,4090    0,4052    0,4013    0,3974    0,3936    0,3897    0,3859
0,3   0,3821    0,3783    0,3745    0,3707    0,3669    0,3632    0,3594    0,3557    0,3520    0,3483
0,4   0,3446    0,3409    0,3372    0,3336    0,3300    0,3264    0,3228    0,3192    0,3156    0,3121
0,5   0,3085    0,3050    0,3015    0,2981    0,2946    0,2912    0,2877    0,2843    0,2810    0,2776
0,6   0,2743    0,2709    0,2676    0,2643    0,2611    0,2578    0,2546    0,2514    0,2483    0,2451
0,7   0,2420    0,2389    0,2358    0,2327    0,2296    0,2266    0,2236    0,2206    0,2177    0,2148
0,8   0,2119    0,2090    0,2061    0,2033    0,2005    0,1977    0,1949    0,1922    0,1894    0,1867
0,9   0,1841    0,1814    0,1788    0,1762    0,1736    0,1711    0,1685    0,1660    0,1635    0,1611
1,0   0,1587    0,1562    0,1539    0,1515    0,1492    0,1469    0,1446    0,1423    0,1401    0,1379
1,1   0,1357    0,1335    0,1314    0,1292    0,1271    0,1251    0,1230    0,1210    0,1190    0,1170
1,2   0,1151    0,1131    0,1112    0,1093    0,1075    0,1056    0,1038    0,1020    0,1003    0,0985
1,3   0,0968    0,0951    0,0934    0,0918    0,0901    0,0885    0,0869    0,0853    0,0838    0,0823
1,4   0,0808    0,0793    0,0778    0,0764    0,0749    0,0735    0,0721    0,0708    0,0694    0,0681
1,5   0,0668    0,0655    0,0643    0,0630    0,0618    0,0606    0,0594    0,0582    0,0571    0,0559
1,6   0,0548    0,0537    0,0526    0,0516    0,0505    0,0495    0,0485    0,0475    0,0465    0,0455
1,7   0,0446    0,0436    0,0427    0,0418    0,0409    0,0401    0,0392    0,0384    0,0375    0,0367
1,8   0,0359    0,0351    0,0344    0,0336    0,0329    0,0322    0,0314    0,0307    0,0301    0,0294
1,9   0,0287    0,0281    0,0274    0,0268    0,0262    0,0256    0,0250    0,0244    0,0239    0,0233
2,0   0,0228    0,0222    0,0217    0,0212    0,0207    0,0202    0,0197    0,0192    0,0188    0,0183
2,1   0,0179    0,0174    0,0170    0,0166    0,0162    0,0158    0,0154    0,0150    0,0146    0,0143
2,2   0,0139    0,0136    0,0132    0,0129    0,0125    0,0122    0,0119    0,0116    0,0113    0,0110
2,3   0,0107    0,0104    0,0102    0,0099    0,0096    0,0094    0,0091    0,0089    0,0087    0,0084
2,4   0,0082    0,0080    0,0078    0,0075    0,0073    0,0071    0,0069    0,0068    0,0066    0,0064
2,5   0,0062    0,0060    0,0059    0,0057    0,0055    0,0054    0,0052    0,0051    0,0049    0,0048
2,6   0,0047    0,0045    0,0044    0,0043    0,0041    0,0040    0,0039    0,0038    0,0037    0,0036
2,7   0,0035    0,0034    0,0033    0,0032    0,0031    0,0030    0,0029    0,0028    0,0027    0,0026
2,8   0,0026    0,0025    0,0024    0,0023    0,0023    0,0022    0,0021    0,0021    0,0020    0,0019
2,9   0,0019    0,0018    0,0018    0,0017    0,0016    0,0016    0,0015    0,0015    0,0014    0,0014
3,0   0,0013    0,0013    0,0013    0,0012    0,0012    0,0011    0,0011    0,0011    0,0010    0,0010
3,1   0,0010    0,0009    0,0009    0,0009    0,0008    0,0008    0,0008    0,0008    0,0007    0,0007
3,2   0,0007    0,0007    0,0006    0,0006    0,0006    0,0006    0,0006    0,0005    0,0005    0,0005
3,3   0,0005    0,0005    0,0005    0,0004    0,0004    0,0004    0,0004    0,0004    0,0004    0,0003
3,4   0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0003    0,0002
3,5   0,00023   0,00022   0,00022   0,00021   0,00020   0,00019   0,00019   0,00018   0,00017   0,00017
3,6   0,00016   0,00015   0,00015   0,00014   0,00014   0,00013   0,00013   0,00012   0,00012   0,00011
3,7   0,00011   0,00010   0,00010   0,00010   0,00009   0,00009   0,00008   0,00008   0,00008   0,00008
3,8   0,00007   0,00007   0,00007   0,00006   0,00006   0,00006   0,00006   0,00005   0,00005   0,00005
3,9   0,00005   0,00005   0,00004   0,00004   0,00004   0,00004   0,00004   0,00004   0,00003   0,00003
4,0   0,00003   0,00003   0,00003   0,00003   0,00003   0,00003   0,00002   0,00002   0,00002   0,00002
Test T con una sola variabile
           (confronto con la popolazione)

Quando non conosciamo la distribuzione della
  variabile e l’ampiezza campionaria è inferiore
  a 30 unità non si può fare riferimento alla
  distribuzione normale quindi bisogna riferirsi
  alla distribuzione t di Student
All’aumentare di n la differenza tra t e Z è
  trascurabile (teoria del limite centrale)
Punteggio Test T
Test T- Tavola della
            distribuzione-
Stabilire la soglia di Rifiuto di Ho, individuando il
  valore di riferimento sulla tavola
La tavola del test T definisce il valore soglia, (T
  critico) in funzione della probabilità richiesta,
  specifica per il tipo di ipotesi (mono/bidirezionale)
  e dei gradi di libertà
Gradi di libertà: Ci domandiamo se i punteggi della
  popolazione e del campione variano allo stesso
  modo oppure no. Per verificare le ipotesi è
  necessario che i punteggi siano liberi di variare
GDL= N-1
Tavole T di Student
Ancora un esempio
            T test per campioni
      appaiati/dipendenti/relazionato
• Esempio misuriamo i livelli di ansia di 7 soggetti
  prima e dopo una seduta di rilassamento.
 H0: Pre= Post
 H1: Pre≠Post (bidirezionale)
 H1: Pre>Post (monodirezionale)
 α= 0.05
Punteggi di Ansia
           Pre-rilass Post- rilass              D(pre-post)         D2
  S1          43          42                        1               1
  S2          44          39                        5               25
  S3          40          38                        2               4
  S4          45          42                        3               9
  S5          43          38                        5               25
  S6          41          40                        1               1
  S7          44          41                        3               9

                                     ∑D            20         ∑D2   74
                                     (∑D) 2       400

  T          4.51
 gdl           6
Tcritico     1,94                             4.51 > 1,94
                                              Rifiuto H0
Chi Quadrato (χ2)
• Quando si hanno scale nominali o ordinali, non è
  possibile calcolare il t e z, poiché non abbiamo
  medie, ma solo frequenze.
• Il test chi quadrato fa dunque riferimento a
  categorie e non a punteggi
(Es: verificare se le persone presentano o meno un certo comportamento)

• Ciò che si intende verificare è se la distribuzione di
  frequenza dei soggetti nelle diverse categorie sia
  dovuta al caso oppure no.
• I soggetti sono inclusi in una ed una sola categoria
Applicazione χ2
• TEST UNIDIMENSIONALE: indagini con una
  sola variabile- quando si confronta la
  distribuzione di frequenze osservate con un
  modello teorico di riferimento (frequenze
  teoriche)-
• TEST BIDIMENSIONALE: indagine con due
  variabili- quando si studia la relazione tra due
  variabili-
Test ad una sola variabile
• Confronta le frequenze osservate (e.g. numero
  di soggetti distribuiti per cella) con le
  frequenze attese (numero di soggetti che
  dovrebbero trovarsi in ogni cella in funzione di
  assunti teorici)
• H0: F (OSSERVATA) = F (TEORICA)
• H1: F (OSSERVATA) ≠ F (TEORICA)
Test Unidimensionale
                      Esempio
 Si vuole confrontare l’efficacia percepita delle tecniche di
  rilassamento chiedendo ad un gruppo di 45 soggetti di
  stabilire in quale momento della giornata reputino più
  efficace il training tra MATTINA, POMERIGGIO, SERA
H0: Non ci sia differenza nei 3 momenti della
  giornata. Se l’ipotesi nulla è vera dovrei attendermi che il numero di
   soggetti in ogni categoria sia più o meno uguale, quindi che non si discosti
   troppo dal caso 45/3 = 15. Questo valore lo chiamiamo “FREQUENZA
   ATTESA o TEORICA”

H1 : C’è un momento in cui il rilassamento è
  percepito come più efficace.
MATTINA POMERIGGIO SERA     Tot          Freq. Teoriche
Frequenze Osservate   10       12       23       45          45/3 = 15

                                              Fo = frequenze osservate
                                              F t = frequenze teoriche (attese)

Per ogni categoria si calcola il quadrato della differenza tra le frequenze osservate e
quelle attese e si divide per le frequenza attese. Il χ2 è dato dalla somma dei
risultati di questa operazione per ogni categoria.

La distribuzione del χ2 dipende dai gradi di libertà, che per un disegno con una sola
variabile sarà gdl= K-1 ; il numero di categorie disponibili – 1

Inoltre essendo la distribuzione del χ2 ad una sola coda (destra) i livelli di α
saranno sempre monodirezionali.

Le ipotesi invece sono sempre bidirezionali, ciò che il χ2 consente di stabilire è che
esiste una differenza tra frequenze osservate e frequenze attese.
Fo          Ft     (fo-ft)    (fo-ft) 2   (fo-ft)2/ft
        Mattina        10          15       -5          25       1,6666667
      Pomeriggio       12          15       -3          9            0,6
         Sera          23          15        8          64       4,2666667
                                                        ∑        6,5333333

χ2 = 6,53
χ2 critico         α=0.05   5,99        Rifiuto H0
                   α=0.01   9,21        Accetto H0
Calcolo dei Residui
• Il fatto che il χ2 sia significativo ci dice solo che
  le frequenze teoriche (attese) sono diverse da
  quelle osservate. Per comprendere quale
  categoria è diversa dalle altre, è opportuno
  calcolare i RESIDUI STANDARDIZZATI per
  ognuna delle celle
Fo          Ft     (fo-ft) (fo-ft) 2 (fo-ft)2/ft Radq (Ft) (fo-ft)/Radq (Ft)
        Mattina        10          15       -5       25        1,67            3,87           -1,29
      Pomeriggio       12          15       -3       9         0,60            3,87           -0,77
         Sera          23          15        8       64        4,27            3,87            2,07
                                                     ∑         6,53

χ2 = 6,53
χ2 critico         α=0.05   5,99        Rifiuto H0                    RSERA > 2
                   α=0.01   9,21        Accetto H0
INTERPRETAZIONE R




Nel nostro caso:
Nelle celle MATTINA E POMERIGGIO non c’è differenza tra frequenze attese e
frequenze osservate
Nella cella SERA c’è differenza tra frequenze attese e frequenze osservate, in termini
di un numero maggiore di frequenze rispetto a quelle attese.
La conclusione che possiamo desumere è che gli effetti del rilassamento sono
percepiti come maggiormente benefici la sera ( da qui si possono porre nuove basi
per studi successivi )
Test χ2 con 2 Variabili
Si utilizza quando si è interessati a verificare la
   relazione tra 2 variabili come ad esempio il
   percorso scelto per Arrivare in P.zza Ferrarese e il
   genere.
H0: se tra le due variabili non c’è relazione i
   soggetti si distribuiranno in maniera casuale nelle
   categorie, ovvero non c’è relazione tra il genere e
   la scelta del percorso
Il calcolo del χ2 rimane invariato, ciò che varia è la
   modalità di organizzare i dati:TABELLA A DOPPIA
   ENTRATA o di CONTINGENZA, e il calcolo delle
   FREQUENZE ATTESE
Esempio
• TABELLA DI CONTINGENZA
                          M     F




                                          MARGINALE DI RIGA
            C.so Cavour 36     31    67
           C.so Vitt.Eman 19   22    41
                          55   53   108


                MARGINALE DI COLONNA

                                                              Totale dei marginali
Calcolo delle Frequenze attese
• Se la relazione tra le due variabili è casuale,
  significa che ad esempio il numero di maschi
  che percorre C. Cavour deve essere
  proporzionale al numero totale di persone che
  sceglie C.so Cavour nel campione complessivo.
Se vi sono 67 persone su 108 quante ce ne
  saranno su 55??                            M  F
                              C.so Cavour    ??    67
x:55=67:108;                  C.so Vitt.Eman
 x=(55*67) /108 = 34,1                       55   108
Calcolo delle Frequenze
             attese
               M              F
C.so Cavour 34,1             b        67
C.so Vitt.Eman c             d        41
               55            53      108
 Freq. attesa (a) = 34.1
 Freq. attesa (b)= (53*67)/108; = 32.8
 Freq. attesa (c)= (55*41)/108=20.08
 Freq.attesa (d)= (54*41)/ 108= 20.5



                      M             F
       C.so Cavour 34,1           32,08
       C.so Vitt.Eman20,05         20,5
Calcolo χ2
                   M     F                                                  M        F
     C.so Cavour 36     31       67                          C.so Cavour 34,1      32,08
    C.so Vitt.Eman 19   22       41                          C.so Vitt.Eman20,05    20,5
                   55   53      108




Χ2 =[(36-34,1) 2 /34,1 ]+[(31-32,8) 2 /32,8 ]+[(19-20,05) 2 /20,05]+[(22-20,5) 2 /20,5 ]
=0,34

Gdl= (c-1) *(r-1); 2
α=0.05
Χ2critico = 5.99                        0,34<5,99; ACCETTO Ho
Esercitazione
• Verificare la relazione tra Soddisfazione dopo
  un esame affrontato con successo e Locus of
  Control (interno vs esterno)
Svolgere l’esercizio senza tener conto della correzione di Yates (VI colonna) che
consiste nel sottrarre 0,5 a ogni differenza assoluta tra la frequenza osservata e
quella attessa


                  L of Contr



    Interno




    Esterno
Analysis of Variance (ANOVA)
L’ ANALISI DELLA VARIANZA VIENE UTILIZZATA QUANDO SI
   VOGLIONO CONFRONTARE LE MEDIE DI Più GRUPPI
Quando le medie sono solamente due è indifferente
   usare questo test F (per ANOVA) o il t-test

ANALISI DELLA VARIANZA AD UNA VIA (One Way ANOVA)
ANALISI DELLA VARIANZA A PIU’ VIE

La scelta dipende dal numero di fattori presi in
  considerazione; il fattore è la causa di variazione
  considerata.
One Way ANOVA
QUANDO SI HA UNA SOLA VARIABILE DIPENDENTE E
   UNA SOLA VARIABILE INDIPENDENTE (fattore)
Esempio
 Verificare se l’età (3 gruppi) produce una riduzione
   nella percezione delle capacità mnestiche.
   Somministriamo ai 3 gruppi un test sulla percezione
   dei fallimenti cognitivi.
Il nostro fattore è l’età a tre livelli (giovane,
   adulto,anziani), la VD ovvero la variabile che
   prendiamo in considerazione per osservare gli effetti
   dell’età è la percezione delle proprie capacità
   mnestiche
Indagine sulla Varianza – Il Test F-

 • VARIANZA ENTRO I GRUPPI –Varianza within- (differenze
     individuali proprie dei soggetti presi inconsiderazione o
     varianza d’errore)
 • VARIANZA TRA I GRUPPI –Varianza between-( dovuta al
     fattore di interesse ETA)
  -Test F-
 Si tratta del rapporto tra due varianze Varianza B/Varianza W
 VarB/ VarW segue la distribuzione F di Fisher che è tabulata in
     funzione dei gradi di libertà
 • Quando VarB è grande e VarW è piccola il test risulterà
     significativo
Ipotesi

H0: tutte le medie sono uguali tra di loro
• H0: µ1 = µ2 = … = µK = µ
H1: almeno una media è diversa dalle altre
• H1: esiste almeno uno strato k per cui µk ≠ µ
Il test F è un test globale, per sapere quale sia la
   media che differisce dalle altre bisogna
   operare i post-hoc (ovvero facciamo dei test t
   tra le coppie delle medie)
I gradi di Libertà
• Ogni componente di devianza ha un suo diverso
  grado di libertà

• DEVIANZA TRA I GRUPPI (B): k-1 gdl (perde il gd l
   dellamedia totale)
• DEVIANZA ENTRO I GRUPPI (W): n-k gdl(si perde
   un gdl per ogni media di gruppo
In cui:
N = numero dei soggetti
k = numero delle condizioni/gruppi
Esempio


N=18
K=3
(giovani, adulti, anziani)
Gdl tra i gruppi = 2
Gdl entro i gruppi= 15

Test F VarB/VarW= 8.57
Anova a più vie o Fattoriale
Si utilizza quando il disegno sperimentale prende in
   considerazione più variabili indipendenti.


Uno dei Vantaggi della ANOVA fattoriale: Permette
 di evidenziare le interazioni tra variabili , ovvero
 gli effetti congiunti delle variabili indipendenti
 sulla variabile dipendente.
Fonti di Varianza
Il modello bivariato ha lo scopo di individuare
   quanta parte della varianza della v.d. sia
   dovuta:
  – agli effetti dei trattamenti del primo fattore
  – agli effetti dei trattamenti del secondo fattore
  – agli effetti d’interazione tra il primo ed il secondo fattore
  – agli effetti dovuti alle differenze individuali.
Variabilità Totale



    Variabilità tra i gruppi                       Variabilità entro i gruppi




   Varianza          Varianza              Varianza
    1° fatt.          2° fatt.          1° fatt x 2° fatt.

Il calcolo degli F avviene dividendo le varianze degli effetti principali e di quello
                    d’interazione per la varianza entro i gruppi
Gradi di libertà
Gradi di libertà
Fattore 1
Gdl B= k1-1         Var B (fattore1)+ VarB (fattore2)+ VarB (interazione)
                F=
Fattore 2                                Varianza W

Gdl B= k2-1
Effetto interazione
GdlB= gdl1 * gdl2
Gdl W comune a tutti = (N-1)- gdl (1)-gdl(2)-gdl
  (int) oppure N- (k1 *k2 )
Esempio
• Disegno fattoriale 3x2
36 soggetti vengono reclutati per valutare gli effetti
   dell’età (giov, ad, anz) e della depressione (Media
   dei punteggi alti e bassi) sulla percezione dei
   fallimenti mnestici.
Effetto principale dell’età
GdlB= k-1, 3-1= 2
Effetto principale del livello di depressione
GdlB=K-1; 2-1 = 1
Effetto di interazione Eta X Depressione
GdlB = 2*1
Gdl W = (36-1)- 2 - 1- 2 = 30
Effetto principale Età
F critico= 3,32
Effetto principale del livello di depressione
F critico = 4,17
Effetto di interazione Eta X Depressione
F critico = 3,32
Un esempio con STAT
   (VEDI LUCIDI)

Dott.ssa Picucci Statistica Inferenziale

  • 1.
    Statistica Inferenziale Test Z Test T Test Chi quadrato Test F (ANOVA)
  • 2.
    Statistica inferenziale • Consentedi verificare ipotesi sperimentali a partire dai dati ottenuti da un campione di soggetti estratti casualmente dalla popolazione • A partire da effetti riscontrati nel campione è possibile INFERIRE le caratteristiche “vere” della popolazione.
  • 3.
    Verifica di Ipotesi IpotesiNulla (H0): I valori ottenuti dal campione sono dovuti al caso quindi non sono diversi da quelli della popolazione Ipotesi Alternativa (H1): I valori ottenuti dal campione non sono dovuti al caso ma attribuibili ad una particolare teoria Bidirezionale: Mi aspetto una differenza tra i dati del campione e quelli della popolazione senza saperne specificare la direzione Monodirezionale: Sono in grado di formulare ipotesi direzionali
  • 4.
    Test statistico “I teststatistici si confrontano con la probabilità che le differenze emerse dall’esperimento siano dovute al caso. Se questa probabilità è davvero molto bassa allora possiamo rigettare l’ipotesi nulla. Possiamo quindi accettare l’ipotesi sperimentale che i risultati dell’esperimento siano significativi cioè non casuali” (Greene e D’Oliveira, 2000) Test Z •Ipotesi con una sola variabile ( il confronto è con la popolazione normativa) Test T • Ipotesi con due variabili ( il confronto è con un altro gruppo) Test F Test “CHI quadrato”
  • 5.
    Le tavole statistiche •Applicata una statistica si ottiene un punteggio. Per capire se questo punteggio ci consente di accettare o rifiutare l’ipotesi nulla dobbiamo fare riferimento alle TAVOLE STATISTICHE che consentono di verificare l’esatta percentuale di probabilità che i risultati siano dovuti al caso. Se l’ipotesi è bidirezionale è necessario dimezzare l’alfa, per ottenere l’esatta significatività.
  • 6.
    Test Z conuna sola variabile (confronto con la popolazione)
  • 9.
    z 0 1 2 3 4 5 6 7 8 9 0,0 0,5 0,4960 0,4920 0,4880 0,4840 0,4801 0,4761 0,4721 0,4681 0,4641 0,1 0,4602 0,4562 0,4522 0,4483 0,4443 0,4404 0,4364 0,4325 0,4286 0,4247 0,2 0,4207 0,4168 0,4129 0,4090 0,4052 0,4013 0,3974 0,3936 0,3897 0,3859 0,3 0,3821 0,3783 0,3745 0,3707 0,3669 0,3632 0,3594 0,3557 0,3520 0,3483 0,4 0,3446 0,3409 0,3372 0,3336 0,3300 0,3264 0,3228 0,3192 0,3156 0,3121 0,5 0,3085 0,3050 0,3015 0,2981 0,2946 0,2912 0,2877 0,2843 0,2810 0,2776 0,6 0,2743 0,2709 0,2676 0,2643 0,2611 0,2578 0,2546 0,2514 0,2483 0,2451 0,7 0,2420 0,2389 0,2358 0,2327 0,2296 0,2266 0,2236 0,2206 0,2177 0,2148 0,8 0,2119 0,2090 0,2061 0,2033 0,2005 0,1977 0,1949 0,1922 0,1894 0,1867 0,9 0,1841 0,1814 0,1788 0,1762 0,1736 0,1711 0,1685 0,1660 0,1635 0,1611 1,0 0,1587 0,1562 0,1539 0,1515 0,1492 0,1469 0,1446 0,1423 0,1401 0,1379 1,1 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170 1,2 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985 1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823 1,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681 1,5 0,0668 0,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0,0571 0,0559 1,6 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455 1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367 1,8 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294 1,9 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233 2,0 0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0197 0,0192 0,0188 0,0183 2,1 0,0179 0,0174 0,0170 0,0166 0,0162 0,0158 0,0154 0,0150 0,0146 0,0143 2,2 0,0139 0,0136 0,0132 0,0129 0,0125 0,0122 0,0119 0,0116 0,0113 0,0110 2,3 0,0107 0,0104 0,0102 0,0099 0,0096 0,0094 0,0091 0,0089 0,0087 0,0084 2,4 0,0082 0,0080 0,0078 0,0075 0,0073 0,0071 0,0069 0,0068 0,0066 0,0064 2,5 0,0062 0,0060 0,0059 0,0057 0,0055 0,0054 0,0052 0,0051 0,0049 0,0048 2,6 0,0047 0,0045 0,0044 0,0043 0,0041 0,0040 0,0039 0,0038 0,0037 0,0036 2,7 0,0035 0,0034 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026 2,8 0,0026 0,0025 0,0024 0,0023 0,0023 0,0022 0,0021 0,0021 0,0020 0,0019 2,9 0,0019 0,0018 0,0018 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014 3,0 0,0013 0,0013 0,0013 0,0012 0,0012 0,0011 0,0011 0,0011 0,0010 0,0010 3,1 0,0010 0,0009 0,0009 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007 3,2 0,0007 0,0007 0,0006 0,0006 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005 3,3 0,0005 0,0005 0,0005 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003 3,4 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002 3,5 0,00023 0,00022 0,00022 0,00021 0,00020 0,00019 0,00019 0,00018 0,00017 0,00017 3,6 0,00016 0,00015 0,00015 0,00014 0,00014 0,00013 0,00013 0,00012 0,00012 0,00011 3,7 0,00011 0,00010 0,00010 0,00010 0,00009 0,00009 0,00008 0,00008 0,00008 0,00008 3,8 0,00007 0,00007 0,00007 0,00006 0,00006 0,00006 0,00006 0,00005 0,00005 0,00005 3,9 0,00005 0,00005 0,00004 0,00004 0,00004 0,00004 0,00004 0,00004 0,00003 0,00003 4,0 0,00003 0,00003 0,00003 0,00003 0,00003 0,00003 0,00002 0,00002 0,00002 0,00002
  • 15.
    z 0 1 2 3 4 5 6 7 8 9 0,0 0,5 0,4960 0,4920 0,4880 0,4840 0,4801 0,4761 0,4721 0,4681 0,4641 0,1 0,4602 0,4562 0,4522 0,4483 0,4443 0,4404 0,4364 0,4325 0,4286 0,4247 0,2 0,4207 0,4168 0,4129 0,4090 0,4052 0,4013 0,3974 0,3936 0,3897 0,3859 0,3 0,3821 0,3783 0,3745 0,3707 0,3669 0,3632 0,3594 0,3557 0,3520 0,3483 0,4 0,3446 0,3409 0,3372 0,3336 0,3300 0,3264 0,3228 0,3192 0,3156 0,3121 0,5 0,3085 0,3050 0,3015 0,2981 0,2946 0,2912 0,2877 0,2843 0,2810 0,2776 0,6 0,2743 0,2709 0,2676 0,2643 0,2611 0,2578 0,2546 0,2514 0,2483 0,2451 0,7 0,2420 0,2389 0,2358 0,2327 0,2296 0,2266 0,2236 0,2206 0,2177 0,2148 0,8 0,2119 0,2090 0,2061 0,2033 0,2005 0,1977 0,1949 0,1922 0,1894 0,1867 0,9 0,1841 0,1814 0,1788 0,1762 0,1736 0,1711 0,1685 0,1660 0,1635 0,1611 1,0 0,1587 0,1562 0,1539 0,1515 0,1492 0,1469 0,1446 0,1423 0,1401 0,1379 1,1 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170 1,2 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985 1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823 1,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681 1,5 0,0668 0,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0,0571 0,0559 1,6 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455 1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367 1,8 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294 1,9 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233 2,0 0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0197 0,0192 0,0188 0,0183 2,1 0,0179 0,0174 0,0170 0,0166 0,0162 0,0158 0,0154 0,0150 0,0146 0,0143 2,2 0,0139 0,0136 0,0132 0,0129 0,0125 0,0122 0,0119 0,0116 0,0113 0,0110 2,3 0,0107 0,0104 0,0102 0,0099 0,0096 0,0094 0,0091 0,0089 0,0087 0,0084 2,4 0,0082 0,0080 0,0078 0,0075 0,0073 0,0071 0,0069 0,0068 0,0066 0,0064 2,5 0,0062 0,0060 0,0059 0,0057 0,0055 0,0054 0,0052 0,0051 0,0049 0,0048 2,6 0,0047 0,0045 0,0044 0,0043 0,0041 0,0040 0,0039 0,0038 0,0037 0,0036 2,7 0,0035 0,0034 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026 2,8 0,0026 0,0025 0,0024 0,0023 0,0023 0,0022 0,0021 0,0021 0,0020 0,0019 2,9 0,0019 0,0018 0,0018 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014 3,0 0,0013 0,0013 0,0013 0,0012 0,0012 0,0011 0,0011 0,0011 0,0010 0,0010 3,1 0,0010 0,0009 0,0009 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007 3,2 0,0007 0,0007 0,0006 0,0006 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005 3,3 0,0005 0,0005 0,0005 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003 3,4 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002 3,5 0,00023 0,00022 0,00022 0,00021 0,00020 0,00019 0,00019 0,00018 0,00017 0,00017 3,6 0,00016 0,00015 0,00015 0,00014 0,00014 0,00013 0,00013 0,00012 0,00012 0,00011 3,7 0,00011 0,00010 0,00010 0,00010 0,00009 0,00009 0,00008 0,00008 0,00008 0,00008 3,8 0,00007 0,00007 0,00007 0,00006 0,00006 0,00006 0,00006 0,00005 0,00005 0,00005 3,9 0,00005 0,00005 0,00004 0,00004 0,00004 0,00004 0,00004 0,00004 0,00003 0,00003 4,0 0,00003 0,00003 0,00003 0,00003 0,00003 0,00003 0,00002 0,00002 0,00002 0,00002
  • 18.
    Test T conuna sola variabile (confronto con la popolazione) Quando non conosciamo la distribuzione della variabile e l’ampiezza campionaria è inferiore a 30 unità non si può fare riferimento alla distribuzione normale quindi bisogna riferirsi alla distribuzione t di Student All’aumentare di n la differenza tra t e Z è trascurabile (teoria del limite centrale)
  • 19.
  • 21.
    Test T- Tavoladella distribuzione- Stabilire la soglia di Rifiuto di Ho, individuando il valore di riferimento sulla tavola La tavola del test T definisce il valore soglia, (T critico) in funzione della probabilità richiesta, specifica per il tipo di ipotesi (mono/bidirezionale) e dei gradi di libertà Gradi di libertà: Ci domandiamo se i punteggi della popolazione e del campione variano allo stesso modo oppure no. Per verificare le ipotesi è necessario che i punteggi siano liberi di variare GDL= N-1
  • 22.
    Tavole T diStudent
  • 59.
    Ancora un esempio T test per campioni appaiati/dipendenti/relazionato • Esempio misuriamo i livelli di ansia di 7 soggetti prima e dopo una seduta di rilassamento. H0: Pre= Post H1: Pre≠Post (bidirezionale) H1: Pre>Post (monodirezionale) α= 0.05
  • 60.
    Punteggi di Ansia Pre-rilass Post- rilass D(pre-post) D2 S1 43 42 1 1 S2 44 39 5 25 S3 40 38 2 4 S4 45 42 3 9 S5 43 38 5 25 S6 41 40 1 1 S7 44 41 3 9 ∑D 20 ∑D2 74 (∑D) 2 400 T 4.51 gdl 6 Tcritico 1,94 4.51 > 1,94 Rifiuto H0
  • 61.
    Chi Quadrato (χ2) •Quando si hanno scale nominali o ordinali, non è possibile calcolare il t e z, poiché non abbiamo medie, ma solo frequenze. • Il test chi quadrato fa dunque riferimento a categorie e non a punteggi (Es: verificare se le persone presentano o meno un certo comportamento) • Ciò che si intende verificare è se la distribuzione di frequenza dei soggetti nelle diverse categorie sia dovuta al caso oppure no. • I soggetti sono inclusi in una ed una sola categoria
  • 63.
    Applicazione χ2 • TESTUNIDIMENSIONALE: indagini con una sola variabile- quando si confronta la distribuzione di frequenze osservate con un modello teorico di riferimento (frequenze teoriche)- • TEST BIDIMENSIONALE: indagine con due variabili- quando si studia la relazione tra due variabili-
  • 64.
    Test ad unasola variabile • Confronta le frequenze osservate (e.g. numero di soggetti distribuiti per cella) con le frequenze attese (numero di soggetti che dovrebbero trovarsi in ogni cella in funzione di assunti teorici) • H0: F (OSSERVATA) = F (TEORICA) • H1: F (OSSERVATA) ≠ F (TEORICA)
  • 65.
    Test Unidimensionale Esempio Si vuole confrontare l’efficacia percepita delle tecniche di rilassamento chiedendo ad un gruppo di 45 soggetti di stabilire in quale momento della giornata reputino più efficace il training tra MATTINA, POMERIGGIO, SERA H0: Non ci sia differenza nei 3 momenti della giornata. Se l’ipotesi nulla è vera dovrei attendermi che il numero di soggetti in ogni categoria sia più o meno uguale, quindi che non si discosti troppo dal caso 45/3 = 15. Questo valore lo chiamiamo “FREQUENZA ATTESA o TEORICA” H1 : C’è un momento in cui il rilassamento è percepito come più efficace.
  • 66.
    MATTINA POMERIGGIO SERA Tot Freq. Teoriche Frequenze Osservate 10 12 23 45 45/3 = 15 Fo = frequenze osservate F t = frequenze teoriche (attese) Per ogni categoria si calcola il quadrato della differenza tra le frequenze osservate e quelle attese e si divide per le frequenza attese. Il χ2 è dato dalla somma dei risultati di questa operazione per ogni categoria. La distribuzione del χ2 dipende dai gradi di libertà, che per un disegno con una sola variabile sarà gdl= K-1 ; il numero di categorie disponibili – 1 Inoltre essendo la distribuzione del χ2 ad una sola coda (destra) i livelli di α saranno sempre monodirezionali. Le ipotesi invece sono sempre bidirezionali, ciò che il χ2 consente di stabilire è che esiste una differenza tra frequenze osservate e frequenze attese.
  • 67.
    Fo Ft (fo-ft) (fo-ft) 2 (fo-ft)2/ft Mattina 10 15 -5 25 1,6666667 Pomeriggio 12 15 -3 9 0,6 Sera 23 15 8 64 4,2666667 ∑ 6,5333333 χ2 = 6,53 χ2 critico α=0.05 5,99 Rifiuto H0 α=0.01 9,21 Accetto H0
  • 68.
    Calcolo dei Residui •Il fatto che il χ2 sia significativo ci dice solo che le frequenze teoriche (attese) sono diverse da quelle osservate. Per comprendere quale categoria è diversa dalle altre, è opportuno calcolare i RESIDUI STANDARDIZZATI per ognuna delle celle
  • 69.
    Fo Ft (fo-ft) (fo-ft) 2 (fo-ft)2/ft Radq (Ft) (fo-ft)/Radq (Ft) Mattina 10 15 -5 25 1,67 3,87 -1,29 Pomeriggio 12 15 -3 9 0,60 3,87 -0,77 Sera 23 15 8 64 4,27 3,87 2,07 ∑ 6,53 χ2 = 6,53 χ2 critico α=0.05 5,99 Rifiuto H0 RSERA > 2 α=0.01 9,21 Accetto H0
  • 70.
    INTERPRETAZIONE R Nel nostrocaso: Nelle celle MATTINA E POMERIGGIO non c’è differenza tra frequenze attese e frequenze osservate Nella cella SERA c’è differenza tra frequenze attese e frequenze osservate, in termini di un numero maggiore di frequenze rispetto a quelle attese. La conclusione che possiamo desumere è che gli effetti del rilassamento sono percepiti come maggiormente benefici la sera ( da qui si possono porre nuove basi per studi successivi )
  • 71.
    Test χ2 con2 Variabili Si utilizza quando si è interessati a verificare la relazione tra 2 variabili come ad esempio il percorso scelto per Arrivare in P.zza Ferrarese e il genere. H0: se tra le due variabili non c’è relazione i soggetti si distribuiranno in maniera casuale nelle categorie, ovvero non c’è relazione tra il genere e la scelta del percorso Il calcolo del χ2 rimane invariato, ciò che varia è la modalità di organizzare i dati:TABELLA A DOPPIA ENTRATA o di CONTINGENZA, e il calcolo delle FREQUENZE ATTESE
  • 72.
    Esempio • TABELLA DICONTINGENZA M F MARGINALE DI RIGA C.so Cavour 36 31 67 C.so Vitt.Eman 19 22 41 55 53 108 MARGINALE DI COLONNA Totale dei marginali
  • 73.
    Calcolo delle Frequenzeattese • Se la relazione tra le due variabili è casuale, significa che ad esempio il numero di maschi che percorre C. Cavour deve essere proporzionale al numero totale di persone che sceglie C.so Cavour nel campione complessivo. Se vi sono 67 persone su 108 quante ce ne saranno su 55?? M F C.so Cavour ?? 67 x:55=67:108; C.so Vitt.Eman x=(55*67) /108 = 34,1 55 108
  • 74.
    Calcolo delle Frequenze attese M F C.so Cavour 34,1 b 67 C.so Vitt.Eman c d 41 55 53 108 Freq. attesa (a) = 34.1 Freq. attesa (b)= (53*67)/108; = 32.8 Freq. attesa (c)= (55*41)/108=20.08 Freq.attesa (d)= (54*41)/ 108= 20.5 M F C.so Cavour 34,1 32,08 C.so Vitt.Eman20,05 20,5
  • 75.
    Calcolo χ2 M F M F C.so Cavour 36 31 67 C.so Cavour 34,1 32,08 C.so Vitt.Eman 19 22 41 C.so Vitt.Eman20,05 20,5 55 53 108 Χ2 =[(36-34,1) 2 /34,1 ]+[(31-32,8) 2 /32,8 ]+[(19-20,05) 2 /20,05]+[(22-20,5) 2 /20,5 ] =0,34 Gdl= (c-1) *(r-1); 2 α=0.05 Χ2critico = 5.99 0,34<5,99; ACCETTO Ho
  • 76.
    Esercitazione • Verificare larelazione tra Soddisfazione dopo un esame affrontato con successo e Locus of Control (interno vs esterno)
  • 77.
    Svolgere l’esercizio senzatener conto della correzione di Yates (VI colonna) che consiste nel sottrarre 0,5 a ogni differenza assoluta tra la frequenza osservata e quella attessa L of Contr Interno Esterno
  • 78.
    Analysis of Variance(ANOVA) L’ ANALISI DELLA VARIANZA VIENE UTILIZZATA QUANDO SI VOGLIONO CONFRONTARE LE MEDIE DI Più GRUPPI Quando le medie sono solamente due è indifferente usare questo test F (per ANOVA) o il t-test ANALISI DELLA VARIANZA AD UNA VIA (One Way ANOVA) ANALISI DELLA VARIANZA A PIU’ VIE La scelta dipende dal numero di fattori presi in considerazione; il fattore è la causa di variazione considerata.
  • 79.
    One Way ANOVA QUANDOSI HA UNA SOLA VARIABILE DIPENDENTE E UNA SOLA VARIABILE INDIPENDENTE (fattore) Esempio Verificare se l’età (3 gruppi) produce una riduzione nella percezione delle capacità mnestiche. Somministriamo ai 3 gruppi un test sulla percezione dei fallimenti cognitivi. Il nostro fattore è l’età a tre livelli (giovane, adulto,anziani), la VD ovvero la variabile che prendiamo in considerazione per osservare gli effetti dell’età è la percezione delle proprie capacità mnestiche
  • 80.
    Indagine sulla Varianza– Il Test F- • VARIANZA ENTRO I GRUPPI –Varianza within- (differenze individuali proprie dei soggetti presi inconsiderazione o varianza d’errore) • VARIANZA TRA I GRUPPI –Varianza between-( dovuta al fattore di interesse ETA) -Test F- Si tratta del rapporto tra due varianze Varianza B/Varianza W VarB/ VarW segue la distribuzione F di Fisher che è tabulata in funzione dei gradi di libertà • Quando VarB è grande e VarW è piccola il test risulterà significativo
  • 81.
    Ipotesi H0: tutte lemedie sono uguali tra di loro • H0: µ1 = µ2 = … = µK = µ H1: almeno una media è diversa dalle altre • H1: esiste almeno uno strato k per cui µk ≠ µ Il test F è un test globale, per sapere quale sia la media che differisce dalle altre bisogna operare i post-hoc (ovvero facciamo dei test t tra le coppie delle medie)
  • 82.
    I gradi diLibertà • Ogni componente di devianza ha un suo diverso grado di libertà • DEVIANZA TRA I GRUPPI (B): k-1 gdl (perde il gd l dellamedia totale) • DEVIANZA ENTRO I GRUPPI (W): n-k gdl(si perde un gdl per ogni media di gruppo In cui: N = numero dei soggetti k = numero delle condizioni/gruppi
  • 83.
    Esempio N=18 K=3 (giovani, adulti, anziani) Gdltra i gruppi = 2 Gdl entro i gruppi= 15 Test F VarB/VarW= 8.57
  • 85.
    Anova a piùvie o Fattoriale Si utilizza quando il disegno sperimentale prende in considerazione più variabili indipendenti. Uno dei Vantaggi della ANOVA fattoriale: Permette di evidenziare le interazioni tra variabili , ovvero gli effetti congiunti delle variabili indipendenti sulla variabile dipendente.
  • 86.
    Fonti di Varianza Ilmodello bivariato ha lo scopo di individuare quanta parte della varianza della v.d. sia dovuta: – agli effetti dei trattamenti del primo fattore – agli effetti dei trattamenti del secondo fattore – agli effetti d’interazione tra il primo ed il secondo fattore – agli effetti dovuti alle differenze individuali.
  • 87.
    Variabilità Totale Variabilità tra i gruppi Variabilità entro i gruppi Varianza Varianza Varianza 1° fatt. 2° fatt. 1° fatt x 2° fatt. Il calcolo degli F avviene dividendo le varianze degli effetti principali e di quello d’interazione per la varianza entro i gruppi
  • 88.
  • 89.
    Gradi di libertà Fattore1 Gdl B= k1-1 Var B (fattore1)+ VarB (fattore2)+ VarB (interazione) F= Fattore 2 Varianza W Gdl B= k2-1 Effetto interazione GdlB= gdl1 * gdl2 Gdl W comune a tutti = (N-1)- gdl (1)-gdl(2)-gdl (int) oppure N- (k1 *k2 )
  • 90.
    Esempio • Disegno fattoriale3x2 36 soggetti vengono reclutati per valutare gli effetti dell’età (giov, ad, anz) e della depressione (Media dei punteggi alti e bassi) sulla percezione dei fallimenti mnestici. Effetto principale dell’età GdlB= k-1, 3-1= 2 Effetto principale del livello di depressione GdlB=K-1; 2-1 = 1 Effetto di interazione Eta X Depressione GdlB = 2*1
  • 91.
    Gdl W =(36-1)- 2 - 1- 2 = 30 Effetto principale Età F critico= 3,32 Effetto principale del livello di depressione F critico = 4,17 Effetto di interazione Eta X Depressione F critico = 3,32
  • 92.
    Un esempio conSTAT (VEDI LUCIDI)