SlideShare a Scribd company logo
1 of 108
Download to read offline
Angela Oliveira Pisco
angela.oliveira.pisco@gmail.com @drAOPisco @aopisco
Tabula Sapiens
A multiple-organ, single-cell
transcriptomic atlas of humans
03-22-2024
WHOLE ORGANISM CELL ATLASES
2
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
1. Why single cells?
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
Cells
1. Why single cells?
Organ/Tissue
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
Cells
1. Why single cells?
Organ/Tissue
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
Cells
1. Why single cells?
Organ/Tissue
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
Cells
1. Why single cells?
2. Why transcriptomics?
Organ/Tissue
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
WHOLE ORGANISM CELL ATLASES
2
Single-cell
transcriptomics
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
understand underlying mechanisms of disease and develop new technologies which will lead to
actionable diagnostics and effective therapies
Vision
Computational
analysis
+
In multicellular organisms, nearly every cell contains the same
genome but not every gene is transcriptionally active in every cell
Transcriptome, the total amount of RNA, offers a closer view of the real
time gene expression in a cell
Cells
1. Why single cells?
2. Why transcriptomics?
Organ/Tissue
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SINGLE CELL DATA COLLECTION WORKFLOW
3
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SINGLE CELL DATA COLLECTION WORKFLOW
3
Organ procurement
The Tabula Sapiens Consortium, Science (2022)
Partnership with
Donor Network West
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SINGLE CELL DATA COLLECTION WORKFLOW
3
Organ procurement
Cell
dissociation
The Tabula Sapiens Consortium, Science (2022)
Organ speci
fi
c
teams
Partnership with
Donor Network West
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SINGLE CELL DATA COLLECTION WORKFLOW
3
Organ procurement
Cell
dissociation
10x genomics
Illumina
sequencing
Smartseq-2
Data analysis
The Tabula Sapiens Consortium, Science (2022)
Organ speci
fi
c
teams
Centralized
Partnership with
Donor Network West
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SC-RNA SEQ DATA PROCESSING
4
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SC-RNA SEQ DATA PROCESSING
4
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SC-RNA SEQ DATA PROCESSING
4
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
UMAP1
UMAP2
Compartment
endothelial
epithelial
germ line
immune
stromal
UMAP1
UMAP2
Donor
TSP1
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
TSP10
TSP11
TSP12
TSP13
TSP14
TSP15
10X
smartseq2
UMAP1
UMAP2
Method
10X
smartseq2
UMAP1
UMAP2
Gender
female
male
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
DATASET SUMMARY
5
Clinical metadata
Age
Gender
Ethnicity
Race
BMI (kg/m2)
Downtime (min)
Cause of DeathTobacco (>20 pack-years)
Alcohol
IV Drug abuse
Diabetes
Cancer
Hypertension
Coronary Artery Disease
Other noted conditions
The Tabula Sapiens Consortium, Science (2022)
TSP1 TSP2 TSP7 TSP14 Additional
11 Donors
Bladder
Blood
Bone Marrow
Eye
Fat
Heart
Kidney
Large Intestine
Liver
Lung
Lymph Node
Mammary Gland
Muscle
Pancreas
Prostate
Salivary Gland
Skin
Small Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Total
483,152 cells
24,583
50,115
12,297
10,650
20,263
11,505
9,641
13,680
5,007
35,682
53,275
11,375
30,746
13,497
16,375
27,199
9,424
12,467
34,004
33,664
15,020
9,522
7,124
16,037
6000
12000
18000
24000
30000
Cell
count
Number
of cells
Fig. 1
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (I)
6
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (I)
6
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
CELL TYPE ANNOTATION (I)
6
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
Unannotated
dataset
Scanorama
BBKNN
scVI
Random Forest
SVM
OnClass
scANVI
Unsupervised
Method + kNN
Supervised
Method
Semi-supervised
Method
PopularVote
ANNOTATION
Expert Manual
Partial Annotation
manually
annotated
dataset
Cells
Genes
Expert Manual
Annotation
Revision
computer
automated
annotated
dataset
Cells
Genes
annotated
reference
dataset
Cells
Genes
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
CELL TYPE ANNOTATION (II)
7
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
7
Reference
Tabula Sapiens
Draft reference
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
7
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
7
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
7
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
7
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Expert
curation
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
8
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Expert
curation
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (II)
8
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Expert
curation
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
9
PopV (I)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
9
PopV (I)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
9
PopV (I)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
9
PopV (I)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
10
PopV (II)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
10
PopV (II)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
11
PopV (III)
https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata
https://github.com/YosefLab/PopV
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
11
PopV (III)
https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata
https://github.com/YosefLab/PopV
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
11
PopV (III)
https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata
https://github.com/YosefLab/PopV
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (III)
12
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Expert
curation
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CELL TYPE ANNOTATION (III)
12
Reference
*new* Tabula Sapiens
subset
Tabula Sapiens *new* Tabula Sapiens
Dataset
Unclassified dataset
Automatically classi
fi
ed
dataset
Expert
curation
Tabula Sapiens publication
New Reference
Draft reference
Unclassified dataset
Unclassi
fi
ed
dataset
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A REFERENCE ATLAS
13
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
Unannotated
dataset
Scanorama
BBKNN
scVI
Random Forest
SVM
OnClass
scANVI
Unsupervised
Method + kNN
Supervised
Method
Semi-supervised
Method
PopularVote
ANNOTATION
Expert Manual
Partial Annotation
manually
annotated
dataset
Cells
Genes
Expert Manual
Annotation
Revision
computer
automated
annotated
dataset
Cells
Genes
annotated
reference
dataset
Cells
Genes
Automated annotations
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A REFERENCE ATLAS
13
10x
SmartSeq2
raw count
cell-gene
matrix
Cells
Genes
Ambient RNA
Removal
(DecontX)
Dimensionality Reduction
Harmonization
(scVI)
PREPROCESSING
corrected
counts
cell-gene
matrix
Cells
Genes
unannotated
dataset
Cells
Genes
Unannotated
dataset
Scanorama
BBKNN
scVI
Random Forest
SVM
OnClass
scANVI
Unsupervised
Method + kNN
Supervised
Method
Semi-supervised
Method
PopularVote
ANNOTATION
Expert Manual
Partial Annotation
manually
annotated
dataset
Cells
Genes
Expert Manual
Annotation
Revision
computer
automated
annotated
dataset
Cells
Genes
annotated
reference
dataset
Cells
Genes
475
cell
types
curation by tissue experts
Automated annotations
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
14
MARKER GENES FOR CELL TYPES
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
14
MARKER GENES FOR CELL TYPES
Wang, Pisco, et al, Nat Comms (2021)
https://tabula-sapiens-portal.ds.czbiohub.org/markergenes
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
15
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
15
Macrophages
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
16
Macrophages
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
n = 36,475 (broad) macrophage cell ontology
class across 20 tissues
16
Macrophages
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
A
L
u
n
g
S
p
l
e
e
n
L
i
v
e
r
T
r
a
c
h
e
a
T
h
y
m
u
s
E
y
e
F
a
t
P
r
o
s
t
a
t
e
H
e
a
r
t
K
i
d
n
e
y
B
l
o
o
d
L
y
m
p
h
N
o
d
e
V
a
s
c
u
l
a
t
u
r
e
S
a
l
i
v
a
r
y
G
l
a
n
d
B
o
n
e
M
a
r
r
o
w
B
l
a
d
d
e
r
M
u
s
c
l
e
S
k
i
n
M
a
m
m
a
r
y
U
t
e
r
u
s
Lung
Lymph Node
Spleen
Liver
Trachea
Thymus
Vasculature
Eye
Fat
Prostate
Salivary Gland
Heart
Kidney
Blood
Bone Marrow
Bladder
Muscle
Skin
Mammary
Uterus
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Pearson correlation
Fig. S11
B
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Liver
Lung
Lymph_Node
Mammary
Muscle
Prostate
Salivary_Gland
CROSS-TISSUE ANALYSIS
n = 36,475 (broad) macrophage cell ontology
class across 20 tissues
16
Macrophages
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
A
L
u
n
g
S
p
l
e
e
n
L
i
v
e
r
T
r
a
c
h
e
a
T
h
y
m
u
s
E
y
e
F
a
t
P
r
o
s
t
a
t
e
H
e
a
r
t
K
i
d
n
e
y
B
l
o
o
d
L
y
m
p
h
N
o
d
e
V
a
s
c
u
l
a
t
u
r
e
S
a
l
i
v
a
r
y
G
l
a
n
d
B
o
n
e
M
a
r
r
o
w
B
l
a
d
d
e
r
M
u
s
c
l
e
S
k
i
n
M
a
m
m
a
r
y
U
t
e
r
u
s
Lung
Lymph Node
Spleen
Liver
Trachea
Thymus
Vasculature
Eye
Fat
Prostate
Salivary Gland
Heart
Kidney
Blood
Bone Marrow
Bladder
Muscle
Skin
Mammary
Uterus
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Pearson correlation
Fig. S11
B
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Liver
Lung
Lymph_Node
Mammary
Muscle
Prostate
Salivary_Gland
CROSS-TISSUE ANALYSIS
n = 36,475 (broad) macrophage cell ontology
class across 20 tissues
16
Macrophages
r
o
w
e
r
M
u
s
c
l
e
S
k
i
n
M
a
m
m
a
r
y
U
t
e
r
u
s
Lung
Lymph
Node
Spleen
Liver
Trachea
Thymus
Vasculature
Eye
Fat
Prostate
Salivary
Gland
Heart
Kidney
Blood
Bone
Marrow
Bladder
Muscle
Skin
Mammary
Uterus
.75
1.00
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Legend
for
panels
C
(bottom)
and
D
TSP1
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
TSP10
TSP11
TSP12
TSP13
TSP14
TSP15
Legend
for
panel
C
(top)
D
0.0
0.1
0.2
Fat
Skin
Bone_Marrow
Trachea
Liver
Eye
Spleen
Lung
Kidney
Lymph_Node
Blood
Salivary_Gland
Tongue
Tissue
B
0
1
2
Median
expression
in
group
CHIT1
EREG
CTSK
CD5L
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Liver
Lung
Lymph_Node
Mammary
Muscle
Prostate
Salivary_Gland
Skin
Spleen
Thymus
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
A
L
u
n
g
S
p
l
e
e
n
L
i
v
e
r
T
r
a
c
h
e
a
T
h
y
m
u
s
E
y
e
F
a
t
P
r
o
s
t
a
t
e
H
e
a
r
t
K
i
d
n
e
y
B
l
o
o
d
L
y
m
p
h
N
o
d
e
V
a
s
c
u
l
a
t
u
r
e
S
a
l
i
v
a
r
y
G
l
a
n
d
B
o
n
e
M
a
r
r
o
w
B
l
a
d
d
e
r
M
u
s
c
l
e
S
k
i
n
M
a
m
m
a
r
y
U
t
e
r
u
s
Lung
Lymph Node
Spleen
Liver
Trachea
Thymus
Vasculature
Eye
Fat
Prostate
Salivary Gland
Heart
Kidney
Blood
Bone Marrow
Bladder
Muscle
Skin
Mammary
Uterus
−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Pearson correlation
Fig. S11
B
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Liver
Lung
Lymph_Node
Mammary
Muscle
Prostate
Salivary_Gland
CROSS-TISSUE ANALYSIS
n = 36,475 (broad) macrophage cell ontology
class across 20 tissues
16
Macrophages
r
o
w
e
r
M
u
s
c
l
e
S
k
i
n
M
a
m
m
a
r
y
U
t
e
r
u
s
Lung
Lymph
Node
Spleen
Liver
Trachea
Thymus
Vasculature
Eye
Fat
Prostate
Salivary
Gland
Heart
Kidney
Blood
Bone
Marrow
Bladder
Muscle
Skin
Mammary
Uterus
.75
1.00
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Legend
for
panels
C
(bottom)
and
D
TSP1
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
TSP10
TSP11
TSP12
TSP13
TSP14
TSP15
Legend
for
panel
C
(top)
D
0.0
0.1
0.2
Fat
Skin
Bone_Marrow
Trachea
Liver
Eye
Spleen
Lung
Kidney
Lymph_Node
Blood
Salivary_Gland
Tongue
Tissue
B
0
1
2
Median
expression
in
group
CHIT1
EREG
CTSK
CD5L
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Liver
Lung
Lymph_Node
Mammary
Muscle
Prostate
Salivary_Gland
Skin
Spleen
Thymus
Trachea
Uterus
Vasculature
In macrophages, some genes are highly speci
fi
c to
one tissue, others are speci
fi
c to multiple tissues,
supporting the idea that tissue-resident macrophages are
known to carry out specialized functions
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
17
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
17
T cells
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
18
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
18
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
19
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
19
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
20
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
IgA
IgM
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
20
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
B cells undergo class-switch recombination to diversify the humoral
immune response
IgA
IgM
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
20
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
Thymus
Eye
Prostate
Tongue
Fat
Skin
0
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
log
2
cpm
B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Cells
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Skin
Pancreas
Vasculature
Uterus
Lung
Salivary_Gland
Liver
Lymph_Node
Kidney
Spleen
Bone_Marrow
Fat
Thymus
Trachea
Blood
Tissue
IgA
IgG
IgM/D
B cells undergo class-switch recombination to diversify the humoral
immune response
IgA
IgM
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
20
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
Thymus
Eye
Prostate
Tongue
Fat
Skin
0
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
log
2
cpm
B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Cells
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Skin
Pancreas
Vasculature
Uterus
Lung
Salivary_Gland
Liver
Lymph_Node
Kidney
Spleen
Bone_Marrow
Fat
Thymus
Trachea
Blood
Tissue
IgA
IgG
IgM/D
B cells undergo class-switch recombination to diversify the humoral
immune response
typically
expressed in
naïve B cells or
secreted in the
fi
rst response
to pathogens
interact with
pathogens and
commensals at
the mucosa
involved in
direct
neutralization
of pathogens
IgA
IgM
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
CROSS-TISSUE ANALYSIS
20
T cells
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
2
4
6
8
log
2
cpm
B
A C
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Fig. 3
Tissue Clone id Cell ontology class
B cells
majority of T cell clones are found in
multiple tissues and represent a
variety of T cell subtypes
Thymus
Eye
Prostate
Tongue
Fat
Skin
0
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
log
2
cpm
B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Cells
Large_Intestine
Bladder
Mammary
Small_Intestine
Eye
Skin
Pancreas
Vasculature
Uterus
Lung
Salivary_Gland
Liver
Lymph_Node
Kidney
Spleen
Bone_Marrow
Fat
Thymus
Trachea
Blood
Tissue
IgA
IgG
IgM/D
B cells undergo class-switch recombination to diversify the humoral
immune response
typically
expressed in
naïve B cells or
secreted in the
fi
rst response
to pathogens
interact with
pathogens and
commensals at
the mucosa
involved in
direct
neutralization
of pathogens
IgA
IgM
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
21
CROSS-TISSUE ANALYSIS
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
21
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
22
ANKRD29
LCN1
ABCG2
KRT14
DSG2
F2RL3
HILPDA
OIT3
FAM13C
CYTL1
PGF
ZG16B
C7
VIPR1
CCL2
SLC14A1
Thymus
Eye
Prostate
Tongue
Fat
Skin
Uterus
Liver
Pancreas
Bladder
Mammary
Salivary_Gland
Vasculature
Lung
Muscle
Heart
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
Tissue
log2
cpm
C
0.5
0.6
0.7
0.8
ells
IgA
IgG
IgM/D
Cell
ontology
class
ANKRD29 LCN1 ABCG2 KR
ANKRD29 LC
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA O
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CY
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CY
VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VI
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC
ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
ZG16B C7 VIPR1 CCL2 SLC14A1
Salivary_Gland
Vasculature
Lung
Muscle
Heart
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Many of the endothelial markers are tissue-speci
fi
c while shared across donors
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
23
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
23
−10
−5
0
5
10
−5 0 5 10
UMAP 1
UMAP
2
Bladder
Eye
Fat
Heart
Liver
Lung
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Thymus
Tongue
Uterus
Vasculature
Tissue
−10
−5
0
5
10
−5 0 5 10
UMAP 1
TSP1
TSP10
TSP12
TSP14
TSP15
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
Donor
UMAP
2
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
23
−10
−5
0
5
10
−5 0 5 10
UMAP 1
UMAP
2
Bladder
Eye
Fat
Heart
Liver
Lung
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Thymus
Tongue
Uterus
Vasculature
Tissue
−10
−5
0
5
10
−5 0 5 10
UMAP 1
TSP1
TSP10
TSP12
TSP14
TSP15
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
Donor
UMAP
2
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
4
PLVAP
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
EDNRB
Lung
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
23
−10
−5
0
5
10
−5 0 5 10
UMAP 1
UMAP
2
Bladder
Eye
Fat
Heart
Liver
Lung
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Thymus
Tongue
Uterus
Vasculature
Tissue
−10
−5
0
5
10
−5 0 5 10
UMAP 1
TSP1
TSP10
TSP12
TSP14
TSP15
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
Donor
UMAP
2
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
4
PLVAP
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
EDNRB
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
4
MSX1
UMAP
2
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
0
1
2
3
CYP1B1
Lung Muscle
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
23
−10
−5
0
5
10
−5 0 5 10
UMAP 1
UMAP
2
Bladder
Eye
Fat
Heart
Liver
Lung
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Thymus
Tongue
Uterus
Vasculature
Tissue
−10
−5
0
5
10
−5 0 5 10
UMAP 1
TSP1
TSP10
TSP12
TSP14
TSP15
TSP2
TSP3
TSP4
TSP5
TSP6
TSP7
TSP8
TSP9
Donor
UMAP
2
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
4
PLVAP
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
EDNRB
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
UMAP
2
0
1
2
3
4
MSX1
UMAP
2
−10
−5
0
5
10
15
−5 0 5 10
UMAP 1
0
1
2
3
CYP1B1
Lung Muscle
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
24
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SLC14A1 appears to be a speci
fi
c marker for endothelial cells in the heart
24
Fig. S13
Heart muscle
A
B
SLC14A1
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SLC14A1 appears to be a speci
fi
c marker for endothelial cells in the heart
24
Fig. S13
Heart muscle
A
B
SLC14A1
Heart muscle
B
SLC14A1
SLC14A1
CROSS-TISSUE ANALYSIS
Endothelial
compartment
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
SLC14A1 appears to be a speci
fi
c marker for endothelial cells in the heart
Expression independently
validated with data from the
Human Protein Atlas!
ALTERNATIVE SPLICING (I)
25
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (I)
25
annotated gene unannotated region
A
B
C
D E
A: annotated junction
B: Both boundaries are annotated but the splice is not
C: One boundary is annotated and the other is not
D: Neither boundary is annotated but at least one end is in
a known gene
E: Neither boundary is in a known gene
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Splice junctions are counted in categories based on annotation status
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (I)
25
annotated gene unannotated region
A
B
C
D E
A: annotated junction
B: Both boundaries are annotated but the splice is not
C: One boundary is annotated and the other is not
D: Neither boundary is annotated but at least one end is in
a known gene
E: Neither boundary is in a known gene
Fraction of junctions in each category
22.8%
3.6%
12.5%
57.9%
3.2%
955,785 junctions total
A - 217,855
B - 34,624
C - 119,276
D - 553,345
E - 30,685
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Splice junctions are counted in categories based on annotation status
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (I)
25
annotated gene unannotated region
A
B
C
D E
A: annotated junction
B: Both boundaries are annotated but the splice is not
C: One boundary is annotated and the other is not
D: Neither boundary is annotated but at least one end is in
a known gene
E: Neither boundary is in a known gene
Fraction of junctions in each category
22.8%
3.6%
12.5%
57.9%
3.2%
955,785 junctions total
A - 217,855
B - 34,624
C - 119,276
D - 553,345
E - 30,685
independent validation of 61%
of the 358,924 total junctions
catalogued in the RefSeq
database!
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Splice junctions are counted in categories based on annotation status
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (I)
25
annotated gene unannotated region
A
B
C
D E
A: annotated junction
B: Both boundaries are annotated but the splice is not
C: One boundary is annotated and the other is not
D: Neither boundary is annotated but at least one end is in
a known gene
E: Neither boundary is in a known gene
Fraction of junctions in each category
22.8%
3.6%
12.5%
57.9%
3.2%
955,785 junctions total
A - 217,855
B - 34,624
C - 119,276
D - 553,345
E - 30,685
95.7%
3.0%
Fraction of reads in each category
1,633,557,320 junctions total
A - 1,562,568,353
B - 7,291,982
C - 13,361,370
D - 49,308,361
E - 1,027,254
independent validation of 61%
of the 358,924 total junctions
catalogued in the RefSeq
database!
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Splice junctions are counted in categories based on annotation status
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (I)
25
annotated gene unannotated region
A
B
C
D E
A: annotated junction
B: Both boundaries are annotated but the splice is not
C: One boundary is annotated and the other is not
D: Neither boundary is annotated but at least one end is in
a known gene
E: Neither boundary is in a known gene
Fraction of junctions in each category
22.8%
3.6%
12.5%
57.9%
3.2%
955,785 junctions total
A - 217,855
B - 34,624
C - 119,276
D - 553,345
E - 30,685
95.7%
3.0%
Fraction of reads in each category
1,633,557,320 junctions total
A - 1,562,568,353
B - 7,291,982
C - 13,361,370
D - 49,308,361
E - 1,027,254
independent validation of 61%
of the 358,924 total junctions
catalogued in the RefSeq
database!
annotated junctions tend to be expressed at higher levels
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Splice junctions are counted in categories based on annotation status
Dehghannasiri, et al, Genome Biology (2021)
Olivieri et al, Nat Methods (2022)
ALTERNATIVE SPLICING (II)
26
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
ALTERNATIVE SPLICING (II)
26
4 5
exon #: 6 7
untranslated
coding
constitutive splice alternative splice
MYL6
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
ALTERNATIVE SPLICING (II)
26
4 5
exon #: 6 7
untranslated
coding
constitutive splice alternative splice
MYL6
-exon6 isoform previously
described in phasic smooth muscle
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
ALTERNATIVE SPLICING (II)
26
4 5
exon #: 6 7
untranslated
coding
constitutive splice alternative splice
MYL6
MYL6 splicing is differentially regulated across functionally different cell types like immune and endothelial
-exon6 isoform previously
described in phasic smooth muscle
0
1
e
n
d
o
t
h
e
l
i
a
l
c
e
l
l
o
f
v
a
s
c
u
l
a
r
t
r
e
e
c
a
p
i
l
l
a
r
y
e
n
d
o
t
h
e
l
i
a
l
c
e
l
l
e
n
d
o
t
h
e
l
i
a
l
c
e
l
l
o
f
a
r
t
e
r
y
v
e
i
n
e
n
d
o
t
h
e
l
i
a
l
c
e
l
l
t
y
p
e
i
i
p
n
e
u
m
o
c
y
t
e
l
u
n
g
c
i
l
i
a
t
e
d
c
e
l
l
r
e
s
p
i
r
a
t
o
r
y
g
o
b
l
e
t
c
e
l
l
b
l
a
d
d
e
r
u
r
o
t
h
e
l
i
a
l
c
e
l
l
t
y
p
e
i
p
n
e
u
m
o
c
y
t
e
m
a
c
r
o
p
h
a
g
e
n
o
n
-
c
l
a
s
s
i
c
a
l
m
o
n
o
c
y
t
e
c
l
a
s
s
i
c
a
l
m
o
n
o
c
y
t
e
m
a
c
r
o
p
h
a
g
e
m
a
c
r
o
p
h
a
g
e
s
m
o
o
t
h
m
u
s
c
l
e
c
e
l
l
p
e
r
i
c
y
t
e
c
e
l
l
f
i
b
r
o
b
l
a
s
t
p
e
r
i
c
y
t
e
c
e
l
l
m
y
o
f
i
b
r
o
b
l
a
s
t
c
e
l
l
m
e
s
e
n
c
h
y
m
a
l
s
t
e
m
c
e
l
l
t
e
n
d
o
n
c
e
l
l
s
k
e
l
e
t
a
l
m
u
s
c
l
e
s
a
t
e
l
l
i
t
e
s
t
e
m
c
e
l
l
TSP1
0
1
Fraction
including
exon
TSP2
0
1
TSP14
Bladder
Lung
Muscle
p
e
i
n
o
n
-
c
l
a
s
s
i
c
c
l
a
s
s
i
c
s
m
o
o
t
h
m
y
o
f
m
e
s
e
n
c
h
y
m
s
k
e
l
e
t
a
l
m
u
s
c
l
e
s
a
t
e
Bladder
Lung
Muscle
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
ALTERNATIVE SPLICING (III)
27
D
r
e
s
p
i
r
a
t
o
r
y
g
o
b
l
e
t
c
e
l
l
b
l
a
d
d
e
r
u
r
o
t
h
e
l
i
a
l
c
e
l
l
l
u
n
g
c
TSP1 TSP2 TSP14
untranslated
cytoplasmic
transmembrane
extracellular
constitutive splice alternative splice
6 7
exon #: 9 10
8 11
CD47
C
Epitheli
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
ALTERNATIVE SPLICING (III)
27
CD47 is another example of differential regulation of splicing for different cell types within an organ
D
r
e
s
p
i
r
a
t
o
r
y
g
o
b
l
e
t
c
e
l
l
b
l
a
d
d
e
r
u
r
o
t
h
e
l
i
a
l
c
e
l
l
l
u
n
g
c
TSP1 TSP2 TSP14
untranslated
cytoplasmic
transmembrane
extracellular
constitutive splice alternative splice
6 7
exon #: 9 10
8 11
CD47
C
Epitheli
on
0
1
TSP14
D
7
8
9
10
r
e
s
p
i
r
a
t
o
r
y
g
o
b
l
e
t
c
e
l
l
b
l
a
d
d
e
r
u
r
o
t
h
e
l
i
a
l
c
e
l
l
l
u
n
g
c
i
l
i
a
t
e
d
c
e
l
l
t
y
p
e
i
i
p
n
e
u
m
o
c
y
t
e
c
l
u
b
c
e
l
l
t
y
p
e
i
p
n
e
u
m
o
c
y
t
e
m
a
c
r
o
p
h
a
g
e
m
a
c
r
o
p
h
a
g
e
f
i
b
r
o
b
l
a
s
t
m
e
s
e
n
c
h
y
m
a
l
s
t
e
m
c
e
l
l
TSP1
7
8
9
10
TSP2
7
8
9
10
TSP14
Average
splice
position
7
untranslated
cytoplasmic
transmembrane
extracellular
constitutive
splice
alternative
splice
6
7
exon
#:
9
10
8
11
CD47
C
Endothelial Epithelial Immune Stromal
Epithelial Immune Stromal
e
n
d
o
t
y
p
e
i
i
p
l
u
n
g
r
e
s
p
i
r
a
t
o
r
y
b
l
a
d
d
e
r
u
r
t
y
p
e
i
p
n
m
n
o
n
-
c
l
a
s
s
i
c
a
c
l
a
s
s
i
c
a
m
m
s
m
o
o
t
h
p
p
m
y
o
f
i
b
m
e
s
e
n
c
h
y
m
a
s
k
e
l
e
t
a
l
m
u
s
c
l
e
s
a
t
e
l
l
i
Bladder
Lung
Muscle
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A MULTIMODAL DATASET (I)
28
Single cell & histology
Organ procurement
Single cell
transcriptomics
The Tabula Sapiens Consortium, Science (2022)
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A MULTIMODAL DATASET (I)
28
Single cell & histology
Organ procurement
Single cell
transcriptomics
Histopathology
The Tabula Sapiens Consortium, Science (2022)
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
29
H&E + SEQUENCING
PNS/Neuroglial
Endothelial
11. Endothelial cell
(arteriole)
12. Endothelial cell
(venule)
13. Endothelial cell
(capillary)
Stromal
14. Smooth
muscle cell
(arteriole)
15. Fibroblast
16. Ganglion cell
(Meissner plexus)
17. Schwann cell
Epithelial
1. Absorptive
enterocyte
2. Goblet cell
3. Paneth cell
4. Crypt enterocyte
5. Enteroendocrine
cell
Endothelial
6. Endothelial cell
(capillary or
lymphatic)
Stromal
7. Fibroblast
Immune
8. Lymphocyte
9. Plasma cell
10. Eosinophil
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
29
Lymph
Node
Spleen
Muscle
Diaphragm
Aorta
Duodenum
Ileum
Colon
(Proximal)
Colon
(Distal)
Bladder
Trachea
Lung
(Proximal)
Lung
(Distal)
0
20
40
60
80
100
Relative
compartment
abundacy
(%)
Spatial Heterogeneity
low medium high
H&E + SEQUENCING
PNS/Neuroglial
Endothelial
11. Endothelial cell
(arteriole)
12. Endothelial cell
(venule)
13. Endothelial cell
(capillary)
Stromal
14. Smooth
muscle cell
(arteriole)
15. Fibroblast
16. Ganglion cell
(Meissner plexus)
17. Schwann cell
Epithelial
1. Absorptive
enterocyte
2. Goblet cell
3. Paneth cell
4. Crypt enterocyte
5. Enteroendocrine
cell
Endothelial
6. Endothelial cell
(capillary or
lymphatic)
Stromal
7. Fibroblast
Immune
8. Lymphocyte
9. Plasma cell
10. Eosinophil
Epithelial
Endothelial
Stromal
Immune
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
29
Lymph
Node
Spleen
Muscle
Diaphragm
Aorta
Duodenum
Ileum
Colon
(Proximal)
Colon
(Distal)
Bladder
Trachea
Lung
(Proximal)
Lung
(Distal)
0
20
40
60
80
100
Relative
compartment
abundacy
(%)
Spatial Heterogeneity
low medium high
10 20 30 40 50 60 70
Cell Type Representation, Pathology (%)
10
20
30
40
50
60
70
80
90
Cell
Type
Representation,
Sequencing
(%)
Good correlation between functional
compartments across modalities
H&E + SEQUENCING
PNS/Neuroglial
Endothelial
11. Endothelial cell
(arteriole)
12. Endothelial cell
(venule)
13. Endothelial cell
(capillary)
Stromal
14. Smooth
muscle cell
(arteriole)
15. Fibroblast
16. Ganglion cell
(Meissner plexus)
17. Schwann cell
Epithelial
1. Absorptive
enterocyte
2. Goblet cell
3. Paneth cell
4. Crypt enterocyte
5. Enteroendocrine
cell
Endothelial
6. Endothelial cell
(capillary or
lymphatic)
Stromal
7. Fibroblast
Immune
8. Lymphocyte
9. Plasma cell
10. Eosinophil
Epithelial
Endothelial
Stromal
Immune
BUILDING A MULTIMODAL REFERENCE ATLAS
30
Single cell & histology & microbiome
Organ procurement
Histopathology
Single cell transcriptomics
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A MULTIMODAL REFERENCE ATLAS
30
Single cell & histology & microbiome
Microbiome
Organ procurement
Histopathology
Single cell transcriptomics
UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
The Tabula Sapiens Consortium, Science (2022)
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
A
Stomach
Sigmoid colon
Pyloric
Sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
1
2
3
4
5
D
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Fig. 6
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
A
Stomach
Sigmoid colon
Pyloric
Sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
1
2
3
4
5
D
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Fig. 6
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
MUC
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
A
Stomach
Sigmoid colon
Pyloric
Sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
1
2
3
4
5
D
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Fig. 6
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
MUC
large fraction of
species was unique
to each region
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
A
Stomach
Sigmoid colon
Pyloric
Sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
1
2
3
4
5
D
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Fig. 6
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
MUC
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
Jejunum
Illeum
Ascending
colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Duodenum
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
F
G
-5
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
U
MUC12 C
M
large fraction of
species was unique
to each region
most species shared
between ascending
and sigmoid colon
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
MICROBIOME COMPOSITION
31
Stomach
Sigmoid colon
Pyloric sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
A
Stomach
Sigmoid colon
Pyloric
Sphincter
Duodenum
Jejunum
Illeum
Ascending
colon
1
2
3
4
5
D
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Fig. 6
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
MUC
0
25
50
75
100
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
0
20
40
60
80
1
2
3
B
C
Sigmoid colon
Jejunum
Illeum
Ascending
colon
1
5
E
1: Duodenum 2: Jejunum 3: Ileum
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Duodenum
Jejunum
Ileum
Ascending
colon
Sigmoid
colon
Bacteroidetes
Actinobacteria
Relative
abundance
(%)
Observed
species
Shannon
diversity
ASVs specific to previous region
ASVs specific to next region
F
G
-5
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
U
MUC12 C
M
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
1
2
3
4
5
D
E
4: Ascending
colon
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Bacteroidetes
Actinobacteria
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
0
2
4
6
8
10
12
14
16
18
20
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
Bifidobacteriaceae
Actinomycetaceae
Rikenellaceae
Prevotellaceae
Bacteroidaceae
Tannerellaceae
Lachnospiraceae
Eubacteraceae
Veillonellaceae
Lactobacillaceae
Enterococcaceae
Streptococcaceae
Bacillaceae
Ruminococcaceae
Desulfovibrionaceae
Burkholderiaceae
Enterobacteriaceae
Cardiobacteriaceae
Akkermansiaceae
Other
1
3
4
5
D
E
ending
on
5: Sigmoid
colon
Verrucomicrobia
Proteobacteria
Firmicutes
Bacteroidetes
Actinobacteria
Large intestine (sigmoid colon)
Large intestine (ascending colon)
Small intestine (ileum)
Small intestine (duodenum)
T cells
CCR9
RPS6
MT-RNR1
MT-CO1
MT-CO2
MT-ND1
RPL30
IL7R
RPS19
CXCR4
CCL4
GPR15
ANXA1
SELENBP1
C15orf48
FXYD3
KLRC2
CD24
GDF15
RARRES2
C10orf99
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
2
4
6
8
10
12
14
16
18
20
log2
(fold-change)
-log
10
(p)
Up-regulated in small intestine
Up-regulated in large intestine
MUC12
KLF4
CKB
CRYAB
FAM3D
CFD
MGP
large fraction of
species was unique
to each region
most species shared
between ascending
and sigmoid colon
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
32
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
http://tabula-sapiens-portal.ds.czbiohub.org/
32
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
http://tabula-sapiens-portal.ds.czbiohub.org/
ACCELERATING SCIENTIFIC DISCOVERY
33
~500k cells
A compendium of human cell
types across >20 donors
Two methods for single cell
transcriptomics
FACS-based full length transcript
analysis
Micro
fl
uidic droplet-based 3’ end
counting
Histopathology images for most
donors and organs
>20TB
>100k
fi
les
~200GB
Data easily accessible from webportal
https://tabula-sapiens-portal.ds.czbiohub.org/
Manuscript versions deposited to bioRxiv
Code on GitHub
https://github.com/czbiohub-sf/tabula-sapiens
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
34
TABULAE: WHOLE ORGANISM CELL ATLASES
Species
Reference
State
Tabula
Muris
Tabula
Microcebus
Tabula Drosophila
Fly Cell Atlas
Bat Cell
Atlas
Tabula
Sapiens
Disease/
Perturbation
Intervention
Nature,
2018
Nature,
2020
Nature,
2022
Science,
2022
biorxiv,
2020
biorxiv, 2021 Science,
2022
Understanding the differences from the normal state, inferring
what went wrong and intervening to treat or manage
Understanding
disease
Zebrahub
Aging Fly Cell Atlas
Science,
2023
biorxiv,
2022
Covid
Tissue
Atlas
eLife, 2023
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
35
GROWING THE MULTIMODAL REFERENCE ATLAS
The Tabula Sapiens Consortium, unpublished
Tabula Sapiens v2
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
35
GROWING THE MULTIMODAL REFERENCE ATLAS
T
S
P
1
T
S
P
2
T
S
P
3
T
S
P
4
T
S
P
5
T
S
P
6
T
S
P
7
T
S
P
8
T
S
P
9
T
S
P
1
0
T
S
P
1
1
T
S
P
1
2
T
S
P
1
3
T
S
P
1
4
T
S
P
1
5
T
S
P
1
7
T
S
P
1
9
T
S
P
2
0
T
S
P
2
1
T
S
P
2
5
T
S
P
2
6
T
S
P
2
7
T
S
P
2
8
T
S
P
3
0
Bladder
Lung
Muscle
Blood
Pancreas
Heart
Thymus
Spleen
Small_Intestine
Skin
Fat
Kidney
Trachea
Lymph_Node
Bone_Marrow
Vasculature
Large_Intestine
Eye
Uterus
Tongue
Mammary
Liver
Salivary_Gland
Prostate
Stomach
Ear
Testis
Ovary
1,193,479 cells
28 tissues
24 donors
190 unique cell ontology
classes
701 tissue-cell types
The Tabula Sapiens Consortium, unpublished
Tabula Sapiens v2
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A CLINICALLY RELEVANT MULTIMODAL ATLAS
36
Single cell transcriptomics
Histology UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Single cell & histology & EMR
The Tabula Sapiens Consortium, unpublished
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
BUILDING A CLINICALLY RELEVANT MULTIMODAL ATLAS
36
Single cell transcriptomics
Histology UMAP1
UMAP2
Organ/Tissue
Bladder
Blood
Bone_Marrow
Eye
Fat
Heart
Kidney
Large_Intestine
Liver
Lung
Lymph_Node
Mammary
Muscle
Pancreas
Prostate
Salivary_Gland
Skin
Small_Intestine
Spleen
Thymus
Tongue
Trachea
Uterus
Vasculature
Single cell & histology & EMR
The Tabula Sapiens Consortium, unpublished
Medical records
Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
http://tabula-sapiens-portal.ds.czbiohub.org/
CZ Biohub Data Science
CZ Biohub Genomics
Ahmad Salehi
Ravi Ponnusmi
We express our gratitude and thanks
to donor WEM and his family, as well
as all of the anonymous organ and
tissue donors and their families for
giving both the gift of life and the gift
of knowledge by their generous
donations.

More Related Content

Similar to dkNET Webinar: Tabula Sapiens 03/22/2024

bioinformatics simple
bioinformatics simple bioinformatics simple
bioinformatics simple nadeem akhter
 
Next Generation Sequencing and its Applications in Medical Research - Frances...
Next Generation Sequencing and its Applications in Medical Research - Frances...Next Generation Sequencing and its Applications in Medical Research - Frances...
Next Generation Sequencing and its Applications in Medical Research - Frances...Sri Ambati
 
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...Varij Nayan
 
Introducción a la bioinformatica
Introducción a la bioinformaticaIntroducción a la bioinformatica
Introducción a la bioinformaticaMartín Arrieta
 
Methods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataMethods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataChirag Patel
 
Chapter 20 ppt
Chapter 20 pptChapter 20 ppt
Chapter 20 pptrehman2009
 
A New Generation Of Mechanism-Based Biomarkers For The Clinic
A New Generation Of Mechanism-Based Biomarkers For The ClinicA New Generation Of Mechanism-Based Biomarkers For The Clinic
A New Generation Of Mechanism-Based Biomarkers For The ClinicJoaquin Dopazo
 
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...Ryan Squire
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018David Cook
 
Kim Solez combining resources in tx and regen med make no small plans
Kim Solez combining resources in tx and regen med make no small plansKim Solez combining resources in tx and regen med make no small plans
Kim Solez combining resources in tx and regen med make no small plansKim Solez ,
 
Itqb talkslideshfd deritemplate
Itqb talkslideshfd deritemplateItqb talkslideshfd deritemplate
Itqb talkslideshfd deritemplateHelena Deus
 
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...Nora Piedad Velasquez
 
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELL
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELLEXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELL
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELLdbpublications
 
Epigeneticsand methylation
Epigeneticsand methylationEpigeneticsand methylation
Epigeneticsand methylationShubhda Roy
 
FOLDING (Central dogma of genetics)
FOLDING (Central dogma of genetics) FOLDING (Central dogma of genetics)
FOLDING (Central dogma of genetics) Maria Giraldo
 
GENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSGENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSsandeshGM
 
Revolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesRevolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesInstitute for Systems Biology
 

Similar to dkNET Webinar: Tabula Sapiens 03/22/2024 (20)

Intro bioinfo
Intro bioinfoIntro bioinfo
Intro bioinfo
 
bioinformatics simple
bioinformatics simple bioinformatics simple
bioinformatics simple
 
DNA Microarray
DNA MicroarrayDNA Microarray
DNA Microarray
 
Next Generation Sequencing and its Applications in Medical Research - Frances...
Next Generation Sequencing and its Applications in Medical Research - Frances...Next Generation Sequencing and its Applications in Medical Research - Frances...
Next Generation Sequencing and its Applications in Medical Research - Frances...
 
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...
Interactomics, Integromics to Systems Biology: Next Animal Biotechnology Fron...
 
Introducción a la bioinformatica
Introducción a la bioinformaticaIntroducción a la bioinformatica
Introducción a la bioinformatica
 
Methods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataMethods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big data
 
Chapter 20 ppt
Chapter 20 pptChapter 20 ppt
Chapter 20 ppt
 
A New Generation Of Mechanism-Based Biomarkers For The Clinic
A New Generation Of Mechanism-Based Biomarkers For The ClinicA New Generation Of Mechanism-Based Biomarkers For The Clinic
A New Generation Of Mechanism-Based Biomarkers For The Clinic
 
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...
Medicine of the Future—The Transformation from Reactive to Proactive (P4) Med...
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
 
Kim Solez combining resources in tx and regen med make no small plans
Kim Solez combining resources in tx and regen med make no small plansKim Solez combining resources in tx and regen med make no small plans
Kim Solez combining resources in tx and regen med make no small plans
 
Itqb talkslideshfd deritemplate
Itqb talkslideshfd deritemplateItqb talkslideshfd deritemplate
Itqb talkslideshfd deritemplate
 
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...
Novel Compound to Halt Virus replication Identified AND Spasticity Gene Findi...
 
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELL
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELLEXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELL
EXTRACTION AND CLASSIFICATION OF BLEBS IN HUMAN EMBRYONIC STEM CELL
 
Epigeneticsand methylation
Epigeneticsand methylationEpigeneticsand methylation
Epigeneticsand methylation
 
FOLDING (Central dogma of genetics)
FOLDING (Central dogma of genetics) FOLDING (Central dogma of genetics)
FOLDING (Central dogma of genetics)
 
JALANov2000
JALANov2000JALANov2000
JALANov2000
 
GENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICSGENOMICS AND BIOINFORMATICS
GENOMICS AND BIOINFORMATICS
 
Revolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesRevolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approaches
 

More from dkNET

dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...
dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...
dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...dkNET
 
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...dkNET
 
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET
 
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...dkNET
 
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...dkNET
 
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET
 
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023dkNET
 
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...dkNET
 
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...dkNET
 
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET
 
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...dkNET
 
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...dkNET
 
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...dkNET
 
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...dkNET
 
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...dkNET
 
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...dkNET
 
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022dkNET
 
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22dkNET
 
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...dkNET
 
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...dkNET
 

More from dkNET (20)

dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...
dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...
dkNET Webinar "The Multi-Omic Response to Exercise Training Across Rat Tissue...
 
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...
dkNET Webinar: The Collaborative Microbial Metabolite Center – Democratizing ...
 
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
dkNET Webinar: An Encyclopedia of the Adipose Tissue Secretome to Identify Me...
 
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...
dkNET Webinar: A Single Cell Atlas of Human and Mouse White Adipose Tissue 11...
 
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...
dkNET Webinar "The National Sleep Research Resource (NSRR) - Opportunities fo...
 
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
 
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023
dkNET Webinar: Discover the Latest from dkNET - Biomed Resource Watch 06/02/2023
 
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...
dkNET Webinar: Leveraging Computational Strategies to Identify Type 1 Diabete...
 
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...
dkNET Webinar: Estimating Relative Beta-Cell Function During Continuous Gluco...
 
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023: New NIH Data Management and Sha...
 
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...
dkNET Webinar: Postpartum Glucose Screening Among Homeless Women with Gestati...
 
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...
dkNET Webinar: Choosing Sample Sizes for Multilevel and Longitudinal Studies ...
 
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...
dkNET Webinar: : FAIR Data Curation of Antibody/B-cell and T-cell Receptor Se...
 
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...
dkNET Office Hours - "Are You Ready for 2023? New NIH Data Management and Sha...
 
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...
dkNET Webinar "The Mission and Progress of the(sugar)science: Helping Scienti...
 
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...
dkNET Webinar: Discovering and Evaluating Antibodies, Cell Lines, Software To...
 
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022
dkNET Webinar: The Human BioMolecular Atlas Program (HuBMAP) 10/14/2022
 
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22
dkNET Webinar "Visualizing Organelle and Cell Longevity In Situ" 05/20/22
 
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...
dkNET Webinar "Integrative Artificial Intelligence Approach to Predict T1D" 0...
 
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...
dkNET-HIRN Webinar "T Cell Antigen Discovery: Experimental and Computational ...
 

Recently uploaded

zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Masticationvidulajaib
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxdharshini369nike
 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10ROLANARIBATO3
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 

Recently uploaded (20)

Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Temporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of MasticationTemporomandibular joint Muscles of Mastication
Temporomandibular joint Muscles of Mastication
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptx
 
Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10Gas_Laws_powerpoint_notes.ppt for grade 10
Gas_Laws_powerpoint_notes.ppt for grade 10
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 

dkNET Webinar: Tabula Sapiens 03/22/2024

  • 1. Angela Oliveira Pisco angela.oliveira.pisco@gmail.com @drAOPisco @aopisco Tabula Sapiens A multiple-organ, single-cell transcriptomic atlas of humans 03-22-2024
  • 2. WHOLE ORGANISM CELL ATLASES 2 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 3. WHOLE ORGANISM CELL ATLASES 2 understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 4. WHOLE ORGANISM CELL ATLASES 2 Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 5. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 6. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + 1. Why single cells? Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 7. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + Cells 1. Why single cells? Organ/Tissue Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 8. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + Cells 1. Why single cells? Organ/Tissue Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 9. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + Cells 1. Why single cells? Organ/Tissue Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 10. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + Cells 1. Why single cells? 2. Why transcriptomics? Organ/Tissue Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 11. WHOLE ORGANISM CELL ATLASES 2 Single-cell transcriptomics Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease understand underlying mechanisms of disease and develop new technologies which will lead to actionable diagnostics and effective therapies Vision Computational analysis + In multicellular organisms, nearly every cell contains the same genome but not every gene is transcriptionally active in every cell Transcriptome, the total amount of RNA, offers a closer view of the real time gene expression in a cell Cells 1. Why single cells? 2. Why transcriptomics? Organ/Tissue Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 12. SINGLE CELL DATA COLLECTION WORKFLOW 3 The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 13. SINGLE CELL DATA COLLECTION WORKFLOW 3 Organ procurement The Tabula Sapiens Consortium, Science (2022) Partnership with Donor Network West Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 14. SINGLE CELL DATA COLLECTION WORKFLOW 3 Organ procurement Cell dissociation The Tabula Sapiens Consortium, Science (2022) Organ speci fi c teams Partnership with Donor Network West Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 15. SINGLE CELL DATA COLLECTION WORKFLOW 3 Organ procurement Cell dissociation 10x genomics Illumina sequencing Smartseq-2 Data analysis The Tabula Sapiens Consortium, Science (2022) Organ speci fi c teams Centralized Partnership with Donor Network West Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 16. SC-RNA SEQ DATA PROCESSING 4 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 17. SC-RNA SEQ DATA PROCESSING 4 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 18. SC-RNA SEQ DATA PROCESSING 4 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature UMAP1 UMAP2 Compartment endothelial epithelial germ line immune stromal UMAP1 UMAP2 Donor TSP1 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 TSP10 TSP11 TSP12 TSP13 TSP14 TSP15 10X smartseq2 UMAP1 UMAP2 Method 10X smartseq2 UMAP1 UMAP2 Gender female male Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 19. DATASET SUMMARY 5 Clinical metadata Age Gender Ethnicity Race BMI (kg/m2) Downtime (min) Cause of DeathTobacco (>20 pack-years) Alcohol IV Drug abuse Diabetes Cancer Hypertension Coronary Artery Disease Other noted conditions The Tabula Sapiens Consortium, Science (2022) TSP1 TSP2 TSP7 TSP14 Additional 11 Donors Bladder Blood Bone Marrow Eye Fat Heart Kidney Large Intestine Liver Lung Lymph Node Mammary Gland Muscle Pancreas Prostate Salivary Gland Skin Small Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Total 483,152 cells 24,583 50,115 12,297 10,650 20,263 11,505 9,641 13,680 5,007 35,682 53,275 11,375 30,746 13,497 16,375 27,199 9,424 12,467 34,004 33,664 15,020 9,522 7,124 16,037 6000 12000 18000 24000 30000 Cell count Number of cells Fig. 1 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 20. CELL TYPE ANNOTATION (I) 6 The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 21. CELL TYPE ANNOTATION (I) 6 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature
  • 22. CELL TYPE ANNOTATION (I) 6 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes Unannotated dataset Scanorama BBKNN scVI Random Forest SVM OnClass scANVI Unsupervised Method + kNN Supervised Method Semi-supervised Method PopularVote ANNOTATION Expert Manual Partial Annotation manually annotated dataset Cells Genes Expert Manual Annotation Revision computer automated annotated dataset Cells Genes annotated reference dataset Cells Genes The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature
  • 23. CELL TYPE ANNOTATION (II) 7 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 24. CELL TYPE ANNOTATION (II) 7 Reference Tabula Sapiens Draft reference Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 25. CELL TYPE ANNOTATION (II) 7 Reference *new* Tabula Sapiens subset Tabula Sapiens Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 26. CELL TYPE ANNOTATION (II) 7 Reference *new* Tabula Sapiens subset Tabula Sapiens Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 27. CELL TYPE ANNOTATION (II) 7 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 28. CELL TYPE ANNOTATION (II) 7 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Expert curation Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 29. CELL TYPE ANNOTATION (II) 8 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Expert curation Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 30. CELL TYPE ANNOTATION (II) 8 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Expert curation Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 31. 9 PopV (I) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 32. 9 PopV (I) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 33. 9 PopV (I) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 34. 9 PopV (I) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 35. 10 PopV (II) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 36. 10 PopV (II) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 37. 11 PopV (III) https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata https://github.com/YosefLab/PopV Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 38. 11 PopV (III) https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata https://github.com/YosefLab/PopV Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 39. 11 PopV (III) https://tabula-sapiens-portal.ds.czbiohub.org/annotateuserdata https://github.com/YosefLab/PopV Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 40. CELL TYPE ANNOTATION (III) 12 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Expert curation Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 41. CELL TYPE ANNOTATION (III) 12 Reference *new* Tabula Sapiens subset Tabula Sapiens *new* Tabula Sapiens Dataset Unclassified dataset Automatically classi fi ed dataset Expert curation Tabula Sapiens publication New Reference Draft reference Unclassified dataset Unclassi fi ed dataset Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 42. BUILDING A REFERENCE ATLAS 13 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes Unannotated dataset Scanorama BBKNN scVI Random Forest SVM OnClass scANVI Unsupervised Method + kNN Supervised Method Semi-supervised Method PopularVote ANNOTATION Expert Manual Partial Annotation manually annotated dataset Cells Genes Expert Manual Annotation Revision computer automated annotated dataset Cells Genes annotated reference dataset Cells Genes Automated annotations Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 43. BUILDING A REFERENCE ATLAS 13 10x SmartSeq2 raw count cell-gene matrix Cells Genes Ambient RNA Removal (DecontX) Dimensionality Reduction Harmonization (scVI) PREPROCESSING corrected counts cell-gene matrix Cells Genes unannotated dataset Cells Genes Unannotated dataset Scanorama BBKNN scVI Random Forest SVM OnClass scANVI Unsupervised Method + kNN Supervised Method Semi-supervised Method PopularVote ANNOTATION Expert Manual Partial Annotation manually annotated dataset Cells Genes Expert Manual Annotation Revision computer automated annotated dataset Cells Genes annotated reference dataset Cells Genes 475 cell types curation by tissue experts Automated annotations Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 44. 14 MARKER GENES FOR CELL TYPES Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 45. 14 MARKER GENES FOR CELL TYPES Wang, Pisco, et al, Nat Comms (2021) https://tabula-sapiens-portal.ds.czbiohub.org/markergenes Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 48. CROSS-TISSUE ANALYSIS 16 Macrophages Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 49. CROSS-TISSUE ANALYSIS n = 36,475 (broad) macrophage cell ontology class across 20 tissues 16 Macrophages Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 50. A L u n g S p l e e n L i v e r T r a c h e a T h y m u s E y e F a t P r o s t a t e H e a r t K i d n e y B l o o d L y m p h N o d e V a s c u l a t u r e S a l i v a r y G l a n d B o n e M a r r o w B l a d d e r M u s c l e S k i n M a m m a r y U t e r u s Lung Lymph Node Spleen Liver Trachea Thymus Vasculature Eye Fat Prostate Salivary Gland Heart Kidney Blood Bone Marrow Bladder Muscle Skin Mammary Uterus −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00 Pearson correlation Fig. S11 B Bladder Blood Bone_Marrow Eye Fat Heart Kidney Liver Lung Lymph_Node Mammary Muscle Prostate Salivary_Gland CROSS-TISSUE ANALYSIS n = 36,475 (broad) macrophage cell ontology class across 20 tissues 16 Macrophages Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 51. A L u n g S p l e e n L i v e r T r a c h e a T h y m u s E y e F a t P r o s t a t e H e a r t K i d n e y B l o o d L y m p h N o d e V a s c u l a t u r e S a l i v a r y G l a n d B o n e M a r r o w B l a d d e r M u s c l e S k i n M a m m a r y U t e r u s Lung Lymph Node Spleen Liver Trachea Thymus Vasculature Eye Fat Prostate Salivary Gland Heart Kidney Blood Bone Marrow Bladder Muscle Skin Mammary Uterus −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00 Pearson correlation Fig. S11 B Bladder Blood Bone_Marrow Eye Fat Heart Kidney Liver Lung Lymph_Node Mammary Muscle Prostate Salivary_Gland CROSS-TISSUE ANALYSIS n = 36,475 (broad) macrophage cell ontology class across 20 tissues 16 Macrophages r o w e r M u s c l e S k i n M a m m a r y U t e r u s Lung Lymph Node Spleen Liver Trachea Thymus Vasculature Eye Fat Prostate Salivary Gland Heart Kidney Blood Bone Marrow Bladder Muscle Skin Mammary Uterus .75 1.00 Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Legend for panels C (bottom) and D TSP1 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 TSP10 TSP11 TSP12 TSP13 TSP14 TSP15 Legend for panel C (top) D 0.0 0.1 0.2 Fat Skin Bone_Marrow Trachea Liver Eye Spleen Lung Kidney Lymph_Node Blood Salivary_Gland Tongue Tissue B 0 1 2 Median expression in group CHIT1 EREG CTSK CD5L Bladder Blood Bone_Marrow Eye Fat Heart Kidney Liver Lung Lymph_Node Mammary Muscle Prostate Salivary_Gland Skin Spleen Thymus Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 52. A L u n g S p l e e n L i v e r T r a c h e a T h y m u s E y e F a t P r o s t a t e H e a r t K i d n e y B l o o d L y m p h N o d e V a s c u l a t u r e S a l i v a r y G l a n d B o n e M a r r o w B l a d d e r M u s c l e S k i n M a m m a r y U t e r u s Lung Lymph Node Spleen Liver Trachea Thymus Vasculature Eye Fat Prostate Salivary Gland Heart Kidney Blood Bone Marrow Bladder Muscle Skin Mammary Uterus −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00 Pearson correlation Fig. S11 B Bladder Blood Bone_Marrow Eye Fat Heart Kidney Liver Lung Lymph_Node Mammary Muscle Prostate Salivary_Gland CROSS-TISSUE ANALYSIS n = 36,475 (broad) macrophage cell ontology class across 20 tissues 16 Macrophages r o w e r M u s c l e S k i n M a m m a r y U t e r u s Lung Lymph Node Spleen Liver Trachea Thymus Vasculature Eye Fat Prostate Salivary Gland Heart Kidney Blood Bone Marrow Bladder Muscle Skin Mammary Uterus .75 1.00 Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Legend for panels C (bottom) and D TSP1 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 TSP10 TSP11 TSP12 TSP13 TSP14 TSP15 Legend for panel C (top) D 0.0 0.1 0.2 Fat Skin Bone_Marrow Trachea Liver Eye Spleen Lung Kidney Lymph_Node Blood Salivary_Gland Tongue Tissue B 0 1 2 Median expression in group CHIT1 EREG CTSK CD5L Bladder Blood Bone_Marrow Eye Fat Heart Kidney Liver Lung Lymph_Node Mammary Muscle Prostate Salivary_Gland Skin Spleen Thymus Trachea Uterus Vasculature In macrophages, some genes are highly speci fi c to one tissue, others are speci fi c to multiple tissues, supporting the idea that tissue-resident macrophages are known to carry out specialized functions Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 55. CROSS-TISSUE ANALYSIS 18 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 56. CROSS-TISSUE ANALYSIS 18 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 57. CROSS-TISSUE ANALYSIS 19 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 58. CROSS-TISSUE ANALYSIS 19 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 59. CROSS-TISSUE ANALYSIS 20 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes IgA IgM Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 60. CROSS-TISSUE ANALYSIS 20 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes B cells undergo class-switch recombination to diversify the humoral immune response IgA IgM Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 61. CROSS-TISSUE ANALYSIS 20 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes Thymus Eye Prostate Tongue Fat Skin 0 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 log 2 cpm B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Fraction of Cells Large_Intestine Bladder Mammary Small_Intestine Eye Skin Pancreas Vasculature Uterus Lung Salivary_Gland Liver Lymph_Node Kidney Spleen Bone_Marrow Fat Thymus Trachea Blood Tissue IgA IgG IgM/D B cells undergo class-switch recombination to diversify the humoral immune response IgA IgM Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 62. CROSS-TISSUE ANALYSIS 20 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes Thymus Eye Prostate Tongue Fat Skin 0 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 log 2 cpm B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Fraction of Cells Large_Intestine Bladder Mammary Small_Intestine Eye Skin Pancreas Vasculature Uterus Lung Salivary_Gland Liver Lymph_Node Kidney Spleen Bone_Marrow Fat Thymus Trachea Blood Tissue IgA IgG IgM/D B cells undergo class-switch recombination to diversify the humoral immune response typically expressed in naïve B cells or secreted in the fi rst response to pathogens interact with pathogens and commensals at the mucosa involved in direct neutralization of pathogens IgA IgM Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 63. CROSS-TISSUE ANALYSIS 20 T cells ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 2 4 6 8 log 2 cpm B A C Large_Intestine Bladder Mammary Small_Intestine Eye Fig. 3 Tissue Clone id Cell ontology class B cells majority of T cell clones are found in multiple tissues and represent a variety of T cell subtypes Thymus Eye Prostate Tongue Fat Skin 0 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 log 2 cpm B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Fraction of Cells Large_Intestine Bladder Mammary Small_Intestine Eye Skin Pancreas Vasculature Uterus Lung Salivary_Gland Liver Lymph_Node Kidney Spleen Bone_Marrow Fat Thymus Trachea Blood Tissue IgA IgG IgM/D B cells undergo class-switch recombination to diversify the humoral immune response typically expressed in naïve B cells or secreted in the fi rst response to pathogens interact with pathogens and commensals at the mucosa involved in direct neutralization of pathogens IgA IgM Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 64. 21 CROSS-TISSUE ANALYSIS Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature
  • 65. 21 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature
  • 66. 22 ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Thymus Eye Prostate Tongue Fat Skin Uterus Liver Pancreas Bladder Mammary Salivary_Gland Vasculature Lung Muscle Heart 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 Tissue log2 cpm C 0.5 0.6 0.7 0.8 ells IgA IgG IgM/D Cell ontology class ANKRD29 LCN1 ABCG2 KR ANKRD29 LC ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2 ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA O ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CY ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CY VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VI ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC ANKRD29 LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart LCN1 ABCG2 KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart KRT14 DSG2 F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart F2RL3 HILPDA OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart OIT3 FAM13C CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart CYTL1 PGF ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart ZG16B C7 VIPR1 CCL2 SLC14A1 Salivary_Gland Vasculature Lung Muscle Heart CROSS-TISSUE ANALYSIS Endothelial compartment Many of the endothelial markers are tissue-speci fi c while shared across donors Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 67. 23 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 68. 23 −10 −5 0 5 10 −5 0 5 10 UMAP 1 UMAP 2 Bladder Eye Fat Heart Liver Lung Mammary Muscle Pancreas Prostate Salivary_Gland Skin Thymus Tongue Uterus Vasculature Tissue −10 −5 0 5 10 −5 0 5 10 UMAP 1 TSP1 TSP10 TSP12 TSP14 TSP15 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 Donor UMAP 2 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 69. 23 −10 −5 0 5 10 −5 0 5 10 UMAP 1 UMAP 2 Bladder Eye Fat Heart Liver Lung Mammary Muscle Pancreas Prostate Salivary_Gland Skin Thymus Tongue Uterus Vasculature Tissue −10 −5 0 5 10 −5 0 5 10 UMAP 1 TSP1 TSP10 TSP12 TSP14 TSP15 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 Donor UMAP 2 −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 4 PLVAP −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 EDNRB Lung CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 70. 23 −10 −5 0 5 10 −5 0 5 10 UMAP 1 UMAP 2 Bladder Eye Fat Heart Liver Lung Mammary Muscle Pancreas Prostate Salivary_Gland Skin Thymus Tongue Uterus Vasculature Tissue −10 −5 0 5 10 −5 0 5 10 UMAP 1 TSP1 TSP10 TSP12 TSP14 TSP15 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 Donor UMAP 2 −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 4 PLVAP −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 EDNRB −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 4 MSX1 UMAP 2 −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 0 1 2 3 CYP1B1 Lung Muscle CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 71. 23 −10 −5 0 5 10 −5 0 5 10 UMAP 1 UMAP 2 Bladder Eye Fat Heart Liver Lung Mammary Muscle Pancreas Prostate Salivary_Gland Skin Thymus Tongue Uterus Vasculature Tissue −10 −5 0 5 10 −5 0 5 10 UMAP 1 TSP1 TSP10 TSP12 TSP14 TSP15 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 Donor UMAP 2 −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 4 PLVAP −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 EDNRB −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 UMAP 2 0 1 2 3 4 MSX1 UMAP 2 −10 −5 0 5 10 15 −5 0 5 10 UMAP 1 0 1 2 3 CYP1B1 Lung Muscle CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 72. 24 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead SLC14A1 appears to be a speci fi c marker for endothelial cells in the heart
  • 73. 24 Fig. S13 Heart muscle A B SLC14A1 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead SLC14A1 appears to be a speci fi c marker for endothelial cells in the heart
  • 74. 24 Fig. S13 Heart muscle A B SLC14A1 Heart muscle B SLC14A1 SLC14A1 CROSS-TISSUE ANALYSIS Endothelial compartment Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead SLC14A1 appears to be a speci fi c marker for endothelial cells in the heart Expression independently validated with data from the Human Protein Atlas!
  • 75. ALTERNATIVE SPLICING (I) 25 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 76. ALTERNATIVE SPLICING (I) 25 annotated gene unannotated region A B C D E A: annotated junction B: Both boundaries are annotated but the splice is not C: One boundary is annotated and the other is not D: Neither boundary is annotated but at least one end is in a known gene E: Neither boundary is in a known gene Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Splice junctions are counted in categories based on annotation status Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 77. ALTERNATIVE SPLICING (I) 25 annotated gene unannotated region A B C D E A: annotated junction B: Both boundaries are annotated but the splice is not C: One boundary is annotated and the other is not D: Neither boundary is annotated but at least one end is in a known gene E: Neither boundary is in a known gene Fraction of junctions in each category 22.8% 3.6% 12.5% 57.9% 3.2% 955,785 junctions total A - 217,855 B - 34,624 C - 119,276 D - 553,345 E - 30,685 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Splice junctions are counted in categories based on annotation status Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 78. ALTERNATIVE SPLICING (I) 25 annotated gene unannotated region A B C D E A: annotated junction B: Both boundaries are annotated but the splice is not C: One boundary is annotated and the other is not D: Neither boundary is annotated but at least one end is in a known gene E: Neither boundary is in a known gene Fraction of junctions in each category 22.8% 3.6% 12.5% 57.9% 3.2% 955,785 junctions total A - 217,855 B - 34,624 C - 119,276 D - 553,345 E - 30,685 independent validation of 61% of the 358,924 total junctions catalogued in the RefSeq database! Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Splice junctions are counted in categories based on annotation status Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 79. ALTERNATIVE SPLICING (I) 25 annotated gene unannotated region A B C D E A: annotated junction B: Both boundaries are annotated but the splice is not C: One boundary is annotated and the other is not D: Neither boundary is annotated but at least one end is in a known gene E: Neither boundary is in a known gene Fraction of junctions in each category 22.8% 3.6% 12.5% 57.9% 3.2% 955,785 junctions total A - 217,855 B - 34,624 C - 119,276 D - 553,345 E - 30,685 95.7% 3.0% Fraction of reads in each category 1,633,557,320 junctions total A - 1,562,568,353 B - 7,291,982 C - 13,361,370 D - 49,308,361 E - 1,027,254 independent validation of 61% of the 358,924 total junctions catalogued in the RefSeq database! Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Splice junctions are counted in categories based on annotation status Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 80. ALTERNATIVE SPLICING (I) 25 annotated gene unannotated region A B C D E A: annotated junction B: Both boundaries are annotated but the splice is not C: One boundary is annotated and the other is not D: Neither boundary is annotated but at least one end is in a known gene E: Neither boundary is in a known gene Fraction of junctions in each category 22.8% 3.6% 12.5% 57.9% 3.2% 955,785 junctions total A - 217,855 B - 34,624 C - 119,276 D - 553,345 E - 30,685 95.7% 3.0% Fraction of reads in each category 1,633,557,320 junctions total A - 1,562,568,353 B - 7,291,982 C - 13,361,370 D - 49,308,361 E - 1,027,254 independent validation of 61% of the 358,924 total junctions catalogued in the RefSeq database! annotated junctions tend to be expressed at higher levels Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead Splice junctions are counted in categories based on annotation status Dehghannasiri, et al, Genome Biology (2021) Olivieri et al, Nat Methods (2022)
  • 81. ALTERNATIVE SPLICING (II) 26 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 82. ALTERNATIVE SPLICING (II) 26 4 5 exon #: 6 7 untranslated coding constitutive splice alternative splice MYL6 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 83. ALTERNATIVE SPLICING (II) 26 4 5 exon #: 6 7 untranslated coding constitutive splice alternative splice MYL6 -exon6 isoform previously described in phasic smooth muscle Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 84. ALTERNATIVE SPLICING (II) 26 4 5 exon #: 6 7 untranslated coding constitutive splice alternative splice MYL6 MYL6 splicing is differentially regulated across functionally different cell types like immune and endothelial -exon6 isoform previously described in phasic smooth muscle 0 1 e n d o t h e l i a l c e l l o f v a s c u l a r t r e e c a p i l l a r y e n d o t h e l i a l c e l l e n d o t h e l i a l c e l l o f a r t e r y v e i n e n d o t h e l i a l c e l l t y p e i i p n e u m o c y t e l u n g c i l i a t e d c e l l r e s p i r a t o r y g o b l e t c e l l b l a d d e r u r o t h e l i a l c e l l t y p e i p n e u m o c y t e m a c r o p h a g e n o n - c l a s s i c a l m o n o c y t e c l a s s i c a l m o n o c y t e m a c r o p h a g e m a c r o p h a g e s m o o t h m u s c l e c e l l p e r i c y t e c e l l f i b r o b l a s t p e r i c y t e c e l l m y o f i b r o b l a s t c e l l m e s e n c h y m a l s t e m c e l l t e n d o n c e l l s k e l e t a l m u s c l e s a t e l l i t e s t e m c e l l TSP1 0 1 Fraction including exon TSP2 0 1 TSP14 Bladder Lung Muscle p e i n o n - c l a s s i c c l a s s i c s m o o t h m y o f m e s e n c h y m s k e l e t a l m u s c l e s a t e Bladder Lung Muscle Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 85. ALTERNATIVE SPLICING (III) 27 D r e s p i r a t o r y g o b l e t c e l l b l a d d e r u r o t h e l i a l c e l l l u n g c TSP1 TSP2 TSP14 untranslated cytoplasmic transmembrane extracellular constitutive splice alternative splice 6 7 exon #: 9 10 8 11 CD47 C Epitheli Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 86. ALTERNATIVE SPLICING (III) 27 CD47 is another example of differential regulation of splicing for different cell types within an organ D r e s p i r a t o r y g o b l e t c e l l b l a d d e r u r o t h e l i a l c e l l l u n g c TSP1 TSP2 TSP14 untranslated cytoplasmic transmembrane extracellular constitutive splice alternative splice 6 7 exon #: 9 10 8 11 CD47 C Epitheli on 0 1 TSP14 D 7 8 9 10 r e s p i r a t o r y g o b l e t c e l l b l a d d e r u r o t h e l i a l c e l l l u n g c i l i a t e d c e l l t y p e i i p n e u m o c y t e c l u b c e l l t y p e i p n e u m o c y t e m a c r o p h a g e m a c r o p h a g e f i b r o b l a s t m e s e n c h y m a l s t e m c e l l TSP1 7 8 9 10 TSP2 7 8 9 10 TSP14 Average splice position 7 untranslated cytoplasmic transmembrane extracellular constitutive splice alternative splice 6 7 exon #: 9 10 8 11 CD47 C Endothelial Epithelial Immune Stromal Epithelial Immune Stromal e n d o t y p e i i p l u n g r e s p i r a t o r y b l a d d e r u r t y p e i p n m n o n - c l a s s i c a c l a s s i c a m m s m o o t h p p m y o f i b m e s e n c h y m a s k e l e t a l m u s c l e s a t e l l i Bladder Lung Muscle Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 87. BUILDING A MULTIMODAL DATASET (I) 28 Single cell & histology Organ procurement Single cell transcriptomics The Tabula Sapiens Consortium, Science (2022) UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 88. BUILDING A MULTIMODAL DATASET (I) 28 Single cell & histology Organ procurement Single cell transcriptomics Histopathology The Tabula Sapiens Consortium, Science (2022) UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 89. Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead 29 H&E + SEQUENCING PNS/Neuroglial Endothelial 11. Endothelial cell (arteriole) 12. Endothelial cell (venule) 13. Endothelial cell (capillary) Stromal 14. Smooth muscle cell (arteriole) 15. Fibroblast 16. Ganglion cell (Meissner plexus) 17. Schwann cell Epithelial 1. Absorptive enterocyte 2. Goblet cell 3. Paneth cell 4. Crypt enterocyte 5. Enteroendocrine cell Endothelial 6. Endothelial cell (capillary or lymphatic) Stromal 7. Fibroblast Immune 8. Lymphocyte 9. Plasma cell 10. Eosinophil
  • 90. Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead 29 Lymph Node Spleen Muscle Diaphragm Aorta Duodenum Ileum Colon (Proximal) Colon (Distal) Bladder Trachea Lung (Proximal) Lung (Distal) 0 20 40 60 80 100 Relative compartment abundacy (%) Spatial Heterogeneity low medium high H&E + SEQUENCING PNS/Neuroglial Endothelial 11. Endothelial cell (arteriole) 12. Endothelial cell (venule) 13. Endothelial cell (capillary) Stromal 14. Smooth muscle cell (arteriole) 15. Fibroblast 16. Ganglion cell (Meissner plexus) 17. Schwann cell Epithelial 1. Absorptive enterocyte 2. Goblet cell 3. Paneth cell 4. Crypt enterocyte 5. Enteroendocrine cell Endothelial 6. Endothelial cell (capillary or lymphatic) Stromal 7. Fibroblast Immune 8. Lymphocyte 9. Plasma cell 10. Eosinophil Epithelial Endothelial Stromal Immune
  • 91. Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead 29 Lymph Node Spleen Muscle Diaphragm Aorta Duodenum Ileum Colon (Proximal) Colon (Distal) Bladder Trachea Lung (Proximal) Lung (Distal) 0 20 40 60 80 100 Relative compartment abundacy (%) Spatial Heterogeneity low medium high 10 20 30 40 50 60 70 Cell Type Representation, Pathology (%) 10 20 30 40 50 60 70 80 90 Cell Type Representation, Sequencing (%) Good correlation between functional compartments across modalities H&E + SEQUENCING PNS/Neuroglial Endothelial 11. Endothelial cell (arteriole) 12. Endothelial cell (venule) 13. Endothelial cell (capillary) Stromal 14. Smooth muscle cell (arteriole) 15. Fibroblast 16. Ganglion cell (Meissner plexus) 17. Schwann cell Epithelial 1. Absorptive enterocyte 2. Goblet cell 3. Paneth cell 4. Crypt enterocyte 5. Enteroendocrine cell Endothelial 6. Endothelial cell (capillary or lymphatic) Stromal 7. Fibroblast Immune 8. Lymphocyte 9. Plasma cell 10. Eosinophil Epithelial Endothelial Stromal Immune
  • 92. BUILDING A MULTIMODAL REFERENCE ATLAS 30 Single cell & histology & microbiome Organ procurement Histopathology Single cell transcriptomics UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 93. BUILDING A MULTIMODAL REFERENCE ATLAS 30 Single cell & histology & microbiome Microbiome Organ procurement Histopathology Single cell transcriptomics UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature The Tabula Sapiens Consortium, Science (2022) Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 94. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 95. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C A Stomach Sigmoid colon Pyloric Sphincter Duodenum Jejunum Illeum Ascending colon 1 2 3 4 5 D E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Fig. 6 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 96. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C A Stomach Sigmoid colon Pyloric Sphincter Duodenum Jejunum Illeum Ascending colon 1 2 3 4 5 D E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Fig. 6 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) MUC Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 97. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C A Stomach Sigmoid colon Pyloric Sphincter Duodenum Jejunum Illeum Ascending colon 1 2 3 4 5 D E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Fig. 6 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) MUC large fraction of species was unique to each region Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 98. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C A Stomach Sigmoid colon Pyloric Sphincter Duodenum Jejunum Illeum Ascending colon 1 2 3 4 5 D E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Fig. 6 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) MUC 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon Jejunum Illeum Ascending colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Duodenum Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region F G -5 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) U MUC12 C M large fraction of species was unique to each region most species shared between ascending and sigmoid colon Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 99. MICROBIOME COMPOSITION 31 Stomach Sigmoid colon Pyloric sphincter Duodenum Jejunum Illeum Ascending colon 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C A Stomach Sigmoid colon Pyloric Sphincter Duodenum Jejunum Illeum Ascending colon 1 2 3 4 5 D E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Fig. 6 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) MUC 0 25 50 75 100 Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 0 20 40 60 80 1 2 3 B C Sigmoid colon Jejunum Illeum Ascending colon 1 5 E 1: Duodenum 2: Jejunum 3: Ileum 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Duodenum Jejunum Ileum Ascending colon Sigmoid colon Bacteroidetes Actinobacteria Relative abundance (%) Observed species Shannon diversity ASVs specific to previous region ASVs specific to next region F G -5 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) U MUC12 C M Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 1 2 3 4 5 D E 4: Ascending colon 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Bacteroidetes Actinobacteria Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 0 2 4 6 8 10 12 14 16 18 20 -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP Bifidobacteriaceae Actinomycetaceae Rikenellaceae Prevotellaceae Bacteroidaceae Tannerellaceae Lachnospiraceae Eubacteraceae Veillonellaceae Lactobacillaceae Enterococcaceae Streptococcaceae Bacillaceae Ruminococcaceae Desulfovibrionaceae Burkholderiaceae Enterobacteriaceae Cardiobacteriaceae Akkermansiaceae Other 1 3 4 5 D E ending on 5: Sigmoid colon Verrucomicrobia Proteobacteria Firmicutes Bacteroidetes Actinobacteria Large intestine (sigmoid colon) Large intestine (ascending colon) Small intestine (ileum) Small intestine (duodenum) T cells CCR9 RPS6 MT-RNR1 MT-CO1 MT-CO2 MT-ND1 RPL30 IL7R RPS19 CXCR4 CCL4 GPR15 ANXA1 SELENBP1 C15orf48 FXYD3 KLRC2 CD24 GDF15 RARRES2 C10orf99 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 2 4 6 8 10 12 14 16 18 20 log2 (fold-change) -log 10 (p) Up-regulated in small intestine Up-regulated in large intestine MUC12 KLF4 CKB CRYAB FAM3D CFD MGP large fraction of species was unique to each region most species shared between ascending and sigmoid colon Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 100. 32 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead http://tabula-sapiens-portal.ds.czbiohub.org/
  • 101. 32 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead http://tabula-sapiens-portal.ds.czbiohub.org/
  • 102. ACCELERATING SCIENTIFIC DISCOVERY 33 ~500k cells A compendium of human cell types across >20 donors Two methods for single cell transcriptomics FACS-based full length transcript analysis Micro fl uidic droplet-based 3’ end counting Histopathology images for most donors and organs >20TB >100k fi les ~200GB Data easily accessible from webportal https://tabula-sapiens-portal.ds.czbiohub.org/ Manuscript versions deposited to bioRxiv Code on GitHub https://github.com/czbiohub-sf/tabula-sapiens Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 103. 34 TABULAE: WHOLE ORGANISM CELL ATLASES Species Reference State Tabula Muris Tabula Microcebus Tabula Drosophila Fly Cell Atlas Bat Cell Atlas Tabula Sapiens Disease/ Perturbation Intervention Nature, 2018 Nature, 2020 Nature, 2022 Science, 2022 biorxiv, 2020 biorxiv, 2021 Science, 2022 Understanding the differences from the normal state, inferring what went wrong and intervening to treat or manage Understanding disease Zebrahub Aging Fly Cell Atlas Science, 2023 biorxiv, 2022 Covid Tissue Atlas eLife, 2023 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 104. 35 GROWING THE MULTIMODAL REFERENCE ATLAS The Tabula Sapiens Consortium, unpublished Tabula Sapiens v2 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 105. 35 GROWING THE MULTIMODAL REFERENCE ATLAS T S P 1 T S P 2 T S P 3 T S P 4 T S P 5 T S P 6 T S P 7 T S P 8 T S P 9 T S P 1 0 T S P 1 1 T S P 1 2 T S P 1 3 T S P 1 4 T S P 1 5 T S P 1 7 T S P 1 9 T S P 2 0 T S P 2 1 T S P 2 5 T S P 2 6 T S P 2 7 T S P 2 8 T S P 3 0 Bladder Lung Muscle Blood Pancreas Heart Thymus Spleen Small_Intestine Skin Fat Kidney Trachea Lymph_Node Bone_Marrow Vasculature Large_Intestine Eye Uterus Tongue Mammary Liver Salivary_Gland Prostate Stomach Ear Testis Ovary 1,193,479 cells 28 tissues 24 donors 190 unique cell ontology classes 701 tissue-cell types The Tabula Sapiens Consortium, unpublished Tabula Sapiens v2 Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 106. BUILDING A CLINICALLY RELEVANT MULTIMODAL ATLAS 36 Single cell transcriptomics Histology UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Single cell & histology & EMR The Tabula Sapiens Consortium, unpublished Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 107. BUILDING A CLINICALLY RELEVANT MULTIMODAL ATLAS 36 Single cell transcriptomics Histology UMAP1 UMAP2 Organ/Tissue Bladder Blood Bone_Marrow Eye Fat Heart Kidney Large_Intestine Liver Lung Lymph_Node Mammary Muscle Pancreas Prostate Salivary_Gland Skin Small_Intestine Spleen Thymus Tongue Trachea Uterus Vasculature Single cell & histology & EMR The Tabula Sapiens Consortium, unpublished Medical records Data generation Cell type annotation Cross-tissue analysis Splicing Patterns Histology Microbiome Data sharing Looking ahead
  • 108. http://tabula-sapiens-portal.ds.czbiohub.org/ CZ Biohub Data Science CZ Biohub Genomics Ahmad Salehi Ravi Ponnusmi We express our gratitude and thanks to donor WEM and his family, as well as all of the anonymous organ and tissue donors and their families for giving both the gift of life and the gift of knowledge by their generous donations.