Demystifying Scala
                         Type System
                             David Galichet
                            CTO @ CoachClub



jeudi 29 novembre 12
Schedule
                       Scala Types 101
                       Types Variance and Type bounds
                       Abstract Type members
                       Ad-Hoc Polymorphism
                       Existential Types
                       Generalized Type Constraints
jeudi 29 novembre 12
What is a type system ?


                       “A type system is a tractable syntactic method for
                       proving the absence of certain program behaviors by
                       classifying phrases according to the kinds of values
                       they compute.“ – Benjamin Pierce




jeudi 29 novembre 12
What is a type ?
                       A Type defines a set of values a variable can posses and a set
                       of functions that can be applied to these values
                       Set of values can be defined as
                          Cartesian product Types (like case classes or Tuples)
                          Sum Types (like Either)
                       Types can be Abstract and/or Polymorph

jeudi 29 novembre 12
What is a type ?


                       In Functional Languages like Scala, a Function is also a Type
                       that can be assigned to a variable or (higher order) function
                       or returned by a (higher order) function




jeudi 29 novembre 12
Why typing ?
                       “Make illegal states unrepresentable“ - Yaron Minsky
                       “Where static typing fits, do it every time because it
                       has just fantastic maintenance benefits.” - Simon Peyton
                       Jones
                       Compiler can use Type informations to optimize compiled
                       code



jeudi 29 novembre 12
Scala Types 101

                       Scala is Object Oriented and Functional
                       Scala has a strong and static Type System
                          Types are checked at compile time

                          Types can be inferred by the compiler

                          Functions are Types : A => B



jeudi 29 novembre 12
Scala Types 101

                       Types are used to define
                          [abstract] classes
                          objects
                          traits


jeudi 29 novembre 12
Scala Types 101                                   Any
                                                                          ⟙




                       Scala types hierarchy              AnyVal                AnyRef




                       Enclosed by :                Primitive Types
                                                                                 All Types
                                                       wrappers

                          Top type ⟙ (Any)

                          Bottom type ⟘ (Nothing)
                                                                      Nothing
                                                                        ⟘


                       Java Primitive Types are wrapped under AnyVal
                       (Unit, Long, Double, Boolean ...)
                       Since 2.10, you can define your own AnyVal
jeudi 29 novembre 12
Scala Types 101

                       Scala Types can be parameterized
                          List[A]
                          Either[A, B]

                       Functions can also take type parameters
                   def show[A](a:A):String = a.toString


jeudi 29 novembre 12
Type Variance and Bounds

                       Type Variance goal is to define inheritance relation
                       By default, Type Parameters are invariant
                       They can also be defined as co-variant or contra-variant



jeudi 29 novembre 12
Type Variance and Bounds

                       Co-Variance(M[+T])                        B   M[B]




                         if A extends B then M[A] extends M[B]   A   M[A]




                       Contra-Variance (M[-T])
                         if A extends B then M[B] extends M[A]
                                                                 B   M[A]




                                                                 A   M[B]




jeudi 29 novembre 12
Type Variance and Bounds

                       Some examples of Types with varying type parameters
                          List[+A]
                          Writer[-A]
                          Function1[-T, +R]




jeudi 29 novembre 12
Type Variance and Bounds

 scala> class Test[+A] {
      | def test(a: A): String = a.toString
      | }
 <console>:8: error: covariant type A occurs in
 contravariant position in type A of value a



                                 WTF ?

jeudi 29 novembre 12
Type Variance and Bounds
                       First of all, take a look at Functions :
                          Function1[-T,+R]

                       Functions are Co-Variant on return type (+R) and Contra-
                       Variant on parameters (-T) !
                       We can substitute Function1[A,D] by
                       Function1[B,C] :                    B      D   Function1[A, D]



                                                   ⋀
                                                           A      C   Function1[B, C]




jeudi 29 novembre 12
Type Variance and Bounds
                                           This is a Function1 instance !
 class Test[+A] {
   def test(a: A): String = a.toString
 }


                       Type A should be either Invariant or Contra-Variant but it’s
                       Co-Variant


jeudi 29 novembre 12
Type Variance and Bounds
                       Solution : introduce a bounded Type

 class Test[+A] {
   def test[B >: A](b: B): String = b.toString
 }

                       Lower Type Bound : this new Type B is a super Type of A

                       Method test will accept A or any super Type of A
jeudi 29 novembre 12
Type Variance and Bounds
                       Implementation of a List
         trait List[+T] {
           def ::[U >: T](u: U): List[U] = Cons(u,
         this)
         }
         case class Cons[T](head: T, tail: List[T])
         extends List[T]

         case object Nil extends List[Nothing]


                                      Inherit from any List[T]
jeudi 29 novembre 12
Type Variance and Bounds
                       Variance is not applicable to mutable state :
     trait Mutable[+T] {
       var t: T // generate a setter:
                // def t_=(t: T) {this.t = t}
     }

                                        Co-Variant parameter in Contra-Variant position

          ⇒ A mutable List can’t be Co-Variant !
jeudi 29 novembre 12
Type Variance and Bounds
                       Implementation of a Writer - Part1
  class B { def toString = "I’m B" }
  class A extends B { def toString = "I’m A" }
                                         Inherit from any List[T]
  trait Writer[-T] { def write(t: T): String }

  val bWriter = new Writer[B] { def write(b:
  B): String = b.toString }

  def write[T](t: T)(w: Writer[T]) = w.write(t)

jeudi 29 novembre 12
Type Variance and Bounds
                       Implementation of a Writer - Part2
  write(new B)(bWriter)
  res> String = I’m B We need a Writer[A]

  write(new A)(bWriter)
  res> String = I’m A

                                                            B   Write[A]



 Fortunately, Writer[B] extends Writer[A]:
                                                            A   Write[B]



jeudi 29 novembre 12
Type member
                       Concrete Types can be defined in a class, trait or object
   type Color = String // type Alias
   type Valid[X] = Either[Throwable, X]
   // Valid is parametrized with X

                       We can define these types with their kind :
                           Color or String has kind *

                           Valid or Option has kind * ➞ *

                           Either has kind * ➞ * ➞ *
jeudi 29 novembre 12
Abstract Type members
                       We can define Abstract Type in abstract classes or traits
                       Abstract Types are another way to parameterize Types
    trait Food
    class Grass extends Food
    class Fish extends Food

    trait Species {
      type SuitableFood <: Food
    }

    trait Animal extends Species

    class Cow extends Animal {
      type SuitableFood = Grass
    }
jeudi 29 novembre 12
Abstract Type members
                       The parameterized type way :

    trait Food
    class Grass extends Food
    class Fish extends Food

    trait Species[T <: Food]
    trait Animal[T <: Food] extends Species[T]

    class Cow extends Animal[Grass]



jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       Ad-Hoc polymorphism is a way to add behavior to an existing
                       class without modifying it
                       In Haskell, polymorphism is achieved using typeclasses

                                    Typeclasses

                abs :: (Num a, Ord a) => a -> a
                abs x = if x < 0 then -x else x

jeudi 29 novembre 12
Ad-Hoc Polymorphism

                       In Scala, we can achieve Ad-Hoc polymorphism using
                       implicits
                       implicits are used in two places
                          implicit conversion to convert a type to another
                          implicit parameter


jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       In Scala, we can achieve Ad-Hoc polymorphism using
                       implicits
                       Scala library defines many Typeclasses to achieve Ad-Hoc
                       polymorphism : Integral, Numeric, Ordering ...
 def abs[T](x: T)(implicit num: Numeric[T]): T =
 if(num.lt(x, num.zero)) num.negate(x) else x


 def max[T: Ordering](x: T, y: T): T =
 implicitly[Ordering[T]].max(x, y)

jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       We can define our own instances of existing typeclasses
 case class Student(name: String, score: Float)

 implicit object StudentOrdering extends
   Ordering[Student] {
   def compare(x: Student, y: Student) =
     x.score.compareTo(y.score)
 }

 scala> max(Student("Bob", 5.6F), Student("Alice",
 5.8F))
 res0: Student = Student(Alice,5.8)

jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       We can define our own instances of typeclasses


 implicit class Printable[A](a: A) { // since Scala
 2.10
   def printOut(): Unit = println(a.toString)
 }

 scala> "test".printOut
 test



jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       A more concrete example - Part 1
 trait Searchable[T] {
   val id: String
   val indexedContent: String
 }

 class SearchEngine[T](defaultBuilder: String => T){
   def index(searchable: Searchable[T]) { /* ... */ }
   def search(query: String)(builder: String => T =
 defaultBuilder): T = builder("0")
 }


jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       A more concrete example - Part 2
  case class Person(id: Long, name: String)

  implicit def person2Searchable(p: Person) =
   new Searchable[Person] {
        val id = p.id.toString
        val indexedContent = p.name
   }

  val fakeEngine = new SearchEngine[Person]( id =>
  Person(id.toLong, "retrieved content") )


jeudi 29 novembre 12
Ad-Hoc Polymorphism
                       Polymorphic Typeclasses instance definition
 class Hour[X] private (val x: X) { /* ... */ }

 object Hour {
   def apply[X](x: X)(implicit int: Integral[X]):Hour[X]=
    new Hour(int.rem(int.plus(int.rem(x,
 int.fromInt(12)), int.fromInt(12)), int.fromInt(12)))
 }

 implicit def hour2Monoid[X](implicit int: Integral[X]):
 Monoid[Hour[X]] = new Monoid[Hour[X]] {
   def append(f1: Hour[X], f2: => Hour[X]) =
    Hour(int.rem(int.plus(f1.x, f2.x), int.fromInt(12)))
   def zero = Hour(int.zero)
 }
jeudi 29 novembre 12
Existential Types
                       Existential types are reference to type parameter that is
                       unknown
                       The Scala existential type in M[_] is the dual of Java
                       wildcard M<?>
                       They can be defined using :
                          M[T] forSome { type T }

                          or M[_]
jeudi 29 novembre 12
Existential Types


                       We can bound existential types :
                          M[T] forSome { type T <: AnyRef }

                          or M[_ <: AnyRef]




jeudi 29 novembre 12
Generalized Type Constraints
                       Constrain type using an implicit
                          =:= same type

                          <:< lower type

                          >:> super type




jeudi 29 novembre 12
Generalized Type Constraints
                       Example :
      trait Food
      class Grass extends Food
      class Fish extends Food

      trait Animal[SuitableFood <: Food] {
        def fish(implicit ev: SuitableFood =:= Fish){
          println("I'm fishing")
        }
      }

      class Cow extends Animal[Grass]
      class Bear extends Animal[Fish]

jeudi 29 novembre 12

Demystifying Scala Type System

  • 1.
    Demystifying Scala Type System David Galichet CTO @ CoachClub jeudi 29 novembre 12
  • 2.
    Schedule Scala Types 101 Types Variance and Type bounds Abstract Type members Ad-Hoc Polymorphism Existential Types Generalized Type Constraints jeudi 29 novembre 12
  • 3.
    What is atype system ? “A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.“ – Benjamin Pierce jeudi 29 novembre 12
  • 4.
    What is atype ? A Type defines a set of values a variable can posses and a set of functions that can be applied to these values Set of values can be defined as Cartesian product Types (like case classes or Tuples) Sum Types (like Either) Types can be Abstract and/or Polymorph jeudi 29 novembre 12
  • 5.
    What is atype ? In Functional Languages like Scala, a Function is also a Type that can be assigned to a variable or (higher order) function or returned by a (higher order) function jeudi 29 novembre 12
  • 6.
    Why typing ? “Make illegal states unrepresentable“ - Yaron Minsky “Where static typing fits, do it every time because it has just fantastic maintenance benefits.” - Simon Peyton Jones Compiler can use Type informations to optimize compiled code jeudi 29 novembre 12
  • 7.
    Scala Types 101 Scala is Object Oriented and Functional Scala has a strong and static Type System Types are checked at compile time Types can be inferred by the compiler Functions are Types : A => B jeudi 29 novembre 12
  • 8.
    Scala Types 101 Types are used to define [abstract] classes objects traits jeudi 29 novembre 12
  • 9.
    Scala Types 101 Any ⟙ Scala types hierarchy AnyVal AnyRef Enclosed by : Primitive Types All Types wrappers Top type ⟙ (Any) Bottom type ⟘ (Nothing) Nothing ⟘ Java Primitive Types are wrapped under AnyVal (Unit, Long, Double, Boolean ...) Since 2.10, you can define your own AnyVal jeudi 29 novembre 12
  • 10.
    Scala Types 101 Scala Types can be parameterized List[A] Either[A, B] Functions can also take type parameters def show[A](a:A):String = a.toString jeudi 29 novembre 12
  • 11.
    Type Variance andBounds Type Variance goal is to define inheritance relation By default, Type Parameters are invariant They can also be defined as co-variant or contra-variant jeudi 29 novembre 12
  • 12.
    Type Variance andBounds Co-Variance(M[+T]) B M[B] if A extends B then M[A] extends M[B] A M[A] Contra-Variance (M[-T]) if A extends B then M[B] extends M[A] B M[A] A M[B] jeudi 29 novembre 12
  • 13.
    Type Variance andBounds Some examples of Types with varying type parameters List[+A] Writer[-A] Function1[-T, +R] jeudi 29 novembre 12
  • 14.
    Type Variance andBounds scala> class Test[+A] { | def test(a: A): String = a.toString | } <console>:8: error: covariant type A occurs in contravariant position in type A of value a WTF ? jeudi 29 novembre 12
  • 15.
    Type Variance andBounds First of all, take a look at Functions : Function1[-T,+R] Functions are Co-Variant on return type (+R) and Contra- Variant on parameters (-T) ! We can substitute Function1[A,D] by Function1[B,C] : B D Function1[A, D] ⋀ A C Function1[B, C] jeudi 29 novembre 12
  • 16.
    Type Variance andBounds This is a Function1 instance ! class Test[+A] { def test(a: A): String = a.toString } Type A should be either Invariant or Contra-Variant but it’s Co-Variant jeudi 29 novembre 12
  • 17.
    Type Variance andBounds Solution : introduce a bounded Type class Test[+A] { def test[B >: A](b: B): String = b.toString } Lower Type Bound : this new Type B is a super Type of A Method test will accept A or any super Type of A jeudi 29 novembre 12
  • 18.
    Type Variance andBounds Implementation of a List trait List[+T] { def ::[U >: T](u: U): List[U] = Cons(u, this) } case class Cons[T](head: T, tail: List[T]) extends List[T] case object Nil extends List[Nothing] Inherit from any List[T] jeudi 29 novembre 12
  • 19.
    Type Variance andBounds Variance is not applicable to mutable state : trait Mutable[+T] { var t: T // generate a setter: // def t_=(t: T) {this.t = t} } Co-Variant parameter in Contra-Variant position ⇒ A mutable List can’t be Co-Variant ! jeudi 29 novembre 12
  • 20.
    Type Variance andBounds Implementation of a Writer - Part1 class B { def toString = "I’m B" } class A extends B { def toString = "I’m A" } Inherit from any List[T] trait Writer[-T] { def write(t: T): String } val bWriter = new Writer[B] { def write(b: B): String = b.toString } def write[T](t: T)(w: Writer[T]) = w.write(t) jeudi 29 novembre 12
  • 21.
    Type Variance andBounds Implementation of a Writer - Part2 write(new B)(bWriter) res> String = I’m B We need a Writer[A] write(new A)(bWriter) res> String = I’m A B Write[A] Fortunately, Writer[B] extends Writer[A]: A Write[B] jeudi 29 novembre 12
  • 22.
    Type member Concrete Types can be defined in a class, trait or object type Color = String // type Alias type Valid[X] = Either[Throwable, X] // Valid is parametrized with X We can define these types with their kind : Color or String has kind * Valid or Option has kind * ➞ * Either has kind * ➞ * ➞ * jeudi 29 novembre 12
  • 23.
    Abstract Type members We can define Abstract Type in abstract classes or traits Abstract Types are another way to parameterize Types trait Food class Grass extends Food class Fish extends Food trait Species { type SuitableFood <: Food } trait Animal extends Species class Cow extends Animal { type SuitableFood = Grass } jeudi 29 novembre 12
  • 24.
    Abstract Type members The parameterized type way : trait Food class Grass extends Food class Fish extends Food trait Species[T <: Food] trait Animal[T <: Food] extends Species[T] class Cow extends Animal[Grass] jeudi 29 novembre 12
  • 25.
    Ad-Hoc Polymorphism Ad-Hoc polymorphism is a way to add behavior to an existing class without modifying it In Haskell, polymorphism is achieved using typeclasses Typeclasses abs :: (Num a, Ord a) => a -> a abs x = if x < 0 then -x else x jeudi 29 novembre 12
  • 26.
    Ad-Hoc Polymorphism In Scala, we can achieve Ad-Hoc polymorphism using implicits implicits are used in two places implicit conversion to convert a type to another implicit parameter jeudi 29 novembre 12
  • 27.
    Ad-Hoc Polymorphism In Scala, we can achieve Ad-Hoc polymorphism using implicits Scala library defines many Typeclasses to achieve Ad-Hoc polymorphism : Integral, Numeric, Ordering ... def abs[T](x: T)(implicit num: Numeric[T]): T = if(num.lt(x, num.zero)) num.negate(x) else x def max[T: Ordering](x: T, y: T): T = implicitly[Ordering[T]].max(x, y) jeudi 29 novembre 12
  • 28.
    Ad-Hoc Polymorphism We can define our own instances of existing typeclasses case class Student(name: String, score: Float) implicit object StudentOrdering extends Ordering[Student] { def compare(x: Student, y: Student) = x.score.compareTo(y.score) } scala> max(Student("Bob", 5.6F), Student("Alice", 5.8F)) res0: Student = Student(Alice,5.8) jeudi 29 novembre 12
  • 29.
    Ad-Hoc Polymorphism We can define our own instances of typeclasses implicit class Printable[A](a: A) { // since Scala 2.10 def printOut(): Unit = println(a.toString) } scala> "test".printOut test jeudi 29 novembre 12
  • 30.
    Ad-Hoc Polymorphism A more concrete example - Part 1 trait Searchable[T] { val id: String val indexedContent: String } class SearchEngine[T](defaultBuilder: String => T){ def index(searchable: Searchable[T]) { /* ... */ } def search(query: String)(builder: String => T = defaultBuilder): T = builder("0") } jeudi 29 novembre 12
  • 31.
    Ad-Hoc Polymorphism A more concrete example - Part 2 case class Person(id: Long, name: String) implicit def person2Searchable(p: Person) = new Searchable[Person] { val id = p.id.toString val indexedContent = p.name } val fakeEngine = new SearchEngine[Person]( id => Person(id.toLong, "retrieved content") ) jeudi 29 novembre 12
  • 32.
    Ad-Hoc Polymorphism Polymorphic Typeclasses instance definition class Hour[X] private (val x: X) { /* ... */ } object Hour { def apply[X](x: X)(implicit int: Integral[X]):Hour[X]= new Hour(int.rem(int.plus(int.rem(x, int.fromInt(12)), int.fromInt(12)), int.fromInt(12))) } implicit def hour2Monoid[X](implicit int: Integral[X]): Monoid[Hour[X]] = new Monoid[Hour[X]] { def append(f1: Hour[X], f2: => Hour[X]) = Hour(int.rem(int.plus(f1.x, f2.x), int.fromInt(12))) def zero = Hour(int.zero) } jeudi 29 novembre 12
  • 33.
    Existential Types Existential types are reference to type parameter that is unknown The Scala existential type in M[_] is the dual of Java wildcard M<?> They can be defined using : M[T] forSome { type T } or M[_] jeudi 29 novembre 12
  • 34.
    Existential Types We can bound existential types : M[T] forSome { type T <: AnyRef } or M[_ <: AnyRef] jeudi 29 novembre 12
  • 35.
    Generalized Type Constraints Constrain type using an implicit =:= same type <:< lower type >:> super type jeudi 29 novembre 12
  • 36.
    Generalized Type Constraints Example : trait Food class Grass extends Food class Fish extends Food trait Animal[SuitableFood <: Food] { def fish(implicit ev: SuitableFood =:= Fish){ println("I'm fishing") } } class Cow extends Animal[Grass] class Bear extends Animal[Fish] jeudi 29 novembre 12