SlideShare a Scribd company logo
1 of 50
DATA STRUCTURES
AND
ALGORITHMS
Lecture Notes 3
Prepared by İnanç TAHRALI
2
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
3
Abstract Data Types (ADT)
 Definition :
Is a set of operation
Mathematical abstraction
No implementation detail
 Example :
Lists, sets, graphs, stacks are examples of
ADT along with their operations
4
Why ADT ?
 Modularity
 divide program into small functions
 easy to debug and maintain
 easy to modify
 group work
 Reuse
 do some operations only once
 Easy to change of implementation
 transparent to the program
5
THE LIST ADT
 Ordered sequence of data items called
elements
 A1, A2, A3, …,AN is a list of size N
 size of an empty list is 0
 Ai+1 succeeds Ai
 Ai-1 preceeds Ai
 position of Ai is i
 first element is A1 called “head”
 last element is AN called “tail”
Operations ?
6
THE LIST ADT
 Operations
 PrintList
 Find
 FindKth
 Insert
 Delete
 Next
 Previous
 MakeEmpty
7
THE LIST ADT
 Example:
the elements of a list are
34, 12, 52, 16, 12
 Find (52)  3
 Insert (20, 3)  34, 12, 52, 20, 16, 12
 Delete (52)  34, 12, 20, 16, 12
 FindKth (3)  20
8
Implementation of Lists
 Many Implementations
 Array
 Linked List
 Cursor (linked list using arrays)
9
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
10
Array Implementation of List ADT
 Need to define a size for array
 High overestimate (waste of space)
 Operations Running Times
PrintList O(N)
Find
Insert O(N) (on avarage half needs to be moved)
Delete
FindKth
Next O(1)
Previous
11
Array Implementation of List ADT
 Disadvantages :
 insertion and deletion is very slow

need to move elements of the list
 redundant memory space

it is difficult to estimate the size of array
12
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
13
Linked List Implementation of Lists
 Series of nodes
 not adjacent in memory
 contain the element and a pointer to a node containing its
succesor
 Avoids the linear cost of insertion and deletion !
14
Linked List Implementation of Lists
 Insertion into a linked list
15
Linked List Implementation of Lists
 Deletion from a linked list
16
Linked List Implementation of Lists
 Need to know where the first node is
 the rest of the nodes can be accessed
 No need to move the list for insertion and
deletion operations
 No memory waste
17
Linked List Implementation of Lists
Linked List Array
PrintList O(N) (traverse the list)
O(N)
Find
FindKth (L,i) O(i)
O(1)
Delete O(1)
O(N)
18
Programming Details
 There are 3 special cases for linked lists
 Insert an element at the front of the list

there is no really obvious way
 Delete an element from the front of the list

changes the start of the list
 Delete an element in general

requires to keep track of the node before the deleted one
How can we solve these three problems ?
19
Programming Details
Keep a header node in position 0
 Write a FindPrevious routine
 returns the predecessor of the cell
 To delete the first element
 FindPrevious routine returns the position of
header
Use of header node is controversial !
20
Type decleration for link list node
template <class Object>
class List; // Incomplete declaration.
template <class Object>
class ListItr; // Incomplete declaration.
template <class Object>
class ListNode {
ListNode( const Object & theElement = Object( ),
ListNode*n=NULL) : element(theElement),next(n)
{}
Object element;
ListNode *next;
friend class List<Object>;
friend class ListItr<Object>;
};
21
Iterator class for linked lists
template <class Object>
class ListItr {
public:
ListItr( ) : current( NULL ) { }
bool isPastEnd( ) const { return current == NULL; }
void advance( )
{ if( !isPastEnd( ) ) current = current->next; }
const Object & retrieve( ) const
{ if( isPastEnd( ) )
throw BadIterator( );
return current->element; }
private:
ListNode<Object> *current; // Current position
ListItr(ListNode<Object> *theNode):current( theNode ) { }
friend class List<Object>; // Grant access to constructor
};
22
List class interface
template <class Object>
class List {
public:
List( );
List( const List & rhs );
~List( );
bool isEmpty( ) const;
void makeEmpty( );
ListItr<Object> zeroth( ) const;
ListItr<Object> first( ) const;
void insert( const Object & x, const ListItr<Object> & p );
ListItr<Object> find( const Object & x ) const;
ListItr<Object> findPrevious( const Object & x ) const;
void remove( const Object & x );
const List & operator=( const List & rhs );
private:
ListNode<Object> *header;
};
23
Function to print a list
template <class Object>
void printList( const List<Object> &the List)
{
if (theList.isEmpty())
cout<< “Empty list” << endl;
else
{
ListItr<Object> itr = theList.first();
for (; !itr.isPastEnd(); itr.advance())
cout << itr.retrieve() <<“ ”;
}
cout << endl;
}
24
Some list one-liners
/* Construct the list */
template <class Object>
List<Object>::List( )
{
header = new ListNode<Object>;
}
/* Test if the list is logically empty */
template <class Object>
bool List<Object>::isEmpty( ) const
{
return header->next == NULL;
}
25
Some list one liners
/* Return an iterator representing the header node
template <class Object>
ListItr<Object> List<Object>::zeroth( ) const
{
return ListItr<Object>( header );
}
/* Return an iterator representing the first node
in the list. This operation is valid for empty
lists. */
template <class Object>
ListItr<Object> List<Object>::first( ) const
{
return ListItr<Object>( header->next );
}
26
Find routine
/* Return iterator corresponding to the first
node containing an item x. Iterator isPastEnd
if item is not found. */
template <class Object>
ListItr<Object> List<Object>::find( const
Object & x ) const
{
ListNode<Object> *itr = header->next;
while( itr != NULL && itr->element != x )
itr = itr->next;
return ListItr<Object>( itr );
}
27
Deletion routine for linked lists
/* Remove the first occurrence of an item x. */
template <class Object>
void List<Object>::remove( const Object & x )
{
ListItr<Object> p = findPrevious( x );
if( p.current->next != NULL )
{
ListNode<Object> *oldNode = p.current->next;
p.current->next = p.current->next->next;
delete oldNode;
}
}
28
findPrevious-the find routine for
use with remove
/*Return iterator prior to the first node containing an
item x.
template <class Object>
ListItr<Object> List<Object>::findPrevious( const Object &
x ) const
{
ListNode<Object> *itr = header;
while( itr->next != NULL && itr->next->element != x )
itr = itr->next;
return ListItr<Object>( itr );
}
29
Insertion routine for linked lists
/* Insert item x after p. */
template <class Object>
void List<Object>::insert( const Object & x,
const ListItr<Object> & p )
{
if( p.current != NULL )
p.current->next = new ListNode<Object>
( x, p.current->next );
}
30
makeEmpty and List destructor
/* Make the list logically empty. */
template <class Object>
void List<Object>::makeEmpty( )
{
while( !isEmpty( ) )
remove( first( ).retrieve( ) );
}
/* Destructor */
template <class Object>
List<Object>::~List( )
{
makeEmpty( );
delete header;
}
31
List copy routines: operator=
/*Deep copy of linked lists.
template <class Object>
const List<Object> & List<Object>::operator=( const
List<Object> & rhs )
{
ListItr<Object> ritr = rhs.first( );
ListItr<Object> itr = zeroth( );
if( this != &rhs )
{
makeEmpty( );
for( ; !ritr.isPastEnd( );
ritr.advance( ),itr.advance( ))
insert( ritr.retrieve( ), itr );
}
return *this;
}
32
List copy routines : copy constructor
/* Copy constructor
template <class Object>
List<Object>::List( const List<Object> & rhs )
{
header = new ListNode<Object>;
*this = rhs;
}
33
Doubly Linked List
 Traversing list backwards
 not easy with regular lists
 Insertion and deletion more pointer fixing
 Deletion is easier
 Previous node is easy to find
34
Circulary Linked List
 Last node points the first
35
ROAD MAP
 Abstract Data Types (ADT)
 The List ADT
 Implementation of Lists

Array implementation of lists

Linked list implementation of lists

Cursor implementation of lists
36
Cursor Implementation of Linked List
Problems with linked list implementation:
 Same language do not support pointers !
 Then how can you use linked lists ?
 new and free operations are slow
 Actually not constant time
37
Cursor Implementation of Linked List
SOLUTION: Implement linked list on an array
called CURSOR
38
Cursor Implementation of Linked List
 Cursor operation simulates the features
 Collection of structures

uses array for nodes
 Array index is pointer
 new and delete operation

Keep a free list
 new returns an element from freelist
 delete place the node in freelist

Freelist
 Use cell 0 as header
 All nodes are free initially
 0 is a NULL pointer
39
Cursor Implementation of Linked List
If L = 5, then L represents list (A, B, E)
If M = 3, then M represents list (C, D, F)
40
Iterator for cursor implementation
of linked lists
template <class Object>
class ListItr
{
public:
ListItr( ) : current( 0 ) { }
bool isPastEnd( ) const {return current == 0; }
void advance( ){
if( !isPastEnd( ) )
current = List<Object>::cursorSpace[ current ].next; }
const Object & retrieve( ) const {
if( isPastEnd( ) ) throw BadIterator( );
return List<Object>::cursorSpace[ current ].element; }
private:
int current; // Current position
friend class List<Object>;
ListItr( int theNode ) : current( theNode ) { }
};
41
Class skeleton for cursor-based List
template <class Object>
class ListItr; // Incomplete declaration.
template <class Object>
class List
{
public:
List( );
List( const List & rhs );
~List( );
bool isEmpty( ) const;
void makeEmpty( );
ListItr<Object> zeroth( ) const;
ListItr<Object> first( ) const;
void insert( const Object & x, const ListItr<Object> & p );
ListItr<Object> find( const Object & x ) const;
ListItr<Object> findPrevious( const Object & x ) const;
void remove( const Object & x );
42
Class skeleton for cursor-based List
public:
struct CursorNode
{
CursorNode( ) : next( 0 ) { }
private:
CursorNode( const Object & theElement, int n )
: element( theElement ), next( n ) {}
Object element;
int next;
friend class List<Object>;
friend class ListItr<Object>;
};
const List & operator=( const List & rhs );
43
Class skeleton for cursor-based List
private:
int header;
static vector<CursorNode> cursorSpace;
static void initializeCursorSpace( );
static int alloc( );
static void free( int p );
friend class ListItr<Object>;
};
44
cursorSpace initialization
/* Routine to initialize the cursorSpace. */
template <class Object>
void List<Object>::initializeCursorSpace( )
{
static int cursorSpaceIsInitialized = false;
if( !cursorSpaceIsInitialized )
{
cursorSpace.resize( 100 );
for( int i = 0; i < cursorSpace.size( ); i++ )
cursorSpace[ i ].next = i + 1;
cursorSpace[ cursorSpace.size( ) - 1 ].next = 0;
cursorSpaceIsInitialized = true;
}
}
45
Routines : alloc and free
/* Allocate a CursorNode
template <class Object>
int List<Object>::alloc( )
{
int p = cursorSpace[ 0 ].next;
cursorSpace[ 0 ].next = cursorSpace[ p ].next;
return p;
}
/* Free a CursorNode
template <class Object>
void List<Object>::free( int p )
{
cursorSpace[ p ].next = cursorSpace[ 0 ].next;
cursorSpace[ 0 ].next = p;
}
46
Short routines for cursor-based lists
/* Construct the list
template <class Object>
List<Object>::List( )
{
initializeCursorSpace( );
header = alloc( );
cursorSpace[ header ].next = 0;
}
/* Destroy the list
template <class Object>
List<Object>::~List( )
{
makeEmpty( );
free( header );
}
47
Short routines for cursor-based lists
/* Test if the list is logically empty. return true if
empty
template <class Object>
bool List<Object>::isEmpty( ) const
{
return cursorSpace[ header ].next == 0;
}
/* Return an iterator representing the first node in
the list. This operation is valid for empty lists.
template <class Object>
ListItr<Object> List<Object>::first( ) const
{
return ListItr<Object>( cursorSpace[ header ].next );
}
48
find routine - cursor implementation
/*Return iterator corresponding to the first node containing
an item x. Iterator isPastEnd if item is not found.
template <class Object>
ListItr<Object> List<Object>::find( const Object & x ) const
{
int itr = cursorSpace[ header ].next;
while( itr != 0 && cursorSpace[ itr ].element != x )
itr = cursorSpace[ itr ].next;
return ListItr<Object>( itr );
}
49
insertion routine-cursor implementation
/* Insert item x after p.
template <class Object>
void List<Object>::insert(const Object & x,const ListItr<Object> & p)
{
if( p.current != 0 )
{
int pos = p.current;
int tmp = alloc( );
cursorSpace[ tmp ] = CursorNode( x, cursorSpace[ pos ].next );
cursorSpace[ pos ].next = tmp;
}
}
50
deletion routine - cursor implementation
/* Remove the first occurrence of an item x.
template <class Object>
void List<Object>::remove( const Object & x )
{
ListItr<Object> p = findPrevious( x );
int pos = p.current;
if( cursorSpace[ pos ].next != 0 )
{
int tmp = cursorSpace[ pos ].next;
cursorSpace[ pos ].next = cursorSpace[ tmp ].next;
free ( tmp );
}
}

More Related Content

What's hot

Data Structure and Algorithms.pptx
Data Structure and Algorithms.pptxData Structure and Algorithms.pptx
Data Structure and Algorithms.pptxSyed Zaid Irshad
 
Algorithms Lecture 4: Sorting Algorithms I
Algorithms Lecture 4: Sorting Algorithms IAlgorithms Lecture 4: Sorting Algorithms I
Algorithms Lecture 4: Sorting Algorithms IMohamed Loey
 
Doubly Linked List
Doubly Linked ListDoubly Linked List
Doubly Linked ListNinad Mankar
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notationsEhtisham Ali
 
Arrays in Data Structure and Algorithm
Arrays in Data Structure and Algorithm Arrays in Data Structure and Algorithm
Arrays in Data Structure and Algorithm KristinaBorooah
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithmsJulie Iskander
 
Sorting Algorithms
Sorting AlgorithmsSorting Algorithms
Sorting Algorithmsmultimedia9
 
Data structure lecture 1
Data structure lecture 1Data structure lecture 1
Data structure lecture 1Kumar
 
Data Structures (CS8391)
Data Structures (CS8391)Data Structures (CS8391)
Data Structures (CS8391)Elavarasi K
 
Data Structures and Algorithm - Module 1.pptx
Data Structures and Algorithm - Module 1.pptxData Structures and Algorithm - Module 1.pptx
Data Structures and Algorithm - Module 1.pptxEllenGrace9
 
heap Sort Algorithm
heap  Sort Algorithmheap  Sort Algorithm
heap Sort AlgorithmLemia Algmri
 
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4358 33 powerpoint-slides_4-introduction-data-structures_chapter-4
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4sumitbardhan
 

What's hot (20)

Data structures using c
Data structures using cData structures using c
Data structures using c
 
Data Structure and Algorithms.pptx
Data Structure and Algorithms.pptxData Structure and Algorithms.pptx
Data Structure and Algorithms.pptx
 
CS8391 Data Structures Part B Questions Anna University
CS8391 Data Structures Part B Questions Anna UniversityCS8391 Data Structures Part B Questions Anna University
CS8391 Data Structures Part B Questions Anna University
 
Algorithms Lecture 4: Sorting Algorithms I
Algorithms Lecture 4: Sorting Algorithms IAlgorithms Lecture 4: Sorting Algorithms I
Algorithms Lecture 4: Sorting Algorithms I
 
Linked list
Linked listLinked list
Linked list
 
Doubly Linked List
Doubly Linked ListDoubly Linked List
Doubly Linked List
 
Asymptotic notations
Asymptotic notationsAsymptotic notations
Asymptotic notations
 
Doubly Linked List
Doubly Linked ListDoubly Linked List
Doubly Linked List
 
Data structures
Data structuresData structures
Data structures
 
Arrays in Data Structure and Algorithm
Arrays in Data Structure and Algorithm Arrays in Data Structure and Algorithm
Arrays in Data Structure and Algorithm
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
 
Balanced Tree (AVL Tree & Red-Black Tree)
Balanced Tree (AVL Tree & Red-Black Tree)Balanced Tree (AVL Tree & Red-Black Tree)
Balanced Tree (AVL Tree & Red-Black Tree)
 
Sorting Algorithms
Sorting AlgorithmsSorting Algorithms
Sorting Algorithms
 
Data structure lecture 1
Data structure lecture 1Data structure lecture 1
Data structure lecture 1
 
Data Structures (CS8391)
Data Structures (CS8391)Data Structures (CS8391)
Data Structures (CS8391)
 
Data Structures and Algorithm - Module 1.pptx
Data Structures and Algorithm - Module 1.pptxData Structures and Algorithm - Module 1.pptx
Data Structures and Algorithm - Module 1.pptx
 
Best,worst,average case .17581556 045
Best,worst,average case .17581556 045Best,worst,average case .17581556 045
Best,worst,average case .17581556 045
 
heap Sort Algorithm
heap  Sort Algorithmheap  Sort Algorithm
heap Sort Algorithm
 
Linklist
LinklistLinklist
Linklist
 
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4358 33 powerpoint-slides_4-introduction-data-structures_chapter-4
358 33 powerpoint-slides_4-introduction-data-structures_chapter-4
 

Viewers also liked

Cursor implementation
Cursor implementationCursor implementation
Cursor implementationvicky201
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithmsHarry Potter
 
358 33 powerpoint-slides_8-linked-lists_chapter-8
358 33 powerpoint-slides_8-linked-lists_chapter-8358 33 powerpoint-slides_8-linked-lists_chapter-8
358 33 powerpoint-slides_8-linked-lists_chapter-8sumitbardhan
 
data structure
data structuredata structure
data structurehashim102
 
Data structures and algorithms made easy
Data structures and algorithms made easyData structures and algorithms made easy
Data structures and algorithms made easyCareerMonk Publications
 
Introduction of data structure
Introduction of data structureIntroduction of data structure
Introduction of data structureeShikshak
 
C++ idioms by example (Nov 2008)
C++ idioms by example (Nov 2008)C++ idioms by example (Nov 2008)
C++ idioms by example (Nov 2008)Olve Maudal
 
Solid C++ by Example
Solid C++ by ExampleSolid C++ by Example
Solid C++ by ExampleOlve Maudal
 
TDD in C - Recently Used List Kata
TDD in C - Recently Used List KataTDD in C - Recently Used List Kata
TDD in C - Recently Used List KataOlve Maudal
 

Viewers also liked (15)

Cursor implementation
Cursor implementationCursor implementation
Cursor implementation
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
 
Linked lists
Linked listsLinked lists
Linked lists
 
358 33 powerpoint-slides_8-linked-lists_chapter-8
358 33 powerpoint-slides_8-linked-lists_chapter-8358 33 powerpoint-slides_8-linked-lists_chapter-8
358 33 powerpoint-slides_8-linked-lists_chapter-8
 
data structure
data structuredata structure
data structure
 
Data structures and algorithms made easy
Data structures and algorithms made easyData structures and algorithms made easy
Data structures and algorithms made easy
 
Linked List
Linked ListLinked List
Linked List
 
Introduction of data structure
Introduction of data structureIntroduction of data structure
Introduction of data structure
 
C++ idioms by example (Nov 2008)
C++ idioms by example (Nov 2008)C++ idioms by example (Nov 2008)
C++ idioms by example (Nov 2008)
 
linked list
linked list linked list
linked list
 
Solid C++ by Example
Solid C++ by ExampleSolid C++ by Example
Solid C++ by Example
 
How A Compiler Works: GNU Toolchain
How A Compiler Works: GNU ToolchainHow A Compiler Works: GNU Toolchain
How A Compiler Works: GNU Toolchain
 
Linked list
Linked listLinked list
Linked list
 
TDD in C - Recently Used List Kata
TDD in C - Recently Used List KataTDD in C - Recently Used List Kata
TDD in C - Recently Used List Kata
 
Deep C
Deep CDeep C
Deep C
 

Similar to Data structures & algorithms lecture 3

Similar to Data structures & algorithms lecture 3 (20)

List,Stacks and Queues.pptx
List,Stacks and Queues.pptxList,Stacks and Queues.pptx
List,Stacks and Queues.pptx
 
Chapter 5 ds
Chapter 5 dsChapter 5 ds
Chapter 5 ds
 
12888239 (2).ppt
12888239 (2).ppt12888239 (2).ppt
12888239 (2).ppt
 
Array linked list.ppt
Array  linked list.pptArray  linked list.ppt
Array linked list.ppt
 
Lists
ListsLists
Lists
 
List
ListList
List
 
DS Complete notes for Computer science and Engineering
DS Complete notes for Computer science and EngineeringDS Complete notes for Computer science and Engineering
DS Complete notes for Computer science and Engineering
 
Chapter 15 Lists
Chapter 15 ListsChapter 15 Lists
Chapter 15 Lists
 
General Data structures
General Data structuresGeneral Data structures
General Data structures
 
03-Lists.ppt
03-Lists.ppt03-Lists.ppt
03-Lists.ppt
 
3.ppt
3.ppt3.ppt
3.ppt
 
3.ppt
3.ppt3.ppt
3.ppt
 
1 list datastructures
1 list datastructures1 list datastructures
1 list datastructures
 
javacollections.pdf
javacollections.pdfjavacollections.pdf
javacollections.pdf
 
16. Arrays Lists Stacks Queues
16. Arrays Lists Stacks Queues16. Arrays Lists Stacks Queues
16. Arrays Lists Stacks Queues
 
lec4.ppt
lec4.pptlec4.ppt
lec4.ppt
 
oop lecture framework,list,maps,collection
oop lecture framework,list,maps,collectionoop lecture framework,list,maps,collection
oop lecture framework,list,maps,collection
 
Adt of lists
Adt of listsAdt of lists
Adt of lists
 
Collections and generics
Collections and genericsCollections and generics
Collections and generics
 
Mca ii dfs u-3 linklist,stack,queue
Mca ii dfs u-3 linklist,stack,queueMca ii dfs u-3 linklist,stack,queue
Mca ii dfs u-3 linklist,stack,queue
 

More from Poojith Chowdhary (20)

Voltage multiplier
Voltage multiplierVoltage multiplier
Voltage multiplier
 
Implementation of MIS and its methods
Implementation of MIS and its methodsImplementation of MIS and its methods
Implementation of MIS and its methods
 
THE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODETHE LIGHT EMITTING DIODE
THE LIGHT EMITTING DIODE
 
High k dielectric
High k dielectricHigh k dielectric
High k dielectric
 
The science of thought
The science of thoughtThe science of thought
The science of thought
 
Child prodigy,savant and late boomers
Child prodigy,savant and late boomersChild prodigy,savant and late boomers
Child prodigy,savant and late boomers
 
Us wireless cable television
Us wireless cable televisionUs wireless cable television
Us wireless cable television
 
1116297 634468886714442500
1116297 6344688867144425001116297 634468886714442500
1116297 634468886714442500
 
Photo transistors
Photo transistorsPhoto transistors
Photo transistors
 
8086 micro processor
8086 micro processor8086 micro processor
8086 micro processor
 
8051 micro controller
8051 micro controller8051 micro controller
8051 micro controller
 
8085 micro processor
8085 micro processor8085 micro processor
8085 micro processor
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Function generator
Function generatorFunction generator
Function generator
 
Resistors
ResistorsResistors
Resistors
 
The new seven wonders of the world
The new seven wonders of the worldThe new seven wonders of the world
The new seven wonders of the world
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
 
The new seven wonders of the world
The new seven wonders of the worldThe new seven wonders of the world
The new seven wonders of the world
 
Animal lifecycles
Animal lifecyclesAnimal lifecycles
Animal lifecycles
 
Resistors
ResistorsResistors
Resistors
 

Recently uploaded

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 

Recently uploaded (20)

Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 

Data structures & algorithms lecture 3

  • 1. DATA STRUCTURES AND ALGORITHMS Lecture Notes 3 Prepared by İnanç TAHRALI
  • 2. 2 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 3. 3 Abstract Data Types (ADT)  Definition : Is a set of operation Mathematical abstraction No implementation detail  Example : Lists, sets, graphs, stacks are examples of ADT along with their operations
  • 4. 4 Why ADT ?  Modularity  divide program into small functions  easy to debug and maintain  easy to modify  group work  Reuse  do some operations only once  Easy to change of implementation  transparent to the program
  • 5. 5 THE LIST ADT  Ordered sequence of data items called elements  A1, A2, A3, …,AN is a list of size N  size of an empty list is 0  Ai+1 succeeds Ai  Ai-1 preceeds Ai  position of Ai is i  first element is A1 called “head”  last element is AN called “tail” Operations ?
  • 6. 6 THE LIST ADT  Operations  PrintList  Find  FindKth  Insert  Delete  Next  Previous  MakeEmpty
  • 7. 7 THE LIST ADT  Example: the elements of a list are 34, 12, 52, 16, 12  Find (52)  3  Insert (20, 3)  34, 12, 52, 20, 16, 12  Delete (52)  34, 12, 20, 16, 12  FindKth (3)  20
  • 8. 8 Implementation of Lists  Many Implementations  Array  Linked List  Cursor (linked list using arrays)
  • 9. 9 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 10. 10 Array Implementation of List ADT  Need to define a size for array  High overestimate (waste of space)  Operations Running Times PrintList O(N) Find Insert O(N) (on avarage half needs to be moved) Delete FindKth Next O(1) Previous
  • 11. 11 Array Implementation of List ADT  Disadvantages :  insertion and deletion is very slow  need to move elements of the list  redundant memory space  it is difficult to estimate the size of array
  • 12. 12 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 13. 13 Linked List Implementation of Lists  Series of nodes  not adjacent in memory  contain the element and a pointer to a node containing its succesor  Avoids the linear cost of insertion and deletion !
  • 14. 14 Linked List Implementation of Lists  Insertion into a linked list
  • 15. 15 Linked List Implementation of Lists  Deletion from a linked list
  • 16. 16 Linked List Implementation of Lists  Need to know where the first node is  the rest of the nodes can be accessed  No need to move the list for insertion and deletion operations  No memory waste
  • 17. 17 Linked List Implementation of Lists Linked List Array PrintList O(N) (traverse the list) O(N) Find FindKth (L,i) O(i) O(1) Delete O(1) O(N)
  • 18. 18 Programming Details  There are 3 special cases for linked lists  Insert an element at the front of the list  there is no really obvious way  Delete an element from the front of the list  changes the start of the list  Delete an element in general  requires to keep track of the node before the deleted one How can we solve these three problems ?
  • 19. 19 Programming Details Keep a header node in position 0  Write a FindPrevious routine  returns the predecessor of the cell  To delete the first element  FindPrevious routine returns the position of header Use of header node is controversial !
  • 20. 20 Type decleration for link list node template <class Object> class List; // Incomplete declaration. template <class Object> class ListItr; // Incomplete declaration. template <class Object> class ListNode { ListNode( const Object & theElement = Object( ), ListNode*n=NULL) : element(theElement),next(n) {} Object element; ListNode *next; friend class List<Object>; friend class ListItr<Object>; };
  • 21. 21 Iterator class for linked lists template <class Object> class ListItr { public: ListItr( ) : current( NULL ) { } bool isPastEnd( ) const { return current == NULL; } void advance( ) { if( !isPastEnd( ) ) current = current->next; } const Object & retrieve( ) const { if( isPastEnd( ) ) throw BadIterator( ); return current->element; } private: ListNode<Object> *current; // Current position ListItr(ListNode<Object> *theNode):current( theNode ) { } friend class List<Object>; // Grant access to constructor };
  • 22. 22 List class interface template <class Object> class List { public: List( ); List( const List & rhs ); ~List( ); bool isEmpty( ) const; void makeEmpty( ); ListItr<Object> zeroth( ) const; ListItr<Object> first( ) const; void insert( const Object & x, const ListItr<Object> & p ); ListItr<Object> find( const Object & x ) const; ListItr<Object> findPrevious( const Object & x ) const; void remove( const Object & x ); const List & operator=( const List & rhs ); private: ListNode<Object> *header; };
  • 23. 23 Function to print a list template <class Object> void printList( const List<Object> &the List) { if (theList.isEmpty()) cout<< “Empty list” << endl; else { ListItr<Object> itr = theList.first(); for (; !itr.isPastEnd(); itr.advance()) cout << itr.retrieve() <<“ ”; } cout << endl; }
  • 24. 24 Some list one-liners /* Construct the list */ template <class Object> List<Object>::List( ) { header = new ListNode<Object>; } /* Test if the list is logically empty */ template <class Object> bool List<Object>::isEmpty( ) const { return header->next == NULL; }
  • 25. 25 Some list one liners /* Return an iterator representing the header node template <class Object> ListItr<Object> List<Object>::zeroth( ) const { return ListItr<Object>( header ); } /* Return an iterator representing the first node in the list. This operation is valid for empty lists. */ template <class Object> ListItr<Object> List<Object>::first( ) const { return ListItr<Object>( header->next ); }
  • 26. 26 Find routine /* Return iterator corresponding to the first node containing an item x. Iterator isPastEnd if item is not found. */ template <class Object> ListItr<Object> List<Object>::find( const Object & x ) const { ListNode<Object> *itr = header->next; while( itr != NULL && itr->element != x ) itr = itr->next; return ListItr<Object>( itr ); }
  • 27. 27 Deletion routine for linked lists /* Remove the first occurrence of an item x. */ template <class Object> void List<Object>::remove( const Object & x ) { ListItr<Object> p = findPrevious( x ); if( p.current->next != NULL ) { ListNode<Object> *oldNode = p.current->next; p.current->next = p.current->next->next; delete oldNode; } }
  • 28. 28 findPrevious-the find routine for use with remove /*Return iterator prior to the first node containing an item x. template <class Object> ListItr<Object> List<Object>::findPrevious( const Object & x ) const { ListNode<Object> *itr = header; while( itr->next != NULL && itr->next->element != x ) itr = itr->next; return ListItr<Object>( itr ); }
  • 29. 29 Insertion routine for linked lists /* Insert item x after p. */ template <class Object> void List<Object>::insert( const Object & x, const ListItr<Object> & p ) { if( p.current != NULL ) p.current->next = new ListNode<Object> ( x, p.current->next ); }
  • 30. 30 makeEmpty and List destructor /* Make the list logically empty. */ template <class Object> void List<Object>::makeEmpty( ) { while( !isEmpty( ) ) remove( first( ).retrieve( ) ); } /* Destructor */ template <class Object> List<Object>::~List( ) { makeEmpty( ); delete header; }
  • 31. 31 List copy routines: operator= /*Deep copy of linked lists. template <class Object> const List<Object> & List<Object>::operator=( const List<Object> & rhs ) { ListItr<Object> ritr = rhs.first( ); ListItr<Object> itr = zeroth( ); if( this != &rhs ) { makeEmpty( ); for( ; !ritr.isPastEnd( ); ritr.advance( ),itr.advance( )) insert( ritr.retrieve( ), itr ); } return *this; }
  • 32. 32 List copy routines : copy constructor /* Copy constructor template <class Object> List<Object>::List( const List<Object> & rhs ) { header = new ListNode<Object>; *this = rhs; }
  • 33. 33 Doubly Linked List  Traversing list backwards  not easy with regular lists  Insertion and deletion more pointer fixing  Deletion is easier  Previous node is easy to find
  • 34. 34 Circulary Linked List  Last node points the first
  • 35. 35 ROAD MAP  Abstract Data Types (ADT)  The List ADT  Implementation of Lists  Array implementation of lists  Linked list implementation of lists  Cursor implementation of lists
  • 36. 36 Cursor Implementation of Linked List Problems with linked list implementation:  Same language do not support pointers !  Then how can you use linked lists ?  new and free operations are slow  Actually not constant time
  • 37. 37 Cursor Implementation of Linked List SOLUTION: Implement linked list on an array called CURSOR
  • 38. 38 Cursor Implementation of Linked List  Cursor operation simulates the features  Collection of structures  uses array for nodes  Array index is pointer  new and delete operation  Keep a free list  new returns an element from freelist  delete place the node in freelist  Freelist  Use cell 0 as header  All nodes are free initially  0 is a NULL pointer
  • 39. 39 Cursor Implementation of Linked List If L = 5, then L represents list (A, B, E) If M = 3, then M represents list (C, D, F)
  • 40. 40 Iterator for cursor implementation of linked lists template <class Object> class ListItr { public: ListItr( ) : current( 0 ) { } bool isPastEnd( ) const {return current == 0; } void advance( ){ if( !isPastEnd( ) ) current = List<Object>::cursorSpace[ current ].next; } const Object & retrieve( ) const { if( isPastEnd( ) ) throw BadIterator( ); return List<Object>::cursorSpace[ current ].element; } private: int current; // Current position friend class List<Object>; ListItr( int theNode ) : current( theNode ) { } };
  • 41. 41 Class skeleton for cursor-based List template <class Object> class ListItr; // Incomplete declaration. template <class Object> class List { public: List( ); List( const List & rhs ); ~List( ); bool isEmpty( ) const; void makeEmpty( ); ListItr<Object> zeroth( ) const; ListItr<Object> first( ) const; void insert( const Object & x, const ListItr<Object> & p ); ListItr<Object> find( const Object & x ) const; ListItr<Object> findPrevious( const Object & x ) const; void remove( const Object & x );
  • 42. 42 Class skeleton for cursor-based List public: struct CursorNode { CursorNode( ) : next( 0 ) { } private: CursorNode( const Object & theElement, int n ) : element( theElement ), next( n ) {} Object element; int next; friend class List<Object>; friend class ListItr<Object>; }; const List & operator=( const List & rhs );
  • 43. 43 Class skeleton for cursor-based List private: int header; static vector<CursorNode> cursorSpace; static void initializeCursorSpace( ); static int alloc( ); static void free( int p ); friend class ListItr<Object>; };
  • 44. 44 cursorSpace initialization /* Routine to initialize the cursorSpace. */ template <class Object> void List<Object>::initializeCursorSpace( ) { static int cursorSpaceIsInitialized = false; if( !cursorSpaceIsInitialized ) { cursorSpace.resize( 100 ); for( int i = 0; i < cursorSpace.size( ); i++ ) cursorSpace[ i ].next = i + 1; cursorSpace[ cursorSpace.size( ) - 1 ].next = 0; cursorSpaceIsInitialized = true; } }
  • 45. 45 Routines : alloc and free /* Allocate a CursorNode template <class Object> int List<Object>::alloc( ) { int p = cursorSpace[ 0 ].next; cursorSpace[ 0 ].next = cursorSpace[ p ].next; return p; } /* Free a CursorNode template <class Object> void List<Object>::free( int p ) { cursorSpace[ p ].next = cursorSpace[ 0 ].next; cursorSpace[ 0 ].next = p; }
  • 46. 46 Short routines for cursor-based lists /* Construct the list template <class Object> List<Object>::List( ) { initializeCursorSpace( ); header = alloc( ); cursorSpace[ header ].next = 0; } /* Destroy the list template <class Object> List<Object>::~List( ) { makeEmpty( ); free( header ); }
  • 47. 47 Short routines for cursor-based lists /* Test if the list is logically empty. return true if empty template <class Object> bool List<Object>::isEmpty( ) const { return cursorSpace[ header ].next == 0; } /* Return an iterator representing the first node in the list. This operation is valid for empty lists. template <class Object> ListItr<Object> List<Object>::first( ) const { return ListItr<Object>( cursorSpace[ header ].next ); }
  • 48. 48 find routine - cursor implementation /*Return iterator corresponding to the first node containing an item x. Iterator isPastEnd if item is not found. template <class Object> ListItr<Object> List<Object>::find( const Object & x ) const { int itr = cursorSpace[ header ].next; while( itr != 0 && cursorSpace[ itr ].element != x ) itr = cursorSpace[ itr ].next; return ListItr<Object>( itr ); }
  • 49. 49 insertion routine-cursor implementation /* Insert item x after p. template <class Object> void List<Object>::insert(const Object & x,const ListItr<Object> & p) { if( p.current != 0 ) { int pos = p.current; int tmp = alloc( ); cursorSpace[ tmp ] = CursorNode( x, cursorSpace[ pos ].next ); cursorSpace[ pos ].next = tmp; } }
  • 50. 50 deletion routine - cursor implementation /* Remove the first occurrence of an item x. template <class Object> void List<Object>::remove( const Object & x ) { ListItr<Object> p = findPrevious( x ); int pos = p.current; if( cursorSpace[ pos ].next != 0 ) { int tmp = cursorSpace[ pos ].next; cursorSpace[ pos ].next = cursorSpace[ tmp ].next; free ( tmp ); } }