SlideShare a Scribd company logo
1 of 54
Bayesian Network 을 활용한 예측 분석 Machine learning 의 관점에서 본 데이터의 활용 
최진혁 Ph.D. (인포리언스) 
2014. 09.16.
Who Am I? 
Ph.D. @ KAIST 전산학과 
Human-Computer Interaction 
Machine Learning / Data Mining 
ETRI, KAIST 
데이터 기반 홈 미들웨어 
Web & SNS Mining (usage, text…) 
주식회사 인포리언스 (Inforience Inc.) 
Data (Text) Mining 
데이터로부터 실제적인 가치를 추출 
Collaborative Data Mining System 개발 
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼(Collaborative Data Mining Platform for Searching and Interpretation of Data Dynamics) 
http://inforience.net/
Who Am I? 
"Big data does not need big machines. It needs big intelligence". 
그렇다면, Big intelligence 는 어디서부터?
세미나 개념 및 내용 
개념 
기계학습의 기본 개념 소개 (사례를 통한) 
특히, Bayesian Network 
비전문가 대상 
경험과 의견의 공유 
내용 
빅 데이터는 충분히 활용되고 있는가? 
빅 데이터 활용의 핵심 - Machine Learning 
개념과 모델 
사례 
데이터 기반 추론과 예측 
Bayesian Networks 
사례 
토론
빅 데이터 충분히 활용되고 있나? 
빅 데이터가 중요하다는 이야기 
모두 지겹다 
활용에 관한 구체적인 이야기!! 
그러나 충분히 활용되지 못하고 있다는 이야기
빅 데이터 시대의 Machine Learning 
증가한 데이터 저장 능력 / 실제로 증가한 데이터 
Looks random but certain patterns 
어떤 패턴들이 숨어있는지 알 수 없다. 
A good or useful approximation 
무척 중요하지만… 
특별한 분야의 특별한 데이터, 그리고 특별한 해석 
데이터 양, 종류, 특성, 활용 분야의 증가 
다양한 분야의 다양한 데이터, 그리고 다양한 활용 
누구에게나 적용될 수 있는 결과  해석과 활용의 중요성
Machine Learning 
Inducing general functions from specific training examples 
Looking for the hypothesis that best fits the training examples 
Inferring a boolean-valued function from training examples of its input and output
Machine Learning
Machine Learning 
Machine Learning을 실제 문제에 적용하는 것은 쉬운가? 
General (Ideal) Process vs. Real Process 
Machine Learning 으로부터 무엇을 얻어낼 수 있는가? 
Inference? Prediction? 
Predictive Modeling vs. Explanatory Modeling
Machine Learning Examples (1) 
 Function approximation (Mexican hat) 
  2 2 
3 1 2 1 2 1 2 f (x , x )  sin 2 x  x , x , x [1,1]
Machine Learning Examples (2) 
Face image classification
Machine Learning Examples (3)
Machine Learning Examples (4)
Machine Learning Examples (5)
Machine Learning Examples (6) 
TV program preference inference based on web usage data 
Web page #1 Web page #2 Web page #3 Web page #4 …. 
Classifier 
TV Program #1 TV Program #2 TV Program #3 TV Program #4 …. 
1 
2 
3 
What are we supposed to do at each step?
Mining Social Relationship Types in an Organization using Communication Patterns 
CSCW 2013 
Jinhyuk Choi, Seongkook Heo, Jaehyun Han, Geehyuk Lee, Junehwa Song 
Department of Computer Science 
KAIST (Korea Advanced Institute of Science and Technology)
Objective 
Propose a method to… 
automatically recognize social relationship types among people in an organization 
Using only easily collectable data 
indoor co-location data 
instant messenger data (rather than e-mail, call logs…) 
real-time communication 
without having to worry about their conversations being exposed in a shared location
Experiment Data collection 
Co-location 
How long, how often, how regularly 
Bluetooth stations at several location points (meeting rooms, Labs, a lounge) 
scan the surrounding area at a radius of approximately 10 m, at a 20s frequency 
collect the Bluetooth IDs of users’ mobile phones 
Instant Messenger Data 
From participants’ PCs 
Record the names of participants conversed with by participants as well as the time of the conversation at one minute intervals 
6th floor at KAIST Computer Science building 
Bluetooth Stations
Experiment Data collection 
Participants 
22 computer science graduate students 
Belong to several different concentrations. 
Same concentration 
close seats & regular meetings in the meeting room 
For one month 
User survey (question about 21 other participants)
Experiment Data analysis 
: detected time slot 
: non- detected time slot 
User #3 
User #1 
User #2 
TIME 
푡12 푘: 14 
푡13 푘: 5 
Location : k 
푓12 푘: 2 
푓13 푘: 1 
푡1 푘: 24 
푡2 푘: 17 
푡3 푘: 11 
푓1 푘: 4 
푓2 푘: 3 
푓3 푘: 2
Experiment Data analysis 
co-visit-duration (no. of detected time slot) 
how long a particular user i stays with another user j at a particular location k 
co-visit-frequency (no. of detected groups) 
how often a particular user i visited a location k with another user j 
co-visit-average-duration 
co-visit-hour-regularity 
co-visit-weekday-regularity 
mess-comm-duration 
mess-comm number 
mess-comm-ave-time 
From IM… 
Total 18 indicators !!
co-visit-frequency 
(Meeting room) 
2 4 6 8 10 12 14 16 18 
0 
0.05 
0.1 
0.15 
HIR Classification 
IG 
2 4 6 8 10 12 14 16 18 
0 
0.05 
0.1 
HFR Classification 
IG 
Experiment 
Data analysis 
Lounge Lab Messenger Meeting 
room 
co-visit-duration 
(Lounge) 
HIR Classification: HIR or not 
HFR Classification: HFR or not 
Indicator numbers 
Indicator numbers
Process 
Hypothesis 
Data selection 
Data collection 
Feature design 
Data exploration 
Algorithm selection 
Analysis 
Interpretation 
Application
 To build accurate user profile 
 Navigational page elimination – “not fully 
explored” 
 Using no. of contained hyperlinks or URL lengths 
 (Cooley, Mobasher, & Srivastava, 1999; Domenech & 
Lorenzo, 2007) 
 Manually 
 (Kelly & Belkin, 2004) 
High-Interested Contents Page Retrieval 
Figure from “Data Preparation for Mining World Wide 
Web Browsing Patterns”, Journal of Knowledge and 
Information Systems, 1999 
1 2 
0 
2000 
4000 
6000 
8000 
10000 
12000 
14000 
16000 
No. of Web pages 
1-Navigational/2-Contents 
1 2 3 4 5 
0 
1000 
2000 
3000 
4000 
5000 
6000 
No. of Web pages 
Interest Levels 
 Hypothesis 
 Users will visit navigational pages more frequently 
& regularly 
 Users will show more interactions at interested 
pages 
 High interested page identification 
 Interaction logs (many references) 
 Visit frequency & revisit patterns 
 (Adar, Teevan, & Dumais, 2008; Aula, Jhaveri, & 
Kaki, 2005)
c c c c c c c c c c c c c c c c c c c c c c c c c 
Day frequency (DF) 
Visit number in a day (VnD) 
Interaction logs (day mean) 
Session frequency (SF) 
Visit number in a session (VnS) 
Interaction logs (session mean) 
|{ : }| 
| | 
j i j 
i 
d Url d 
DF 
D 
 
 
ij 
ij 
kj 
k 
n 
VnD 
n 
 
 
|{ : }| 
| | 
j i j 
i 
s Url s 
SF 
S 
 
 
ij 
ij 
kj 
k 
m 
VnS 
m 
 
 
Total 16 features 
High-Interested Contents Page Retrieval
Visit patterns 
Interaction logs 
High-Interested Contents Page Retrieval 
2 phases required
Day frequency 
Session frequency 
Visit number in a day 
Usage data (day mean) 
Visit number in a session 
Usage data (session mean) 
N-day buffer 
1-day buffer 
1-day buffer 
1-Session buffer 
The first Classifier 
The second Classifier 
High valued 
Web Pages 
Navigational 
pages 
Low-interested pages 
: data calculation modules : Sessions : Web pages 
Contents pages 
High-Interested Contents Page Retrieval
Inference & Prediction based on Data
Bayesian Networks Introduction 
Graphical models, probabilistic networks 
causality and influence 
Nodes are hypotheses (random vars) and the prob corresponds to our belief in the truth of the hypothesis 
Arcs are direct influences between hypotheses 
The structure is represented as a directed acyclic graph (DAG) 
Representation of the dependencies among random variables 
The parameters are the conditional probs in the arcs 
움직임 
소리 
진동 
밝기 
수행 기능
Bayesian Networks Introduction 
Learning 
Inducing a graph 
From prior knowledge 
From structure learning 
Estimating parameters 
Inference 
Beliefs from evidences 
Especially among the nodes not directly connected 
?????
Structure Introduction 
Initial configuration of BN 
Root nodes 
Prior probabilities 
Non-root nodes 
Conditional probabilities given all possible combinations of direct predecessors 
A 
B 
D 
E 
C 
P(b) 
P(a) 
P(d|ab), P(d|aㄱb), P(d|ㄱab), P(d|ㄱaㄱb) 
P(e|d) P(e|ㄱd) 
P(c|a) 
P(c|ㄱa)
Causes and Bayes’ Rule Introduction 
Diagnostic inference: 
Knowing that the grass is wet, 
what is the probability that rain is 
the cause? 
causal 
diagnostic
Causal vs Diagnostic Inference Introduction 
Causal inference: If the sprinkler is on, what is the probability that the grass is wet? P(W|S) = P(W|R,S) P(R|S) + P(W|~R,S) P(~R|S) = P(W|R,S) P(R) + P(W|~R,S) P(~R) = 0.95*0.4 + 0.9*0.6 = 0.92
Bayesian Networks: Causes Introduction 
Causal inference: 
P(W|C) = P(W|R,S) P(R,S|C) + 
P(W|~R,S) P(~R,S|C) + 
P(W|R,~S) P(R,~S|C) + 
P(W|~R,~S) P(~R,~S|C) 
and use the fact that 
P(R,S|C) = P(R|C) P(S|C) 
Diagnostic: P(C|W ) = ?
Bayesian Networks: Inference Introduction 
P (C,S,R,W,F ) = P (C ) P (S |C ) P (R |C ) P (W |R,S ) P (F |R ) 
P (C,F ) = ΣS ΣR ΣW P (C,S,R,W,F ) 
P (F |C) = P (C,F ) / P(C ) Not efficient! 
Belief propagation (Pearl, 1988) 
Junction trees (Lauritzen and Spiegelhalter, 1988) 
Independence assumption
Inference Evidence & Belief Propagation 
Evidence – values of observed nodes 
V3 = T, V6 = 3 
Our belief in what the value of Vi ‘should’ be changes. 
This belief is propagated 
V1 
V5 
V2 
V4 
V3 
V6
Belief Propagation 
V 
U2 
V1 
V2 
U1 
π(U2) 
π(V1) 
π(V2) 
π(U1) 
λ(U1) 
λ(V2) 
λ(V1) 
λ(U2)
Evidence & Belief 
V1 
V5 
V2 
V4 
V3 
V6 
Evidence 
Belief 
Evidence 
Works for classification ??
Applying Bayesian Network 
데이터 수집 
현재 상황 데이터 (Evidence!!!) 
-매우 불완전  일부 변수만 확인 가능 
추론 
추론 모델 구축 
추론 모델 
A 
B 
C 
D 
E 
F 
G 
A 
C 
G 
F 
B 
A 
C 
G 
F 
B 
Exploratory study 가 필요!!! 
Data Preprocessing & Cleaning
Examples 
Modeling Vehicle Choice and Simulating Market Share with Bayesian Networks 
Identifying Priorities for Maximizing Repurchase Intent 
Vehicle Size, Weight, and Injury Risk 
Knowledge Discovery in the Stock Market
APPLICATION OF BAYESIAN NETWORKS TO ANALYZE IN ANALYZING INCIDENTS AND DECISION-MAKING TRB 2005 Annual Meeting 
This study uses BNs as a knowledge discovery process to accurately predict incident 
1. Ctimetotal = Total Clearance Time 
2. Typeincide = Type of Incident 
3. Policeveh = Number of Police Vehicles 
4. Ambulances = Number of Ambulances 
5. Fireengines = Number of Fire Engines 
6. NbrofInjur = Number of Injuries 
7. Nbrtrtrliv = Number of Trucks Involved 
8. Nbrcarsinv = Number of Cars Involved 
9. Totalanes = Total Number of Lanes 
10. Freeway = Type of the Roadwayt clearance time 
41
Using Bayesian Networks to Model Accident Causation in the UK Railway Industry Probabilistic Safety Assessment and Management 2004, pp 3597-3602 
SPAD (Signals Passed at Danger) 
Organisational factors 
Events attributed to human error and blamed on an operator have systemic causes, such as procedural or organisational weaknesses. 
Modelling the Organisational Context
해상 사고 데이터 분석 과정 
공공 데이터 포털에서 2007~2013년 사이의 해상 사고 데이터 (엑셀 형식) 를 다운로드 
원 데이터 형태는 아래 그림과 같음 (각 연도별로 탭을 만들어 저장되어 있는 형태)
해상 사고 데이터 분석 과정 
Bayesian Network 트레이닝 결과
해상 사고 데이터 분석 과정 
•예1) 그림의 노드 6 (사고 유형)을 CD(충돌)로 설정할 경우 (실제로 충돌유형의 사고가 보고되었다는 가정) 
•노드 5 (사고해역) 의 확률분포는 변화가 없음 
•CAUSE 노드는 WH (운항부주의) 값이 현저하게 상승 
•충돌사고는 운항부주의가 원인이라고 추론할 여지가 있음
해상 사고 데이터 분석 과정 
예2) 그림의 노드 6 (사고 유형)을 HJ(화재)로 설정할 경우, (실제로 화재 유형의 사고가 보고되었다는 가정) 
•CAUSE 노드에서는 기타 원인 (ETC)와 화기취급부주의 (HG) 의 확률 값이 크게 상승 
•노드 5 (사고해역) 에서는 항계내(HGN) 의 확률값이 현저히 상승함 
•(화재 사고는 항계내 해역에서 많이 발생하며 화기취급부주의가 가장 큰 원인이 된다고 해석 가능함)
Bayesian Network Analysis 
HFR Classification: HFR or not
Bayesian Network Analysis 
48 
High-Interested Contents Page Retrieval 
Interest Level 
Page Types
Process 
Hypothesis 
Data selection 
Data collection 
Feature design 
Data exploration 
Algorithm selection  Bayesian Network 
Analysis & Inference 
Interpretation 
Application
Analytic Modeling 
Bayesian networks can be built from human knowledge, i.e. from theory, or, they can be machine learned from data. 
Bayesian networks allow human learning and machine learning to interact efficiently. 
Bayesian network models can cover the entire range from association to causation 
Predictive modeling as well as explanatory modeling
Bayesian Network – 어디에 쓰면 좋을까?
Big machine, data analysis, Inference Algorithms, but NOT enough 
무엇이 더 필요한가?
Discussion 
Inference Algorithms, but NOT enough 
 More Required 
 Exploration & Interpretation 
 경험, 도메인 지식의 적용 
 Domain Experts & Mining Experts 
 협업의 필요성 
 Collaborative 
해석 결과 공유 
해석 결과 공유 
해석 결과 공유 
해석 결과 공유 
시각화 해석 
시각화 
해석 
해석 
해석 
시각화 
시각화 
DATA DATA 
DATA 
DATA
References 
Textbooks 
Ethem ALPAYDIN, Introduction to Machine Learning, The MIT Press, 2004 
Tom Mitchell, Machine Learning, McGraw Hill, 1997 
Neapolitan, R.E., Learning Bayesian Networks, Prentice Hall, 2003 
Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, 2011. 
Materials 
Serafín Moral, Learning Bayesian Networks, University of Granada, Spain 
Zheng Rong Yang, Connectionism, Exeter University 
KyuTae Cho ,Jeong Ki Yoo ,HeeJin Lee, Uncertainty in AI, Probabilistic reasoning, Especially for Bayesian Networks 
Gary Bradski, Sebastian Thrun, Bayesian Networks in Computer Vision, Stanford University 
Websites 
http://library.bayesia.com/display/whitepapers/White+Papers 
https://www.facebook.com/dan.ariely/posts/904383595868 
http://tomfishburne.com/2014/01/big-data.html 
http://news.dice.com/2012/07/17/businesses-struggling-with-data-flood-survey/ 
http://www.slideshare.net/jeric14/201305-hadoop-jplv3 
Papers 
Daniel Siewiorek et. al. "SenSay: A Context-Aware Mobile Phone", Proceeding ISWC '03 Proceedings of the 7th IEEE International Symposium on Wearable Computers 
A. Krause et. al, “Unsupervised, Dynamic Identification of Physiological and Activity Context in Wearable Computing”, ISWC 2005

More Related Content

What's hot

Link prediction 방법의 개념 및 활용
Link prediction 방법의 개념 및 활용Link prediction 방법의 개념 및 활용
Link prediction 방법의 개념 및 활용
Kyunghoon Kim
 
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Simplilearn
 

What's hot (20)

PowerGraph
PowerGraphPowerGraph
PowerGraph
 
Deep Dive into Hyperparameter Tuning
Deep Dive into Hyperparameter TuningDeep Dive into Hyperparameter Tuning
Deep Dive into Hyperparameter Tuning
 
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
Tutorial on Generalization in Neural Fields, CVPR 2022 Tutorial on Neural Fie...
 
Link prediction 방법의 개념 및 활용
Link prediction 방법의 개념 및 활용Link prediction 방법의 개념 및 활용
Link prediction 방법의 개념 및 활용
 
Modeling uncertainty in deep learning
Modeling uncertainty in deep learning Modeling uncertainty in deep learning
Modeling uncertainty in deep learning
 
Data Science: Applying Random Forest
Data Science: Applying Random ForestData Science: Applying Random Forest
Data Science: Applying Random Forest
 
Variational Autoencoders For Image Generation
Variational Autoencoders For Image GenerationVariational Autoencoders For Image Generation
Variational Autoencoders For Image Generation
 
Causal Inference : Primer (2019-06-01 잔디콘)
Causal Inference : Primer (2019-06-01 잔디콘)Causal Inference : Primer (2019-06-01 잔디콘)
Causal Inference : Primer (2019-06-01 잔디콘)
 
Enabling Power-Efficient AI Through Quantization
Enabling Power-Efficient AI Through QuantizationEnabling Power-Efficient AI Through Quantization
Enabling Power-Efficient AI Through Quantization
 
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
 
Interpretable machine learning
Interpretable machine learningInterpretable machine learning
Interpretable machine learning
 
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | EdurekaSVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
SVM Algorithm Explained | Support Vector Machine Tutorial Using R | Edureka
 
장바구니를 든 데이터 사이언티스트
장바구니를 든 데이터 사이언티스트장바구니를 든 데이터 사이언티스트
장바구니를 든 데이터 사이언티스트
 
Hyperparameter Tuning
Hyperparameter TuningHyperparameter Tuning
Hyperparameter Tuning
 
Artifical Neural Network
Artifical Neural NetworkArtifical Neural Network
Artifical Neural Network
 
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning A...
 
Graph Neural Network (한국어)
Graph Neural Network (한국어)Graph Neural Network (한국어)
Graph Neural Network (한국어)
 
CNN Attention Networks
CNN Attention NetworksCNN Attention Networks
CNN Attention Networks
 
Recurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: TheoryRecurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: Theory
 
Machine learning workshop
Machine learning workshopMachine learning workshop
Machine learning workshop
 

Viewers also liked

Cost-Aware Virtual Machine Placement across Distributed Data Centers using Ba...
Cost-Aware Virtual Machine Placement acrossDistributed Data Centers using Ba...Cost-Aware Virtual Machine Placement acrossDistributed Data Centers using Ba...
Cost-Aware Virtual Machine Placement across Distributed Data Centers using Ba...
Soodeh Farokhi
 
construction risk factor analysis: BBN Network
construction risk factor analysis: BBN Networkconstruction risk factor analysis: BBN Network
construction risk factor analysis: BBN Network
Shaswati Mohapatra
 

Viewers also liked (20)

Bayes Belief Network
Bayes Belief NetworkBayes Belief Network
Bayes Belief Network
 
Bayesian statistics
Bayesian statisticsBayesian statistics
Bayesian statistics
 
Probabilistic modeling in deep learning
Probabilistic modeling in deep learningProbabilistic modeling in deep learning
Probabilistic modeling in deep learning
 
Cost-Aware Virtual Machine Placement across Distributed Data Centers using Ba...
Cost-Aware Virtual Machine Placement acrossDistributed Data Centers using Ba...Cost-Aware Virtual Machine Placement acrossDistributed Data Centers using Ba...
Cost-Aware Virtual Machine Placement across Distributed Data Centers using Ba...
 
Dynamic Bayesian modeling for risk prediction in credit operations (SCAI2015)
Dynamic Bayesian modeling for risk prediction in credit operations (SCAI2015)Dynamic Bayesian modeling for risk prediction in credit operations (SCAI2015)
Dynamic Bayesian modeling for risk prediction in credit operations (SCAI2015)
 
Module 5 Bayesian belief network modelling
Module 5 Bayesian belief network modellingModule 5 Bayesian belief network modelling
Module 5 Bayesian belief network modelling
 
construction risk factor analysis: BBN Network
construction risk factor analysis: BBN Networkconstruction risk factor analysis: BBN Network
construction risk factor analysis: BBN Network
 
Studying Social Selection vs Social Influence in Virtual Financial Communities
Studying Social Selection vs Social Influence in Virtual Financial CommunitiesStudying Social Selection vs Social Influence in Virtual Financial Communities
Studying Social Selection vs Social Influence in Virtual Financial Communities
 
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of TagsA Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
 
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
Deep Learning - 인공지능 기계학습의 새로운 트랜드 :김인중
 
International Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data ScienceInternational Collaboration Networks in the Emerging (Big) Data Science
International Collaboration Networks in the Emerging (Big) Data Science
 
Data-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public healthData-driven biomedical science: implications for human disease and public health
Data-driven biomedical science: implications for human disease and public health
 
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
데이터사이언스학회 5월 세미나 데이터저널리즘과 트위터네트워크 분석
 
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
국가의 신성장 동력으로서 공간정보의 가치와 활용 2016-0603
 
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
소셜 텍스트 빅 테이터를 통해 분석한 화장품 유통구조 시사점
 
텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남텍스톰을 이용한 SNA 분석 -전채남
텍스톰을 이용한 SNA 분석 -전채남
 
농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형농업 빅데이터를 활용한 병해충 발생 예측 모형
농업 빅데이터를 활용한 병해충 발생 예측 모형
 
R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회R의 이해와 활용_데이터사이언스학회
R의 이해와 활용_데이터사이언스학회
 
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
온라인 데이터 분석을 통한 선거예측- 김찬우, 조인호
 
데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환 데이터시장의 트렌드와 예측 - 이영환
데이터시장의 트렌드와 예측 - 이영환
 

Similar to Bayesian Network 을 활용한 예측 분석

TechnicalBackgroundOverview
TechnicalBackgroundOverviewTechnicalBackgroundOverview
TechnicalBackgroundOverview
Motaz El-Saban
 
CIKM Tutorial 2008
CIKM Tutorial 2008CIKM Tutorial 2008
CIKM Tutorial 2008
Peiling Wang
 
Ingredients for Semantic Sensor Networks
Ingredients for Semantic Sensor NetworksIngredients for Semantic Sensor Networks
Ingredients for Semantic Sensor Networks
Oscar Corcho
 
Cytoscape ci chapter 1
Cytoscape ci chapter 1Cytoscape ci chapter 1
Cytoscape ci chapter 1
bdemchak
 

Similar to Bayesian Network 을 활용한 예측 분석 (20)

TechnicalBackgroundOverview
TechnicalBackgroundOverviewTechnicalBackgroundOverview
TechnicalBackgroundOverview
 
Ben Shneiderman: Thrill of Discovery
Ben Shneiderman: Thrill of DiscoveryBen Shneiderman: Thrill of Discovery
Ben Shneiderman: Thrill of Discovery
 
The Concurrent Constraint Programming Research Programmes -- Redux
The Concurrent Constraint Programming Research Programmes -- ReduxThe Concurrent Constraint Programming Research Programmes -- Redux
The Concurrent Constraint Programming Research Programmes -- Redux
 
Workflow Provenance: From Modelling to Reporting
Workflow Provenance: From Modelling to ReportingWorkflow Provenance: From Modelling to Reporting
Workflow Provenance: From Modelling to Reporting
 
ICRA: Intelligent Platform for Collaboration and Interaction
ICRA: Intelligent Platform for Collaboration and InteractionICRA: Intelligent Platform for Collaboration and Interaction
ICRA: Intelligent Platform for Collaboration and Interaction
 
Improving Question Answering by Bridging Linguistic Structures with Statistic...
Improving Question Answering by Bridging Linguistic Structures with Statistic...Improving Question Answering by Bridging Linguistic Structures with Statistic...
Improving Question Answering by Bridging Linguistic Structures with Statistic...
 
Letting the Machine Code Qualitative and Mixed Methods Data in NVivo 10
Letting the Machine Code Qualitative and Mixed Methods Data in NVivo 10Letting the Machine Code Qualitative and Mixed Methods Data in NVivo 10
Letting the Machine Code Qualitative and Mixed Methods Data in NVivo 10
 
Learning from meaningful, purposive interaction
Learning from meaningful, purposive interactionLearning from meaningful, purposive interaction
Learning from meaningful, purposive interaction
 
Zühlke Meetup - Mai 2017
Zühlke Meetup - Mai 2017Zühlke Meetup - Mai 2017
Zühlke Meetup - Mai 2017
 
Quantitative Digital Backchannel: Developing a Web-Based Audience Response Sy...
Quantitative Digital Backchannel: Developing a Web-Based Audience Response Sy...Quantitative Digital Backchannel: Developing a Web-Based Audience Response Sy...
Quantitative Digital Backchannel: Developing a Web-Based Audience Response Sy...
 
Why Data Science is a Science
Why Data Science is a ScienceWhy Data Science is a Science
Why Data Science is a Science
 
90seconds Presentation
90seconds Presentation90seconds Presentation
90seconds Presentation
 
Physical-Cyber-Social Data Analytics & Smart City Applications
Physical-Cyber-Social Data Analytics & Smart City ApplicationsPhysical-Cyber-Social Data Analytics & Smart City Applications
Physical-Cyber-Social Data Analytics & Smart City Applications
 
From Artwork to Cyber Attacks: Lessons Learned in Building Knowledge Graphs u...
From Artwork to Cyber Attacks: Lessons Learned in Building Knowledge Graphs u...From Artwork to Cyber Attacks: Lessons Learned in Building Knowledge Graphs u...
From Artwork to Cyber Attacks: Lessons Learned in Building Knowledge Graphs u...
 
CIKM Tutorial 2008
CIKM Tutorial 2008CIKM Tutorial 2008
CIKM Tutorial 2008
 
Ingredients for Semantic Sensor Networks
Ingredients for Semantic Sensor NetworksIngredients for Semantic Sensor Networks
Ingredients for Semantic Sensor Networks
 
Building Effective Visualization Shiny WVF
Building Effective Visualization Shiny WVFBuilding Effective Visualization Shiny WVF
Building Effective Visualization Shiny WVF
 
Tutorial ESWC2011 Building Semantic Sensor Web - 01 - Introduction
Tutorial ESWC2011 Building Semantic Sensor Web - 01 - IntroductionTutorial ESWC2011 Building Semantic Sensor Web - 01 - Introduction
Tutorial ESWC2011 Building Semantic Sensor Web - 01 - Introduction
 
G1803054653
G1803054653G1803054653
G1803054653
 
Cytoscape ci chapter 1
Cytoscape ci chapter 1Cytoscape ci chapter 1
Cytoscape ci chapter 1
 

More from datasciencekorea

More from datasciencekorea (14)

2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
2015-4 혁신기술로서의 빅데이터 국내 기술수용 초기 특성연구- 김정선
 
스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영스마트 시티의 빅데이터 분석론 - 최준영
스마트 시티의 빅데이터 분석론 - 최준영
 
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁
데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼 -최진혁
 
빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원
빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원
빅데이터 기술을 활용한 뉴스 큐레이션 서비스 - 온병원
 
데이터 시각화의 글로벌 동향 20140819 - 고영혁
데이터 시각화의 글로벌 동향   20140819 - 고영혁데이터 시각화의 글로벌 동향   20140819 - 고영혁
데이터 시각화의 글로벌 동향 20140819 - 고영혁
 
온라인 물가지수 분석을 위한 빅데이터 융합분석 방법
온라인 물가지수 분석을 위한 빅데이터 융합분석 방법온라인 물가지수 분석을 위한 빅데이터 융합분석 방법
온라인 물가지수 분석을 위한 빅데이터 융합분석 방법
 
Use of Big Data Technology in the area of Video Analytics
Use of Big Data Technology in the area of Video AnalyticsUse of Big Data Technology in the area of Video Analytics
Use of Big Data Technology in the area of Video Analytics
 
빅 데이터 비즈니스 모델
빅 데이터 비즈니스 모델빅 데이터 비즈니스 모델
빅 데이터 비즈니스 모델
 
소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례소셜미디어 분석방법론과 사례
소셜미디어 분석방법론과 사례
 
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
Structures of Twitter Crowds and Conversations Six distinct types of crowds t...
 
도시의 마음, 그 발현 - Emergent Mind of City
도시의 마음, 그 발현 - Emergent Mind of City도시의 마음, 그 발현 - Emergent Mind of City
도시의 마음, 그 발현 - Emergent Mind of City
 
DATA CENTRIC EDUCATION & LEARNING
 DATA CENTRIC EDUCATION & LEARNING DATA CENTRIC EDUCATION & LEARNING
DATA CENTRIC EDUCATION & LEARNING
 
Data Centric Art, Science, and Humanities
Data Centric Art, Science, and HumanitiesData Centric Art, Science, and Humanities
Data Centric Art, Science, and Humanities
 
Analyzing Big Data to Discover Honest Signals of Innovation
Analyzing Big Data to Discover Honest Signals of InnovationAnalyzing Big Data to Discover Honest Signals of Innovation
Analyzing Big Data to Discover Honest Signals of Innovation
 

Recently uploaded

Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
Klinik kandungan
 
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
ZurliaSoop
 
Sociocosmos empowers you to go trendy on social media with a few clicks..pdf
Sociocosmos empowers you to go trendy on social media with a few clicks..pdfSociocosmos empowers you to go trendy on social media with a few clicks..pdf
Sociocosmos empowers you to go trendy on social media with a few clicks..pdf
SocioCosmos
 
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
ZurliaSoop
 
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
Cara Menggugurkan Kandungan 087776558899
 
Capstone slidedeck for my capstone project part 2.pdf
Capstone slidedeck for my capstone project part 2.pdfCapstone slidedeck for my capstone project part 2.pdf
Capstone slidedeck for my capstone project part 2.pdf
eliklein8
 
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
Obat Cytotec
 
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On DeliveryBest Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
ritikaroy0888
 

Recently uploaded (20)

Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
Jual obat aborsi Asli Taiwan ( 085657271886 ) Cytote pil telat bulan penggugu...
 
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
Jual obat aborsi Bekasi ( 085657271886 ) Cytote pil telat bulan penggugur kan...
 
At-Sharjah ☎ +971554789724__**☎ Abortion Pills for sale in Sharjah, Uae
At-Sharjah ☎ +971554789724__**☎ Abortion Pills for sale in Sharjah, UaeAt-Sharjah ☎ +971554789724__**☎ Abortion Pills for sale in Sharjah, Uae
At-Sharjah ☎ +971554789724__**☎ Abortion Pills for sale in Sharjah, Uae
 
Sociocosmos empowers you to go trendy on social media with a few clicks..pdf
Sociocosmos empowers you to go trendy on social media with a few clicks..pdfSociocosmos empowers you to go trendy on social media with a few clicks..pdf
Sociocosmos empowers you to go trendy on social media with a few clicks..pdf
 
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
Jual Obat Aborsi Kudus ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cy...
 
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
💊💊 OBAT PENGGUGUR KANDUNGAN SEMARANG 087776-558899 ABORSI KLINIK SEMARANG
 
Enhancing Consumer Trust Through Strategic Content Marketing
Enhancing Consumer Trust Through Strategic Content MarketingEnhancing Consumer Trust Through Strategic Content Marketing
Enhancing Consumer Trust Through Strategic Content Marketing
 
Mayiladuthurai Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Mayiladuthurai Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsMayiladuthurai Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Mayiladuthurai Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Madikeri Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Madikeri Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsMadikeri Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Madikeri Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Rameswaram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Rameswaram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsRameswaram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Rameswaram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Capstone slidedeck for my capstone project part 2.pdf
Capstone slidedeck for my capstone project part 2.pdfCapstone slidedeck for my capstone project part 2.pdf
Capstone slidedeck for my capstone project part 2.pdf
 
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
TERSEDIA OBAT PENGGUGUR KANDUNGAN MAKASSAR KLINIK ABORSI MAKASSAR 087776558899
 
Sri Ganganagar Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Sri Ganganagar Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsSri Ganganagar Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Sri Ganganagar Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Content strategy : Content empire and cash in
Content strategy : Content empire and cash inContent strategy : Content empire and cash in
Content strategy : Content empire and cash in
 
Kodaikanal Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kodaikanal Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKodaikanal Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kodaikanal Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On DeliveryBest Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
Best Call Girls In Calangute Beach North Goa👌9971646499👌Cash On Delivery
 
Kayamkulam Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kayamkulam Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKayamkulam Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kayamkulam Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Fatehabad Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Fatehabad Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsFatehabad Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Fatehabad Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Russian Escorts Service In Aerocity Delhi 7042855324 All 5* Hotels Service Ge...
Russian Escorts Service In Aerocity Delhi 7042855324 All 5* Hotels Service Ge...Russian Escorts Service In Aerocity Delhi 7042855324 All 5* Hotels Service Ge...
Russian Escorts Service In Aerocity Delhi 7042855324 All 5* Hotels Service Ge...
 
Coorg Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Coorg Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsCoorg Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Coorg Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 

Bayesian Network 을 활용한 예측 분석

  • 1. Bayesian Network 을 활용한 예측 분석 Machine learning 의 관점에서 본 데이터의 활용 최진혁 Ph.D. (인포리언스) 2014. 09.16.
  • 2. Who Am I? Ph.D. @ KAIST 전산학과 Human-Computer Interaction Machine Learning / Data Mining ETRI, KAIST 데이터 기반 홈 미들웨어 Web & SNS Mining (usage, text…) 주식회사 인포리언스 (Inforience Inc.) Data (Text) Mining 데이터로부터 실제적인 가치를 추출 Collaborative Data Mining System 개발 데이터에 포함된 동적 패턴의 탐색과 해석을 위한 협업적 탐험 플랫폼(Collaborative Data Mining Platform for Searching and Interpretation of Data Dynamics) http://inforience.net/
  • 3. Who Am I? "Big data does not need big machines. It needs big intelligence". 그렇다면, Big intelligence 는 어디서부터?
  • 4. 세미나 개념 및 내용 개념 기계학습의 기본 개념 소개 (사례를 통한) 특히, Bayesian Network 비전문가 대상 경험과 의견의 공유 내용 빅 데이터는 충분히 활용되고 있는가? 빅 데이터 활용의 핵심 - Machine Learning 개념과 모델 사례 데이터 기반 추론과 예측 Bayesian Networks 사례 토론
  • 5. 빅 데이터 충분히 활용되고 있나? 빅 데이터가 중요하다는 이야기 모두 지겹다 활용에 관한 구체적인 이야기!! 그러나 충분히 활용되지 못하고 있다는 이야기
  • 6. 빅 데이터 시대의 Machine Learning 증가한 데이터 저장 능력 / 실제로 증가한 데이터 Looks random but certain patterns 어떤 패턴들이 숨어있는지 알 수 없다. A good or useful approximation 무척 중요하지만… 특별한 분야의 특별한 데이터, 그리고 특별한 해석 데이터 양, 종류, 특성, 활용 분야의 증가 다양한 분야의 다양한 데이터, 그리고 다양한 활용 누구에게나 적용될 수 있는 결과  해석과 활용의 중요성
  • 7. Machine Learning Inducing general functions from specific training examples Looking for the hypothesis that best fits the training examples Inferring a boolean-valued function from training examples of its input and output
  • 9. Machine Learning Machine Learning을 실제 문제에 적용하는 것은 쉬운가? General (Ideal) Process vs. Real Process Machine Learning 으로부터 무엇을 얻어낼 수 있는가? Inference? Prediction? Predictive Modeling vs. Explanatory Modeling
  • 10. Machine Learning Examples (1)  Function approximation (Mexican hat)   2 2 3 1 2 1 2 1 2 f (x , x )  sin 2 x  x , x , x [1,1]
  • 11. Machine Learning Examples (2) Face image classification
  • 15. Machine Learning Examples (6) TV program preference inference based on web usage data Web page #1 Web page #2 Web page #3 Web page #4 …. Classifier TV Program #1 TV Program #2 TV Program #3 TV Program #4 …. 1 2 3 What are we supposed to do at each step?
  • 16. Mining Social Relationship Types in an Organization using Communication Patterns CSCW 2013 Jinhyuk Choi, Seongkook Heo, Jaehyun Han, Geehyuk Lee, Junehwa Song Department of Computer Science KAIST (Korea Advanced Institute of Science and Technology)
  • 17. Objective Propose a method to… automatically recognize social relationship types among people in an organization Using only easily collectable data indoor co-location data instant messenger data (rather than e-mail, call logs…) real-time communication without having to worry about their conversations being exposed in a shared location
  • 18. Experiment Data collection Co-location How long, how often, how regularly Bluetooth stations at several location points (meeting rooms, Labs, a lounge) scan the surrounding area at a radius of approximately 10 m, at a 20s frequency collect the Bluetooth IDs of users’ mobile phones Instant Messenger Data From participants’ PCs Record the names of participants conversed with by participants as well as the time of the conversation at one minute intervals 6th floor at KAIST Computer Science building Bluetooth Stations
  • 19. Experiment Data collection Participants 22 computer science graduate students Belong to several different concentrations. Same concentration close seats & regular meetings in the meeting room For one month User survey (question about 21 other participants)
  • 20. Experiment Data analysis : detected time slot : non- detected time slot User #3 User #1 User #2 TIME 푡12 푘: 14 푡13 푘: 5 Location : k 푓12 푘: 2 푓13 푘: 1 푡1 푘: 24 푡2 푘: 17 푡3 푘: 11 푓1 푘: 4 푓2 푘: 3 푓3 푘: 2
  • 21. Experiment Data analysis co-visit-duration (no. of detected time slot) how long a particular user i stays with another user j at a particular location k co-visit-frequency (no. of detected groups) how often a particular user i visited a location k with another user j co-visit-average-duration co-visit-hour-regularity co-visit-weekday-regularity mess-comm-duration mess-comm number mess-comm-ave-time From IM… Total 18 indicators !!
  • 22. co-visit-frequency (Meeting room) 2 4 6 8 10 12 14 16 18 0 0.05 0.1 0.15 HIR Classification IG 2 4 6 8 10 12 14 16 18 0 0.05 0.1 HFR Classification IG Experiment Data analysis Lounge Lab Messenger Meeting room co-visit-duration (Lounge) HIR Classification: HIR or not HFR Classification: HFR or not Indicator numbers Indicator numbers
  • 23. Process Hypothesis Data selection Data collection Feature design Data exploration Algorithm selection Analysis Interpretation Application
  • 24.  To build accurate user profile  Navigational page elimination – “not fully explored”  Using no. of contained hyperlinks or URL lengths  (Cooley, Mobasher, & Srivastava, 1999; Domenech & Lorenzo, 2007)  Manually  (Kelly & Belkin, 2004) High-Interested Contents Page Retrieval Figure from “Data Preparation for Mining World Wide Web Browsing Patterns”, Journal of Knowledge and Information Systems, 1999 1 2 0 2000 4000 6000 8000 10000 12000 14000 16000 No. of Web pages 1-Navigational/2-Contents 1 2 3 4 5 0 1000 2000 3000 4000 5000 6000 No. of Web pages Interest Levels  Hypothesis  Users will visit navigational pages more frequently & regularly  Users will show more interactions at interested pages  High interested page identification  Interaction logs (many references)  Visit frequency & revisit patterns  (Adar, Teevan, & Dumais, 2008; Aula, Jhaveri, & Kaki, 2005)
  • 25. c c c c c c c c c c c c c c c c c c c c c c c c c Day frequency (DF) Visit number in a day (VnD) Interaction logs (day mean) Session frequency (SF) Visit number in a session (VnS) Interaction logs (session mean) |{ : }| | | j i j i d Url d DF D   ij ij kj k n VnD n   |{ : }| | | j i j i s Url s SF S   ij ij kj k m VnS m   Total 16 features High-Interested Contents Page Retrieval
  • 26. Visit patterns Interaction logs High-Interested Contents Page Retrieval 2 phases required
  • 27. Day frequency Session frequency Visit number in a day Usage data (day mean) Visit number in a session Usage data (session mean) N-day buffer 1-day buffer 1-day buffer 1-Session buffer The first Classifier The second Classifier High valued Web Pages Navigational pages Low-interested pages : data calculation modules : Sessions : Web pages Contents pages High-Interested Contents Page Retrieval
  • 28. Inference & Prediction based on Data
  • 29. Bayesian Networks Introduction Graphical models, probabilistic networks causality and influence Nodes are hypotheses (random vars) and the prob corresponds to our belief in the truth of the hypothesis Arcs are direct influences between hypotheses The structure is represented as a directed acyclic graph (DAG) Representation of the dependencies among random variables The parameters are the conditional probs in the arcs 움직임 소리 진동 밝기 수행 기능
  • 30. Bayesian Networks Introduction Learning Inducing a graph From prior knowledge From structure learning Estimating parameters Inference Beliefs from evidences Especially among the nodes not directly connected ?????
  • 31. Structure Introduction Initial configuration of BN Root nodes Prior probabilities Non-root nodes Conditional probabilities given all possible combinations of direct predecessors A B D E C P(b) P(a) P(d|ab), P(d|aㄱb), P(d|ㄱab), P(d|ㄱaㄱb) P(e|d) P(e|ㄱd) P(c|a) P(c|ㄱa)
  • 32. Causes and Bayes’ Rule Introduction Diagnostic inference: Knowing that the grass is wet, what is the probability that rain is the cause? causal diagnostic
  • 33. Causal vs Diagnostic Inference Introduction Causal inference: If the sprinkler is on, what is the probability that the grass is wet? P(W|S) = P(W|R,S) P(R|S) + P(W|~R,S) P(~R|S) = P(W|R,S) P(R) + P(W|~R,S) P(~R) = 0.95*0.4 + 0.9*0.6 = 0.92
  • 34. Bayesian Networks: Causes Introduction Causal inference: P(W|C) = P(W|R,S) P(R,S|C) + P(W|~R,S) P(~R,S|C) + P(W|R,~S) P(R,~S|C) + P(W|~R,~S) P(~R,~S|C) and use the fact that P(R,S|C) = P(R|C) P(S|C) Diagnostic: P(C|W ) = ?
  • 35. Bayesian Networks: Inference Introduction P (C,S,R,W,F ) = P (C ) P (S |C ) P (R |C ) P (W |R,S ) P (F |R ) P (C,F ) = ΣS ΣR ΣW P (C,S,R,W,F ) P (F |C) = P (C,F ) / P(C ) Not efficient! Belief propagation (Pearl, 1988) Junction trees (Lauritzen and Spiegelhalter, 1988) Independence assumption
  • 36. Inference Evidence & Belief Propagation Evidence – values of observed nodes V3 = T, V6 = 3 Our belief in what the value of Vi ‘should’ be changes. This belief is propagated V1 V5 V2 V4 V3 V6
  • 37. Belief Propagation V U2 V1 V2 U1 π(U2) π(V1) π(V2) π(U1) λ(U1) λ(V2) λ(V1) λ(U2)
  • 38. Evidence & Belief V1 V5 V2 V4 V3 V6 Evidence Belief Evidence Works for classification ??
  • 39. Applying Bayesian Network 데이터 수집 현재 상황 데이터 (Evidence!!!) -매우 불완전  일부 변수만 확인 가능 추론 추론 모델 구축 추론 모델 A B C D E F G A C G F B A C G F B Exploratory study 가 필요!!! Data Preprocessing & Cleaning
  • 40. Examples Modeling Vehicle Choice and Simulating Market Share with Bayesian Networks Identifying Priorities for Maximizing Repurchase Intent Vehicle Size, Weight, and Injury Risk Knowledge Discovery in the Stock Market
  • 41. APPLICATION OF BAYESIAN NETWORKS TO ANALYZE IN ANALYZING INCIDENTS AND DECISION-MAKING TRB 2005 Annual Meeting This study uses BNs as a knowledge discovery process to accurately predict incident 1. Ctimetotal = Total Clearance Time 2. Typeincide = Type of Incident 3. Policeveh = Number of Police Vehicles 4. Ambulances = Number of Ambulances 5. Fireengines = Number of Fire Engines 6. NbrofInjur = Number of Injuries 7. Nbrtrtrliv = Number of Trucks Involved 8. Nbrcarsinv = Number of Cars Involved 9. Totalanes = Total Number of Lanes 10. Freeway = Type of the Roadwayt clearance time 41
  • 42. Using Bayesian Networks to Model Accident Causation in the UK Railway Industry Probabilistic Safety Assessment and Management 2004, pp 3597-3602 SPAD (Signals Passed at Danger) Organisational factors Events attributed to human error and blamed on an operator have systemic causes, such as procedural or organisational weaknesses. Modelling the Organisational Context
  • 43. 해상 사고 데이터 분석 과정 공공 데이터 포털에서 2007~2013년 사이의 해상 사고 데이터 (엑셀 형식) 를 다운로드 원 데이터 형태는 아래 그림과 같음 (각 연도별로 탭을 만들어 저장되어 있는 형태)
  • 44. 해상 사고 데이터 분석 과정 Bayesian Network 트레이닝 결과
  • 45. 해상 사고 데이터 분석 과정 •예1) 그림의 노드 6 (사고 유형)을 CD(충돌)로 설정할 경우 (실제로 충돌유형의 사고가 보고되었다는 가정) •노드 5 (사고해역) 의 확률분포는 변화가 없음 •CAUSE 노드는 WH (운항부주의) 값이 현저하게 상승 •충돌사고는 운항부주의가 원인이라고 추론할 여지가 있음
  • 46. 해상 사고 데이터 분석 과정 예2) 그림의 노드 6 (사고 유형)을 HJ(화재)로 설정할 경우, (실제로 화재 유형의 사고가 보고되었다는 가정) •CAUSE 노드에서는 기타 원인 (ETC)와 화기취급부주의 (HG) 의 확률 값이 크게 상승 •노드 5 (사고해역) 에서는 항계내(HGN) 의 확률값이 현저히 상승함 •(화재 사고는 항계내 해역에서 많이 발생하며 화기취급부주의가 가장 큰 원인이 된다고 해석 가능함)
  • 47. Bayesian Network Analysis HFR Classification: HFR or not
  • 48. Bayesian Network Analysis 48 High-Interested Contents Page Retrieval Interest Level Page Types
  • 49. Process Hypothesis Data selection Data collection Feature design Data exploration Algorithm selection  Bayesian Network Analysis & Inference Interpretation Application
  • 50. Analytic Modeling Bayesian networks can be built from human knowledge, i.e. from theory, or, they can be machine learned from data. Bayesian networks allow human learning and machine learning to interact efficiently. Bayesian network models can cover the entire range from association to causation Predictive modeling as well as explanatory modeling
  • 51. Bayesian Network – 어디에 쓰면 좋을까?
  • 52. Big machine, data analysis, Inference Algorithms, but NOT enough 무엇이 더 필요한가?
  • 53. Discussion Inference Algorithms, but NOT enough  More Required  Exploration & Interpretation  경험, 도메인 지식의 적용  Domain Experts & Mining Experts  협업의 필요성  Collaborative 해석 결과 공유 해석 결과 공유 해석 결과 공유 해석 결과 공유 시각화 해석 시각화 해석 해석 해석 시각화 시각화 DATA DATA DATA DATA
  • 54. References Textbooks Ethem ALPAYDIN, Introduction to Machine Learning, The MIT Press, 2004 Tom Mitchell, Machine Learning, McGraw Hill, 1997 Neapolitan, R.E., Learning Bayesian Networks, Prentice Hall, 2003 Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, 2011. Materials Serafín Moral, Learning Bayesian Networks, University of Granada, Spain Zheng Rong Yang, Connectionism, Exeter University KyuTae Cho ,Jeong Ki Yoo ,HeeJin Lee, Uncertainty in AI, Probabilistic reasoning, Especially for Bayesian Networks Gary Bradski, Sebastian Thrun, Bayesian Networks in Computer Vision, Stanford University Websites http://library.bayesia.com/display/whitepapers/White+Papers https://www.facebook.com/dan.ariely/posts/904383595868 http://tomfishburne.com/2014/01/big-data.html http://news.dice.com/2012/07/17/businesses-struggling-with-data-flood-survey/ http://www.slideshare.net/jeric14/201305-hadoop-jplv3 Papers Daniel Siewiorek et. al. "SenSay: A Context-Aware Mobile Phone", Proceeding ISWC '03 Proceedings of the 7th IEEE International Symposium on Wearable Computers A. Krause et. al, “Unsupervised, Dynamic Identification of Physiological and Activity Context in Wearable Computing”, ISWC 2005