Quantitative Digital Backchannel: Developing a Web-Based Audience Response System for Measuring Audience Perception in Large Lectures

1,114 views

Published on

Masterdefense at Graz University of Technology, June 2013

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,114
On SlideShare
0
From Embeds
0
Number of Embeds
630
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Quantitative Digital Backchannel: Developing a Web-Based Audience Response System for Measuring Audience Perception in Large Lectures

  1. 1. Quan%ta%ve  Digital  Backchannel:  Developing  a  Web-­‐Based  Audience  Response  System  for  Measuring  Audience  Percep%on  in  Large  Lectures      by  Chris)an  Haintz  1  
  2. 2. Research  Ques)on  ì  How  to  create  a    quan)ta)ve  digital  backchannel  with  state  of  the  art  technology  to  support  agile  teaching  in  large  lectures?  2  
  3. 3. Agile  Teaching  Students   Lecturer  Feedback  adapted  lecturing  3  
  4. 4. Feedback  Qualita)ve   Quan)ta)ve  4  
  5. 5. Feedback  -­‐  Backchannel  Frontchannel  Backchannel  5  
  6. 6. 84  %  Quelle:  APA  25.4.2013,  hPp://oesterreich.orf.at/stories/2581600/    6  
  7. 7. Backchannel  7  
  8. 8. Requirements  ì  BYOD  support  ì  Con)nuous  backchannel  ac)vity  ì  Ac)ons  of  students  generate  visible  impact  ì  Maximize  informa)on  while  keeping  it  simple  ì  …  8  
  9. 9. Implementa)on  Application ServerApplication ServerDatabase ServerApplication ServerApplication ServerInternetClient Application ServerAuditor InterfaceDBApplicationInterfaceMVC ApplicationLecturer InterfaceMVC ApplicationDBDBLoadBalancer9  
  10. 10. Backchannel  10  
  11. 11. Dimension  Criterias  ì  Understandable  to  the  student  ì  Meaningful  to  the  lecturer  ì  Clear  extremums  ì  Values  should  be  expectable  to  change  over  )me  11  
  12. 12. Dimensions  ì  Happiness  ì  Comprehension  ì  Presenta)on  Speed  12  
  13. 13. 13  
  14. 14. Happiness  Comprehension  Speed  14  
  15. 15. 15  
  16. 16. 16  
  17. 17. Findings  ì  75%  Par)cipa)on  (~100  Students)  ì  BYOD  (21  Screen  Res.,  5  OSs,  18  OS  Versions,  8  Browser)  ì  Maximize  meaningful  informa)on  ì  35%  in  between  of  extrema  and  neutral  posi)on  ì  Con)nuous  Ac)vity  ì  Ac)vity  decreases  significantly  over  )me  17  
  18. 18. Conclusion  ì  Dimensions  ì  BYOD  ì  User  Experience  ì  Mo)va)on  to  par)cipate  ì  Informa)on  visualiza)on  crucial  for  lecturer  How  to  create  a    quan)ta)ve  digital  backchannel  with  state  of  the  art  technology  to  support  agile  teaching  in  large  lectures?  18  
  19. 19. Thank  you!  Chris)an  Haintz  chris)an.haintz@cnc.io  19  
  20. 20. 20  
  21. 21. 21  
  22. 22. Agile  Development  Cycle  ì  1.  Planning  2.  Requirements  3.  Analysis  &  Design  4.  Implementa)on  5.  Tes)ng  and  Evalua)on    22  
  23. 23. 11  Requirements  1.  Constant  and  con)nuous  ac)vity  2.  Reduce  distrac)on  3.  Usability  4.  Simplicity  5.  Support  BYOD  policy  6.  Responsive  Design  7.  Auditor  impact  8.  Reduce  informa)on  9.  Cross-­‐plaiorm  capabili)es  10.  Interna)onaliza)on  11.  Maximize  meaningful  informa)on  23  
  24. 24. 24  
  25. 25. Avatar  -­‐  Image  Sprites    25  
  26. 26. 1.  Prototypes  for  Collec)ve  Percep)on  26  
  27. 27. User  Experience  Problem  27  
  28. 28. Data  Structure  (JSON)  28  
  29. 29. Facts  -­‐  Test  Lecture  29  
  30. 30. Raw  Data  -­‐  Test  Lecture  30  
  31. 31. 31  Ac)vity  Test  Lecture  
  32. 32. Auditor  Votes  Histogram  –  Test  Lecture  32  12.0%47.9%23.9%10.3%6.0%0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%0% 1,10% 11,20% 21,30% >30%%"auditors"#"votes"Auditor"Votes"Histogram"
  33. 33. Aging  33  !30$!20$!10$0$10$20$30$40$50$0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$ 18$ 20$ 22$ 24$ 26$ 28$ 30$ 32$ 34$ 36$ 38$ 40$value&[%]&*me&[minutes]&Different&Aging&Approaches&speed$(no$aging)$ speed$(linear$aging)$ speed$(quadra:c$aging)$0.10.20.30.40.50.60.70.80.91.010 2 3 4 5 6 7 8 9valueage [minutes]
  34. 34. Laptops65%DevicesMobileDevices35%Sta)s)cs  Test  Lecture  34  1.2$ 1.2$2.4$3.6$ 3.6$1.2$3.6$2.4$1.2$ 1.2$ 1.2$10.8$1.2$ 1.2$13.3$16.9$7.2$8.4$6.0$7.2$4.8$0.0$2.0$4.0$6.0$8.0$10.0$12.0$14.0$16.0$18.0$20.0$240x320$320x344$320x480$320x568$360x592$360x640$480x800$601x906$640x360$720x1230$720x1280$768x1024$1100x2100$1280x720$1280x800$1366x768$1440x900$1600x900$1680x1050$1920x1080$1920x1200$visits%[%]% Screen%Resolu2on%43.4$24.1$19.3$6.0$3.6$1.2$ 1.2$ 1.2$0.0$5.0$10.0$15.0$20.0$25.0$30.0$35.0$40.0$45.0$50.0$Chrome$ Firefox$ Safari$ Android$Browser$Opera$ Internet$Explorer$Mozilla$CompaEble$Agent$Safari$(inIapp)$visits%[%]% Browser%7"8"Vista"XP"x86_64"i686"10.8"10.7"10.6"4.2.2"4.1.x"4.0.x"2.3.x"2.1.x"6.1.x"6.0.x"5.0.x"5.1.x"0.0"5.0"10.0"15.0"20.0"25.0"30.0"35.0"Windows" Macintosh" Android" iOS" Linux"visits%[%]% Opera.ng%System%Versions%

×