SlideShare a Scribd company logo
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                                     Mòdul 2:
                                                     Dificultats en
                                                     els processos de
                                                     càlcul

                                                     Josetxu Orrantia




                                                                  Formació Psicopedagògica
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                                    Mòdul 2: Dificultats en els processos de càlcul
Formació Psicopedagògica




                      índex
                      1. Introducció                                                         2
                      2. Desenvolupament de les habilitats de càlcul                         2
                           2.1 Els esquemes protoquantitatius                                3
                           2.2 El desenvolupament de les primeres destreses numèriques:
                           el recompte                                                       5
                           2.3 Estratègies de recompte i operacions bàsiques                 7
                      3. Què és el que no fan bé els alumnes amb dificultats                 14
                           3.1. Dificultats en les operacions bàsiques                       14
                           3.2. Explicació de les dificultats                                16
                           3.3. Subtipus de dificultats en les matemàtiques                  18
                      4. El problema de l’avaluació                                          21
                           4.1. Avaluació del coneixement conceptual del recompte            21
                           4.2. Avaluació de les estratègies de recompte                     24
                      5. La intervenció en operacions bàsiques                               28
                           5.1. Desenvolupament del número                                   28
                           5.2. Operacions bàsiques                                          33




                                                         1
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



1. INTRODUCCIÓ
En aquest primer apartat, ens centrarem en les dificultats que troben els alumnes a exe-
cutar les operacions bàsiques. Per tal de fer-ho, considerarem els punts següents:


  a) partirem d’una teoria que ens expliqui el desenvolupament normal d’aquesta habilitat;


  b) posteriorment, ens centrarem en les dificultats que troben certs alumnes en
  l’execució de les operacions bàsiques i en l’explicació d’aquestes dificultats;


  c) acabarem amb l’exposició d’alguns procediments per a avaluar i intervenir amb
  aquests alumnes.


2 DESENVOLUPAMENT DE LES HABILITATS DE CÀLCUL
Els plantejaments més clàssics sobre el desenvolupament del coneixement matemàtic,
especialment des de posicions properes a la tradició piagetiana, consideren que aquest es
va forjant com a conseqüència de l’evolució d’estructures intel·lectuals més generals, de
tal manera que la construcció del nombre és correlativa al desenvolupament del pensa-
ment lògic.


Els nens i les nenes, abans dels sis o set anys, serien incapaços d’entendre el nombre i
l’aritmètica perquè no posseirien el raonament i els conceptes lògics que es necessiten (pen-
sem en les conegudes tasques piagetianes de la conservació del nombre i de la classificació).


Això no obstant, cada vegada són més els qui pensen que el procés de construcció del
coneixement matemàtic comença molt abans que els infants entrin en l’educació primària.
Algunes investigacions (per exemple, P. Starkey i R.G. Cooper, 1980; R. Starkey, E.S. Spelke
i R. Gelman, 1990; K. Winn, 1992) indiquen, fins i tot, que certs elements bàsics del co-
neixement quantitatiu són presents en bebès de sis mesos d’edat, de tal manera que són
capaços de discriminar la “nombrositat” de conjunts petits.


Per exemple, mitjançant el paradigma de l’habituació, s’ha comprovat que els bebès presten
atenció a imatges amb objectes a què estan habituats quan aquestes han estat modificades
numèricament i no pas quan es modifiquen altres variables com ara la densitat o la grandària.




                                          2
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul



Tot i que aquestes primeres nocions del nombre són importants, és a partir dels tres anys
d’edat quan la mainada comença a desenvolupar el primer coneixement quantitatiu. Aquest
desenvolupament s’acompleix per mitjà de l’adquisició, d’una banda, d’uns esquemes
que L.B. Resnick (1989) anomena protoquantitatius i, de l’altra, de la primera destresa
numèrica: comptar. Concretament, establirem com, gràcies a la integració d’aquests es-
quemes amb l’experiència de comptar, es desenvolupen les habilitats implicades en les
operacions bàsiques, tal com es recull en la figura:

                   Esquemes
                protoquantitatius
                                                       Operacions bàsiques


                    Recompte



2.1 Els esquemes protoquantitatius

El primer coneixement quantitatiu que constitueix una de les bases més importants per al
posterior desenvolupament matemàtic s’adquireix per mitjà de tres esquemes proto-
quantitatius:


  1) Un d’aquests esquemes s’anomena esquema protoquantitatiu de la comparació.
  Gràcies a l’adquisició d’aquest esquema, la mainada pot anar disposant d’un seguit
  de termes que expressen judicis de quantitat sense precisió numèrica, com més gran,
  més petit, més o menys, la qual cosa permet decidir, per exemple, si un vas d’aigua
  conté més quantitat que un altre o si una pilota és més gran que una altra. En aquest
  sentit, mitjançant aquest esquema s’assignen etiquetes lingüístiques a la comparació de
  grandàries.


  2) El següent esquema definit per L.B. Resnick és l’esquema protoquantitatiu incre-
  ment-decrement. Utilitzant aquest esquema, els infants de tres anys són capaços de
  raonar sobre canvis en les quantitats quan se’ls afegeix o se’ls pren algun element.
  Per exemple, un infant sap que si té certa quantitat de qualsevol cosa, posem dues
  joguines, i n’aconsegueix una altra, en tindrà més que no pas abans. Així mateix, si li
  prenen una joguina, en té menys o, si no canvia el nombre, en té igual quantitat, fins i
  tot en el cas que es modifiqui la distribució espacial dels objectes.


                                           3
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



Aquest raonament indicaria alguna mena de comprensió bàsica de la conservació del nom-
bre, com s’observa en la tasca de la “sessió de màgia” desenvolupada per R. Gelman (1972,
citat per J.H. Flavell, 1984, de l’edició en castellà) amb nens i nenes d’educació infantil.

Tasca de la sessió de màgia de R. Gelman


En aquesta tasca, es presentaven als infants dues safates, cadascuna de les quals contenia una filera de
ratolins i havien de designar quina safata era la guanyadora. Posteriorment, es cobrien les safates i es
feien transformacions numèriques (es treia, per exemple, un ratolí de la filera guanyadora) o transfor-
macions que no eren pertinents per a la quantitat (s’allargava o s’escurçava la filera guanyadora).


La mainada no parava esment a les transformacions no pertinents per a la quantitat (la safata guanyadora
continuava sent la guanyadora). Això no obstant, se sorprenien moltíssim quan es destapaven les safates
i no apareixia la guanyadora; quan se’ls preguntava què havia passat, deien que s’havia tret un ratolí de
la safata guanyadora; i quan se’ls demanava com es podia arreglar, deien que afegint la figura que falta-
va, un component sens dubte important per al posterior coneixement del nombre


3) Per acabar, l’esquema protoquantitatiu part-tot permet als preescolars acceptar
que qualsevol peça, per exemple un pastís, pot ser dividida en parts més petites i que,
si les tornem a ajuntar, donen lloc a la peça original. A més, poden raonar que quan
uneixen dues quantitats, obtenen una quantitat més gran. Així, almenys de manera
implícita, els infants comencen a conèixer la propietat additiva de les quantitats.


Poden saber, per exemple, que el tot és més gran que les parts i poden arribar a eme-
tre aquest tipus de judicis sense necessitat de tenir a la vista les quantitats (el pastís
i les seves parts). Tal com assenyala L.B. Resnick (1989), aquesta comprensió de les
relacions part-tot sembla que contradiu els plantejaments piagetians de la tasca de la
inclusió de classes.


   En definitiva, malgrat els límits atribuïts als infants pel que fa al coneixement
   quantitatiu, especialment des de la tradició piagetiana, els esquemes de raonament
   protoquantitatius constitueixen un element bàsic per al desenvolupament
   matemàtic posterior. Tanmateix, aquest coneixement, que podem anomenar
   intuïtiu, no és suficient per a abordar tasques quantitatives (per exemple, saber
   quantes joguines hi ha o en quantes peces es divideix un pastís), per la qual cosa
   els infants necessiten utilitzar eines de quantificació més precises, com ara el
   recompte.




                                              4
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                           Mòdul 2: Dificultats en els processos de càlcul




2.2 El desenvolupament de les primeres destreses numèriques: el
recompte

El recompte és una activitat que als ulls d’un adult pot semblar senzilla però, en realitat,
necessita integrar un seguit de tècniques. Per exemple, si volem determinar si un conjunt
de nou punts és més gran o més petit que un de vuit, ens caldrà dur a terme un seguit
d’accions que van des de generar els noms dels números en l’ordre adequat o aplicar les
etiquetes de la sèrie numèrica (un, dos, tres...) una per una a cada objecte d’un conjunt,
fins a comprendre que la posició d’un número en la seqüència en defineix la magnitud,
de tal forma que es pugui establir que el nou ve després del vuit i, per consegüent, és
més gran.

  A.J. Baroody afirma que el recompte constitueix “un repte intel·lectual imponent per als infants de tres
  anys d’edat. Quan arribin als cinc, la majoria dominaran aquestes tècniques bàsiques i estaran llestos
  per a afrontar nous desafiaments”.


  Arthur J. Baroody (1987).


Per tant, des del punt de vista cognitiu, aquesta no és una tasca senzilla. Ara bé, quin
curs segueix el desenvolupament d’aquesta habilitat? No hi ha una resposta fàcil per a
aquesta qüestió. Alguns creuen en l’existència d’un seguit de principis (coneixement
conceptual del recompte) que permeten una progressiva sofisticació del recompte. Des
d’aquest punt de vista, hi hauria un coneixement conceptual del recompte que precedeix i,
per tant, governa l’adquisició d’aquesta habilitat.


D’altres pensen que en un primer moment el recompte és un aprenentatge memorístic
i mancat de sentit, especialment de la seqüència numèrica estàndard, per anar dotant, a
poc a poc, aquestes rutines de continguts conceptuals (D.J. Briars, R.S. Siegler, 1984; A.J.
Baroody, H.P. Ginsburg, 1986; C. Sophian, 1987). En aquest cas, l’ús del procediment
estàndard del recompte (recitar els números) precedeix el coneixement dels principis
subjacents.


No és aquest el lloc per a determinar quina d’aquestes dues posicions és la correcta, es-
pecialment perquè el debat encara resta obert. No obstant això, i independentment de si
el recompte precedeix o està induït pel coneixement dels principis, el que sí que sembla
evident és que una comprensió plena del nombre per a tasques de quantificació passa


                                                5
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




pel desenvolupament del coneixement dels principis sobre el coneixement conceptual
del recompte.


Són els principis de correspondència d’un a un, d’ordre estable, de cardinalitat,
d’abstracció i d’irrellevància (R. Gelman i C.R. Gallistel, 1978):


   1) El principi de correspondència d’un a un implica etiquetar cada element d’un con-
   junt només una vegada. Comporta, per tant, la coordinació de dos processos: partició i
   etiquetació, de tal manera que els infants, mitjançant la partició, van controlant els ele-
   ments comptats i els que falten per comptar, tant si és separant-los com assenyalant-
   los, alhora que disposen d’un seguit d’etiquetes, de manera que cadascuna correspon
   a un objecte del conjunt comptat.


   És interessant fer notar que les etiquetes utilitzades no han de seguir una seqüència
   correcta, fins i tot es poden repetir etiquetes dins de la seqüència; allò que importa és
   assenyalar-los una única vegada mentre se’ls assigna una etiqueta, com en el gràfic
   següent:



                           Assenyala

                           Etiqueta         1   2   4   6   7



   2) El principi d’ordre estable estipula que per a comptar és imprescindible l’establiment
   d’una seqüència coherent, per bé que, com indiquen R. Gelman i C.R Gallistel (1978),
   aquest principi es pot aplicar sense necessitat d’haver d’utilitzar la seqüència numèrica
   convencional, ja que es pot emprar una seqüència pròpia no convencional (com pot
   ser la de l’exemple anterior), però sempre de manera coherent.


   3) El principi de cardinalitat estableix que la darrera etiqueta de la seqüència numèrica
   representa el cardinal del conjunt, és a dir, la quantitat d’elements que conté el con-
   junt. R. Gelman i C.R. Gallistel (1978) consideren que els infants comprenen aquest
   principi si repeteixen o posen un èmfasi especial en el darrer element de la seqüència
   de recompte.




                                                6
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




  4) El principi d’abstracció determina que els principis anteriors es poden aplicar a qual-
  sevol tipus de conjunt, tant amb elements homogenis com amb elements heterogenis
  (objectes de diferent color o de diferent entitat física).


  5) Per acabar, el principi d’irrellevància indica que l’ordre pel qual es comenci a enume-
  rar els elements és irrellevant per a la seva designació cardinal. Així, es pot comptar
  d’esquerra a dreta, de dreta a esquerra o del centre als extrems, sense que això afecti
  el resultat del recompte.


     Els principis de correspondència, d’estabilitat de l’ordre i de cardinalitat establi-
     rien les regles processuals sobre com comptar un conjunt d’objectes. A partir
     de les seves experiències amb el recompte, l’infant va adquirint la seqüència
     numèrica convencional, i això li permetrà establir quants elements té un conjunt,
     allò que es coneix amb el nom de comptatge.


     L’abstracció i la irrellevància de l’ordre serveixen per a generalitzar i flexibilitzar
     el rang d’aplicació dels principis anteriors, allò que d’altres han anomenat carac-
     terístiques no essencials del recompte (D.J. Briars i R.S. Siegler, 1984).



Per exemple, és comú que un infant consideri com a característica essencial el fet de
comptar d’esquerra a dreta, de tal forma que, quan es comença a comptar pel centre, ho
considera un error. Això significa que no ha adquirit el principi d’irrellevància.


Així que els infants han adquirit el coneixement conceptual del recompte, i integren
aquest coneixement amb els esquemes protoquantitatius, com es recull en la figura del
subapartat 2.1, utilitzen aquesta habilitat per a encarar-se amb tasques més complexes,
com poden ser les operacions bàsiques.


2.3 Estratègies de recompte i operacions bàsiques

L’experiència de comptar, juntament amb els esquemes protoquantitatius, permeten a
la mainada descobrir què fa canviar un nombre. Així, a partir de l’esquema increment-
decrement unit al seu coneixement de l’enumeració, els nens i les nenes poden raonar
que, si afegim o traiem objectes en un conjunt, el seu cardinal varia. D’aquesta manera


                                            7
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                         Mòdul 2: Dificultats en els processos de càlcul




van descobrint els conceptes més elementals relacionats amb les operacions.


A partir d’aquestes experiències, els infants inventen estratègies de recompte molt ele-
mentals que els permeten resoldre operacions d’addició i de subtracció senzilles. Amb
la pràctica, aquestes estratègies es van fent més sofisticades fins que desapareixen en
favor de la recuperació immediata de la solució de les operacions des de la memòria. En
les línies següents, descriurem breument aquestes estratègies que han estat documentades
en nombrosos estudis (T.P. Carpenter i J.M. Moser, 1984; E. de Corte i L. Verschaffel, 1987;
K.C. Fuson, 1988, 1992; R.S. Siegler i E. Jen-kins, 1989; entre d’altres) i que recollim en
l’esquema següent:

                  Diferents estratègies de recompte que s’utilitzen per a sumar 5 + 3
       Estratègia                       Procediment                                 Acció
  Comptar-ho tot            1. Comptar objectes (dits) per a
                            representar el primer sumand.         “1   2   3    4    5”

                            2. Comptar objectes per a
                            representar el segon sumand.          “1   2   3”

                            3. Comptar tots els objectes per
                            a determinar la suma.                 “1   2   3    4    5    6   7   8”

  Comptar a partir          1. Partir del cardinal del primer
  del primer                sumand.                                                 “5”

                            2. Comptar el segon seguint la
                            sèrie des del cardinal.               “6   7   8”

  Fets coneguts             1. Recuperació immediata del
                            resultat.                             “5 més 3 és igual a 8”


L’estratègia més elemental per a la suma s’anomena comptar-ho tot, o model sum en la
terminologia clàssica de G.J. Groen i J.M. Parkman (1972), i els infants la fan servir per a
representar els dos sumands amb dos conjunts d’objectes que prèviament han comptat
per a formar-los. Aquests objectes, que també poden ser els dits, són comptats de cap i
de nou per a trobar el resultat total.


Una altra estratègia més sofisticada que l’anterior consisteix a comptar a partir del pri-
mer dels sumands. En aquesta no es compta el primer sumand, sinó que el recompte
comença amb el seu cardinal, i se li afegeix el segon. És una estratègia més sofisticada
que l’anterior, ja que com assenyalen W. Secada, K.C. Fuson i J. Hall (1983) i K.C. Fuson


                                                  8
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul



(1992) calen tres subhabilitats específiques per a la transició d’una estratègia a l’altra:


  - ser capaç de comptar a partir de qualsevol punt de la seqüència numèrica,


  - saber convertir el número cardinal del primer conjunt en un número més amb què
  prosseguir el recompte, i


  - poder prosseguir el recompte en passar al segon sumand.


Una estratègia semblant a aquesta consisteix a comptar a partir del més gran (model
min en G.J. Groen i J.M. Parkman, 1972), en què el recompte comença amb el cardinal del
sumand més gran; per exemple, per a sumar 3 + 5, l’infant faria “5; 6, 7, 8”.


Finalment, i des de la seva experiència amb les operacions, els infants van emmagatzemant en
la memòria fets coneguts, de tal manera que recuperen directament la solució de l’operació
sense fer ús de cap recompte. Aquesta recuperació es pot fer a partir d’operacions cone-
gudes que utilitzen els números que apareixen en l’operació enunciada (per exemple,
6 + 7 = 13), i operacions derivades que utilitzen i posen en relació el record d’altres
operacions que no són exactament iguals a l’enunciat (6 + 6 = 12, + 1 = 13).


Vegem un resum de les diferents estratègies utilitzades per a restar:

                Diferents estratègies de recompte que s’utilitzen per a restar 5 - 3
       Estratègia                     Procediment                                    Acció
  Separació               1. Comptar objectes (dits) per a
                          representar el primer minuend.        “1     2   3    4    5”

                          2. Treure un nombre d’objectes
                          igual al subtrahend.                   “1    2   3”

                          3. Comptar els elements restants
                          per a determinar la resposta.                         “1    2”

  Retrorecompte           1. Partir del cardinal del
                          minuend.                               “5”

                          2. Comptar cap enrere les unitats
                          del subtrahend.                             “4   3    2”

                          3. Donar el darrer número
                          comptat com a resposta.                “2”




                                             9
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




  Compte                  1. Partir del cardinal del
  progressiu              subtrahend.                                 “3”

                         2. Comptar cap endavant fins a
                         arribar al minuend.                                “4   5”

                         3. Respondre amb les unitats
                         comptades.                            “2”

  Fets coneguts           1. Recuperació immediata del
                          resultat.                            “5 menys 3 és igual a 2”


Pel que fa a la subtracció, l’estratègia més elemental és la separació en què l’infant forma
un conjunt igual al número més gran de l’operació, per separar després tants elements
com marca el número petit i comptar els que li han quedat.


El retrorecompte és una estratègia més complexa que l’anterior, ja que implica que
l’infant sap comptar regressivament, que és més difícil que comptar progressivament.
Consisteix a comptar cap enrere tantes unitats com indiqui el subtrahend, per a la qual
cosa ha de dur el compte de les unitats que va traient, operació que pot fer amb els dits
(per exemple: 5 - 3 és 5; 4 [en trec una], 3 [en trec dues], 2 [en trec tres]; la resposta és
dues).


Aquesta estratègia és més utilitzada quan el subtrahend és petit però, a mesura que hi
intervenen números més grans, els infants han d’aprendre o descobrir altres estratègies,
com ara el compte progressiu, en què l’infant comença el compte des del subtrahend fins
al minuend o número més gran, i obté la resposta després de comptar els numerals que ha
utilitzat en el recompte (per exemple: 9 - 7 és 7; 8 [és un], 9 [és dos]; la resposta és dos).


Per acabar, i igual que en les operacions d’addició, la pràctica amb les operacions permet
que els infants recuperin directament des de la memòria fets coneguts per a donar la res-
posta immediatament.


Com es pot observar, hi ha un ampli ventall d’estratègies que els nens i nenes poden posar
en funcionament. Alguns autors fins i tot n’han descrit algunes més que es poden intercalar
entre les que hem presentat. Evidentment, un infant no posseeix alhora totes les estra-
tègies (pensem en la despesa de temps i recursos que suposaria per a un infant haver
d’escollir-ne una entre totes cada vegada que s’encarés amb una operació que, a més,



                                                  10
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




encara no domina). És possible que, fins i tot, algunes estratègies mai no siguin utilitzades
per un nen determinat.


      Malgrat això, el que sí que sembla clar és que els nens i les nenes acostumen
      a posseir al mateix temps diverses estratègies disponibles per a l’addició o per
      a la subtracció. A més, unes estratègies són evolutivament més madures que
      d’altres (generalment, d’acord amb l’ordre en què les hem exposat tant per a
      l’addició com per a la subtracció).



Aleshores, de què depèn la selecció d’una estratègia d’entre les que es posseeixen en un
determinat moment? Per a contestar aquesta pregunta són possibles diverses respostes
que, en bona part, tindran a veure amb les diferències individuals de cada infant o, fins i
tot, amb les circumstàncies variables en un mateix.


A més, les estratègies difereixen en l’exactitud, en la quantitat de temps que necessiten
per a executar-se, en les demandes cognitives o en el rang de problemes a què es poden
aplicar.


Una possibilitat ha estat apuntada per R.S. Siegler (1986, 1987, 1988; R.S. Siegler i J. Shra-
ger, 1984) en el seu model d’elecció d’estratègies. D’acord amb aquest autor, l’elecció
d’una estratègia depèn de dos paràmetres:


   a) la força de les associacions entre l’operació que s’ha de fer (per exemple: 5 + 3) i els
   candidats a resposta (per exemple: 8, 7, 9, etc.);


   b) un criteri de confiança, que representa un estàndard intern amb què es mesura la
   confiança en l’exactitud de la resposta recuperada.


Quan un candidat a resposta té una força associativa prou alta per excedir el criteri de
confiança, aleshores aquesta resposta es recupera directament i ràpidament. Si no
s’excedeix aquest criteri, es passa a la utilització d’estratègies de suport basades en el
recompte.




                                            11
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




                                          5+3


                                       Recerca de
                                     l’associació en
                                       la memòria
                                          8, 7, 9


                                       Recuperació
                                      de la resposta             Reforç de
                                                                l’associació

                             Sí    Excedeix el criteri
                 Resposta
                                     de confiança?
                                             No
                                      Estratègia de
                 Resposta
                                       recompte



Dins d’aquest context, i com es recull en la figura anterior, l’elecció d’una estratègia
dependrà de la disponibilitat de fets numèrics en la memòria, ja que, pels escassos
recursos cognitius que consumeix, aquesta sol ser l’estratègia que s’intenta en primer
lloc.


Això no obstant, aquesta disponibilitat de fets en la memòria depèn, al seu torn, de les
estratègies de recompte, ja que l’execució d’una estratègia de recompte comporta el
desenvolupament d’una associació entre els números del problema i la resposta generada.


En aquest sentit, amb cada execució d’una estratègia de recompte s’incrementa la
probabilitat de recuperació directa de fets per a posteriors solucions d’aquest problema.


        En resum, i per tancar aquest subapartat dedicat al desenvolupament, po-
        dem dir que el coneixement de les operacions bàsiques sorgeix a partir del
        coneixement matemàtic informal que els nens i les nenes adquireixen abans
        de l’ensenyament formal de les matemàtiques.




                                           12
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul




     Aquesta adquisició possiblement no és una qüestió de tot o res, tal com es
     defensa des de les posicions clàssiques piagetianes on el coneixement mate-
     màtic no apareix fins a l’estadi de les operacions concretes, sinó que evolucio-
     na lentament com a resultat directe d’integrar un seguit d’esquemes proto-
     quantitatius a l’experiència de comptar.



Des d’aquesta integració, la mainada va descobrint diferents estratègies cada vegada
més sofisticades que utilitza per a resoldre operacions d’addició i de subtracció.




                                          13
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                        Mòdul 2: Dificultats en els processos de càlcul




3. QUÈ ÉS EL QUE NO FAN BÉ ELS ALUMNES AMB
DIFICULTATS
En aquest subapartat, i considerant el marc teòric del subapartat anterior, ens centrarem
en l’estudi dels alumnes i les alumnes que presenten dificultats en l’execució de les
operacions, basant-nos en treballs que han comparat alumnes amb dificultats en les
matemàtiques i alumnes sense dificultats.


A més, considerarem les possibles explicacions d’aquestes dificultats. Per acabar, plante-
jarem la possibilitat d’establir diferents subtipus de dificultats de càlcul.


3.1 Dificultats en les operacions bàsiques

Els estudis que han comparat les habilitats de càlcul d’alumnes amb dificultats en les
matemàtiques presenten dos tipus de dèficits funcionals bàsics: dèficits procedimentals
i dèficits en la recuperació de fets (D.C. Geary, 1990, 1993; D.C. Geary, S.C. Brown i V.A.
Samaranayake, 1991; S.R. Goldman, J.W. Pellegrino i D.L. Mertz, 1988; J.R. Kirby i L.D. Becker,
1988), tal com es recull en el quadre següent:


             Dèficit                    Característiques                   Diagnòstic
  1. Procedimental                • Estratègies menys              Possibles retards en el
                                  madures                          desenvolupament

                                  • Errors de recompte

                                  • Execució lenta

  2. Recuperació de fets          • Representació atípica          Possibles diferències en
                                                                   el desenvolupament
                                  • Errors de recuperació

                                  • Temps de resposta no
                                  sistemàtics



Pel que fa als dèficits procedimentals, en el quadre es recullen les característiques que
els defineixen. Els alumnes amb dificultats en les matemàtiques tendeixen a presentar
procediments aritmètics (estratègies de recompte) evolutivament immadurs. Per exem-



                                            14
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



ple, utilitzen molt més l’estratègia “comptar-ho tot” o “separació”, en comparació amb
els alumnes sense dificultats, que tendeixen a utilitzar estratègies més madures com
“comptar a partir del més gran”. A més, fan errors freqüents de recompte verbal quan
utilitzen les estratègies de recompte. I, quan executen estratègies, mostren una velocitat
de recompte més lenta que els alumnes sense dificultats.


Alguns treballs han considerat que per a molts d’aquests infants aquestes diferències po-
den desaparèixer amb el temps (solen abandonar estratègies menys madures com ara el
recompte total en favor del recompte a partir d’un dels sumands), per bé que la velocitat
a l’hora de comptar continuï sent més lenta que la dels alumnes sense dificultats.


     Això ha portat alguns autors (per exemple: S.R. Goldman i altres, 1988) a
     afirmar que les habilitats procedimentals dels alumnes amb dificultats en les
     matemàtiques poden arribar a aproximar-se a les dels alumnes sense dificultats,
     és a dir, hi hauria un retard en el seu desenvolupament.


Respecte als dèficits en la recuperació de fets, en el quadre se’n resumeixen les caracterís-
tiques. Els alumnes amb dificultats en les matemàtiques mostren una atípica representació
de fets aritmètics en la memòria semàntica a llarg termini, de manera que només tenen em-
magatzemats uns pocs fets que poden recuperar directament. A més, quan recuperen
aquests pocs fets emmagatzemats, hi ha una alta proporció d’errors en comparació amb
la dels alumnes normals, i els temps de resposta en la recuperació són molt variables i
gens sistemàtics.


Per exemple, els infants sense dificultats tarden menys de dos segons a recuperar la
resposta, mentre que en els infants amb dificultats en les matemàtiques la variabilitat és
gran i, cada vegada que recuperen una res-posta, poden tardar un segon, dos, quatre, o
més i tot.


     Aquestes dificultats se solen mantenir en el temps, és a dir, no hi ha canvis
     en el nombre de fets que poden recuperar de la memòria, ni en el temps
     d’execució de la recuperació, la qual cosa pot suggerir que no hi ha un retard
     en el desenvolupament, sinó més aviat una diferència en el desenvolupament
     respecte als alumnes que no presenten dificultats.



                                           15
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul




3.2 Explicació de les dificultats

En aquest apartat ens centrarem en les possibles explicacions que poden contribuir a
comprendre en què consisteixen els dèficits procedimentals i de recuperació de fets en
els infants amb dificultats en les matemàtiques.


D’una banda, i pel que fa a l’explicació dels dèficits de tipus procedimental, alguns treballs
han plantejat la possibilitat que les estratègies de recompte menys madures i els errors en
l’ús d’aquestes estratègies que presenten els infants amb dificultats en les matemàtiques
es relacionin amb el desenvolupament del coneixement conceptual de comptar. Concre-
tament, es proposa la hipòtesi que un coneixement del recompte evolutivament imma-
dur contribueix a les pobres habilitats procedimentals dels infants amb dificultats en les
matemàtiques.


D.C. Geary (1992) afirma que si els alumnes amb dificultats en les matemàtiques no tenen
un coneixement conceptual correcte del recompte no poden “adonar-se” dels errors que
fan quan utilitzen estratègies de recompte per a resoldre operacions, com s’ha considerat
que succeeix en el cas dels alumnes sense dificultats.


En aquest sentit, l’alumnat amb dificultats en les matemàtiques manifesta un coneixement
menys madur de les característiques essencials i no essencials del recompte. Per exemple,
si se’ls presenta una tasca de detecció d’errors en què han de decidir si el recompte és co-
rrecte o no, hi ha un elevat percentatge de fracàs respecte a la resta d’alumnes a l’hora
de detectar errors que violen alguns dels principis del recompte, com ara el principi de
correspondència; fins i tot alguns pseudoerrors, com ara començar a comptar per la part
central d’una filera d’objectes sense ometre’n o repetir-ne cap (relacionat amb el principi
d’irrellevància), són considerats com autèntics errors de recompte.


Per tant, es veu reforçat l’argument que, per a molts alumnes amb dificultats en les ma-
temàtiques, un retard evolutiu en el coneixement conceptual del recompte contribueix a
potenciar les dificultats procedimentals.


Pel que fa a l’explicació dels dèficits en la recuperació de fets, algunes investigacions
apunten la possibilitat que aquests dèficits es relacionen amb la disponibilitat de recursos




                                            16
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                         Mòdul 2: Dificultats en els processos de càlcul




de la memòria de treball. Per exemple, L. S. Siegel i E. B. Ryan (1989) han comprovat que
els infants amb dificultats en les matemàtiques tenen problemes seriosos per a mante-
nir informació numèrica en la memòria de treball, la qual cosa ha dut a considerar que
aquests escassos recursos explicarien la dificultat que tenen els alumnes amb dificultats
en les matemàtiques per a representar i recuperar fets numèrics de la memòria a llarg
termini (D.C. Geary, 1993; D.C. Geary i altres, 1991).


L’argument que s’ha seguit per fer aquesta afirmació es basa en el plantejament de R.S.
Siegler (1986) sobre el desenvolupament de la representació de fets en la memòria, se-
gons el qual l’execució d’estratègies de recompte permet reforçar les associacions entre
les operacions i la resposta. Perquè aquesta associació s’efectuï, l’operació i la seva res-
posta han d’estar activades simultàniament en la memòria de treball.


No obstant això, sabem que els infants amb dificultats en les matemàtiques són més lents
i fan més errors executant estratègies de recompte; i com que la quantitat de números
que es poden activar en la memòria de treball es relaciona amb la velocitat a l’hora de
comptar, si aquesta és lenta hi ha més probabilitat de decaïment de les representacions
de la memòria abans de completar el recompte. D’aquesta manera, s’impediria que es
creés l’associació entre la resposta generada pel recompte i la representació original de
l’operació (D.C. Geary i altres, 1991).


En la figura següent es recull l’explicació de les dificultats de càlcul que presenten els
alumnes amb dificultats en les matemàtiques.



 • Coneixement conceptual
 • Recompte                                   Habilitats
                                              procedimentals
                                                                            Execució


                                            Recuperació de fets
       Memòria de treball



Font: adaptat de D.C. Geary, 1993.




                                             17
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                         Mòdul 2: Dificultats en els processos de càlcul




En la figura es recull, d’una banda, la influència de la comprensió immadura del recompte
en les dificultats procedimentals que presenten molts infants amb dificultats en les mate-
màtiques. D’altra banda, la influència de la memòria de treball en els dèficits de recuperació
de fets.


Hi figura també una relació entre les habilitats procedimentals i la recuperació de fets. En
realitat, aquesta relació explica la influència de la memòria de treball, ja que els dèficits pro-
cedimentals (velocitat lenta en l’execució d’estratègies de recompte i elevada freqüència
d’errors de còmput) impedeixen associar l’operació a la resposta.


      En resum, des dels estudis que hem revisat se suggereixen dos dèficits funcio-
      nals diferents en els infants amb dificultats en les matemàtiques: procedimentals
      i de recuperació de fets de la memòria. Les dificultats procedimentals sembla
      que es relacionen amb un coneixement immadur del recompte i és probable
      que, en relació amb els infants sense problemes, en certs casos aquestes difi-
      cultats es considerin un retard en el desenvolupament.


      Els dèficits relacionats amb la recuperació de fets, en canvi, sembla que
      persisteixen durant el desenvolupament i és probable que es relacionin amb
      la velocitat i els errors en l’execució d’estratègies de còmput, així com amb la
      disponibilitat de recursos de la memòria de treball.



3.3 Subtipus de dificultats en les matemàtiques

Alguns estudis elaborats des de la neuropsicologia cognitiva també plante-gen aquesta
distinció entre dèficits procedimentals i de recuperació de fets.


Un estudi neuropsicològic que té especial interès és el dut a terme per Christine Temple
en el camp de les discapacitats de càlcul evolutives (C. Temple, 1991), atès l’escàs nombre
de treballs que hi ha en aquest tipus de casos.

   Estudi sobre les discapacitats de càlcul evolutives


   C. Temple (1991) aporta dos casos de discapacitat de càlcul evolutiva en adolescents que il·lustren la
   distinció entre dificultats procedimentals i de recuperació. Així, en un dels casos, un noi de disset anys,



                                                  18
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                          Mòdul 2: Dificultats en els processos de càlcul




  amb un coeficient intel·lectual dins de la normalitat, una memòria a curt termini també normal, així com
  la comprensió del vocabulari i la lectura, mostrava problemes continus amb l’aritmètica, malgrat haver
  tingut l’entrenament i l’experiència educativa perquè no fos així.


  Les dificultats es trobaven especialment en els procediments aritmètics, sense mostrar aquests problemes
  en altres àrees de la competència numèrica. Així, el processament numèric en la lectura de números i en
  els judicis de magnitud era completament normal. En el sistema de càlcul presentava un desenvolupament
  normal en el record de fets però, això no obstant, tenia una dificultat selectiva amb els procediments arit-
  mètics quan s’encarava amb operacions multidígits, especialment en la subtracció, la multiplicació i la divisió.


  Els errors no eren completament aleatoris, ja que, principalment, incloïa passos inadequats en una
  operació (que podien ser apropiats en una altra operació diferent) o executava passos incorrectes
  quan manipulava números d’una columna a una altra.


  Alteració dels sistemes de càlcul


  En contrast amb l’anterior, C. Temple descriu el cas d’una estudiant d’infermeria de dinou anys sense
  cap alteració neurològica coneguda. El seu processament numèric era completament normal (lectura i
  escriptura de números i judicis de magnitud), però mostrava un sistema de càlcul selectivament alterat.


  Així, els procediments aritmètics els executava sense cap dificultat, llevat d’uns pocs errors en la mul-
  tiplicació escrita, motivats principalment pels problemes que presentava en la recuperació de fets
  multiplicatius, que es trobava molt per sota del nivell normal.


  De fet, aquests pocs errors en la multiplicació eren a causa que el procediment li resultava molt laboriós ja
  que, quan topava amb algun fet que no coneixia o del qual no esta-va segura (per exemple: 7 x 8), utilitzava
  l’estratègia de l’addició repetida (escrivia un 7 i afegia 7 per fer 14, 7 per fer 21, etc.). Però quan se li
  demanava que expliqués els passos per fer una multiplicació, ho feia sense cap problema.


  En aquest sentit, aquest cas no presenta dificultats en els procediments, però sí en la recuperació de
  fets, especialment els no inclosos en les taules de multiplicació.




     De l’anàlisi d’aquests casos, se’n podria establir que els processos implicats en
     cadascun d’aquests components (procedimental/recuperació de fets) poden
     ser relativament independents o incloure diferents subsistemes modulars.


Aquesta consideració ha propiciat que alguns autors plantegin diferents subtipus de difi-
cultats en les matemàtiques. En aquest sentit, D.C. Geary (1993) proposa una taxonomia
temptativa en què inclou dos subtipus generals:




                                                    19
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                  Mòdul 2: Dificultats en els processos de càlcul




1) L’un es relacionaria amb les dificultats en la memorització i en la recuperació de fets,
per bé que no és una qüestió de tot o res, atès que alguns infants amb dificultats en
les matemàtiques poden recuperar certs fets de la memòria a llarg termini, però mostren
altres característiques d’execució que els diferencien dels altres infants, com ara uns
temps de resolució poc sistemàtics.


2) L’altre subtipus inclouria la utilització de procediments aritmètics evolutivament
immadurs, retard en l’adquisició de conceptes procedimentals bàsics i errors fre-
qüents en l’execució de procediments immadurs, encara que no queda del tot clar si
aquestes dificultats són reflex d’un retard en el desenvolupament (D.C. Geary i altres,
1991) o són dificultats reals que persisteixen en l’aprenentatge procedimental (C. Tem-
ple, 1991).


De qualsevol manera, i tal com ho planteja el mateix D.C. Geary (1993), aquesta classi-
ficació és temptativa, ja que, malgrat la revisió que hem presentat, es necessita un cos
d’investigació més gran per a validar aquests subtipus.




                                        20
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




4. EL PROBLEMA DE L’AVALUACIÓ
D’acord amb el marc teòric que hem proposat, l’objectiu de l’avaluació seria descriure
què és el que fa i no fa correctament un alumne, és a dir, els processos que poden estar
alterats quan afronta tasques de càlcul. En aquest sentit, l’avaluació hauria d’indicar si les
dificultats que presenta un alumne es troben en la recuperació de fets i/o en les estratègies
de recompte per a executar operacions (el grau de maduresa i el grau d’exactitud).


En el cas de trobar-se en les estratègies de recompte, també seria convenient avaluar fins
a quin punt el coneixement conceptual del recompte és adequat, atesa la seva influència
en els dèficits procedimentals.


Com que no hi ha al mercat cap test que avaluï aquest tipus de coneixement, plantejarem
l’avaluació mitjançant procediments informals.


4.1 Avaluació del coneixement conceptual del recompte

Amb la simple observació dels alumnes durant les tasques de recompte, és probable que
ens adonem del funcionament d’aquesta activitat. Malgrat això, s’han utilitzat un seguit de
tasques experimentals per a comprovar els principis fonamentals relacionats amb el re-
compte.


Per exemple, V. Bermejo i M.O. Lago (1991) utilitzen un seguit de tasques recollides de
la bibliografia experimental per a avaluar el coneixement que tenen els infants quant al
valor funcional del recompte:


  a) Una de les tasques que fan servir avalua la correspondència, i consisteix a inferir el
  cardinal d’un conjunt a partir de la relació quantitativa d’equivalència entre dos con-
  junts després del recompte previ d’un dels dos.


  Per a fer-ho, es presenten dues fileres de fitxes de dos colors (per exemple, vermell
  i blau) i es demana a l’infant que comprovi si hi ha alguna fitxa de color vermell que
  no tingui la fitxa blava corresponent. Un cop hagi arribat a la conclusió que són equi-
  valents, se li demana que compti la filera de cercles vermells, tot preguntant-li per la
  cardinalitat.


                                            21
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul




  Per acabar, se li pregunta pel nombre de fitxes blaves. La tasca és correcta quan es
  respon amb el cardinal de la filera comptada, sense necessitat de comptar les fitxes
  blaves.


  b) Una altra tasca que presenten s’utilitza per a avaluar el principi d’ordre estable.
  Primerament, es componen dues fileres de cercles del mateix color disposades en corres-
  pondència d’un per un, entre les quals hi ha una diferència quantitativa de tres elements.
  La tasca de l’infant consisteix a comptar, per començar, la filera gran i a dir-ne la cardina-
  litat i, posteriorment, a comptar la filera petita i a establir-ne també el cardinal.


  A continuació, es repeteixen els cardinals que ha obtingut mentre s’assenyalen les
  fileres corresponents, i se li demana que creï una nova filera, més petita que la del
  cardinal major i més gran que la del cardinal menor (independentment que hagi assolit
  o no el resultat correcte). És una tasca utilitzada comunament en la comparació de
  magnituds.


  c) Finalment, proposen una tasca per a avaluar la cardinalitat, en què presenten a
  l’infant una filera d’elements i li demanen que compti la filera i n’indiqui el cardinal. Un
  cop fet això, se li repeteix el cardinal obtingut i se li demana que construeixi un conjunt
  equivalent a aquest cardinal i que li afegeixi x elements més. La tasca és correcta si les
  respostes ofereixen la quantitat exacta indicada en les instruccions.


Gràcies a aquestes tasques es pot establir fins a quin punt un alumne compta amb les
regles processuals sobre com comptar un conjunt d’objectes, és a dir, si té el coneixement
dels principis relacionats amb el procés de recompte.


Un altre plantejament diferent per a l’avaluació del coneixement de recompte es basa en
el paradigma de la detecció d’errors (R. Gelman i E. Meck, 1983, 1986; D.J. Briars i R.S. Sie-
gler, 1984). En aquest cas, la tasca de la criatura consisteix a jutjar correcte o incorrecte
el recompte que fa un titella. Per exemple, en el treball de D.J. Briars i R.S.Siegler (1984),
el titella comet diversos tipus d’errors i pseudoerrors que violen algunes de les caracterís-
tiques essencials i no essencials del recompte, tal com es recull en la figura següent:




                                            22
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                         Mòdul 2: Dificultats en els processos de càlcul




  Errors             Paraula omesa       Saltar objecte     Paraula extra               Doble recompte



  Assenyalament

  Etiquetació           1         2        1        2       1       2       3       4    1   2 3   4

  Pseudoerrors       Direcció inversa     Adjacència      Començar pel mig                  Doble
                                                                                        assenyalament


  Assenyalament

  Etiquetació          3      2   1        1   3   2            3       1       2        1   2     3


Com es pot apreciar en la figura, alguns errors violen característiques essencials del
recompte: ometre un numeral tot assenyalant l’objecte; saltar-se un numeral sense
assenyalar l’objecte; etiquetar un lloc on no hi ha cap element o utilitzar múltiples etiquetes
per a un objecte assenyalat.


Molts alumnes que no són capaços de percebre aquestes violacions de les caracte-
rístiques essencials del recompte tendeixen a mostrar errors de càlcul en l’execució
d’operacions.


D’altra banda, els pseudoerrors no són errors, ja que violen característiques no essencials
del recompte. Són, per exemple:


  - el recompte en direcció contrària a la que l’alumna o alumne utilitza habitualment;


  - comptar primer els elements del mateix color (adjacència);


  - començar el recompte per la meitat de la filera;


  - el doble assenyalament d’un dels objectes, però assignant-li un únic numeral.


Amb aquestes tasques podem fer-nos una idea de fins a quin punt l’infant que presenta
dificultats en les operacions té un coneixement conceptual adequat del recompte.




                                               23
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




D’aquesta manera, podem esbrinar si els errors que es fan en les operacions tenen ben
establerts els principis sobre el recompte, aspecte que tindrà un interès especial a l’hora
de la intervenció.


4.2 Avaluació de les estratègies de recompte

Pel que fa a l’avaluació de les estratègies de recompte utilitzades en l’execució
d’operacions bàsiques, la simple observació directa del comportament dels infants també
pot ser suficient per a comprovar-ne el grau de maduresa. Això no obstant, pot succeir
que l’observació no ens proporcioni gaire informació.


En aquest cas, pot servir la simple utilització d’objectes concrets o bé un senzill procedi-
ment ideat per W. Secada, K.C. Fuson i J. Hall (1983), que consisteix a utilitzar un seguit de
targetes en què es representen fileres de punts i d’altres amb el cardinal d’aquests con-
junts, tal com es recull en la figura següent:


                            8                                                  5


                  sumand no visible                                    * * * * *


                            8                                                  5



                 * * * * * * * *                                       * * * * *


La tasca consisteix a ensenyar a l’alumne la primera targeta amb punts, tot indicant “aquí
tenim vuit punts” i, alhora, mostrar-li la targeta amb el cardinal corresponent. Posterior-
ment, es gira la targeta amb els punts i se li mostren dues targetes més (l’una amb punts
i l’altra amb el cardinal). Aleshores, li demanem que dugui a terme l’operació correspo-
nent, fent-li explícita la possibilitat de tornar a girar la targeta oculta.


Els nens i les nenes que utilitzin estratègies menys madures (per exemple, comptar-ho
tot) necessitaran girar la targeta, mentre que els qui utilitzin estratègies més sofisticades, no.



                                             24
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                        Mòdul 2: Dificultats en els processos de càlcul



Amb aquesta senzilla tasca podem observar el grau de maduresa de les diferents estratègies
que fa servir l’alumnat quan s’encara amb les operacions. Tot i que, insistim, l’experiència
ens diu que la simple observació, juntament amb les explicacions que puguin donar els
infants sobre allò que fan, pot ser suficient.



      En definitiva, l’avaluació ens ha de ser útil per a establir quins són els punts
      forts i els punts febles dels alumnes amb dificultats en les matemàtiques. Te-
      nint-ho en compte, la intervenció s’ha de centrar a recuperar aquells processos
      fonamentals per a executar operacions que estiguin alterats (tant perquè no hi
      ha un coneixement conceptual adequat del recompte, com perquè no s’utilitzen
      les estratègies més apropiades o s’utilitzen incorrectament).



A continuació exposem un exemple real del que s’ha explicat:


Un exemple concret: el cas de J.M.


J.M. va ser avaluat en el primer trimestre del tercer curs de primària de les seves habilitats re-
lacionades amb el càlcul. Es va utilitzar una prova aplicada per ordinador en la qual sortia a
la pantalla la suma de cadascuna de les combinacions possibles de dos dígits (per exemple,
5 + 9) col·locades en vertical.


La tasca del nen consistia a donar tan de pressa com li fos possible el resultat per un
micròfon que recollia el temps de resposta. A més, l’examinador observava el tipus
d’estratègia que utilitzava el nen per a cada operació, i quan no n’estava segur li preguntava
directament què havia fet per a respondre (generalment els infants no tenen dificultats a ex-
plicar com arriben al resultat).


Això darrer no va ser necessari, ja que sempre utilitzava l’estratègia de comptar amb els
dits a partir del primer sumand, independentment de la mida dels sumands, és a dir, feia
el mateix per a 3 + 1 que per a 6 + 8 o per a 1 + 6: anomenava el primer sumand i anava
afegint-hi dits fins a completar el segon sumand, amb l’agreujant que de vegades (segons
la mida dels sumands) arribava a un resultat incorrecte, generalment el resultat –1 (per
exemple, 7 + 8 = 14).




                                             25
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul




Unit a això, la seva velocitat de recompte era significativament més lenta que la que
mostraven els companys i les companyes de la seva classe, la qual cosa implicava temps
de resposta molt més lents.


Atesa la fixació de J.M. a utilitzar sempre la mateixa estratègia, vam decidir avaluar el seu
coneixement del recompte a través del paradigma de detecció d’errors. El seu coneixe-
ment era relativament bo, tret dels pseudoerrors, en els quals mostrava dubtes a l’hora
de considerar-los errors autèntics.


En l’entrevista amb la tutora també vam comprovar que en el curs anterior van ensen-
yar a J.M. a operar explícitament amb la mecànica de l’estratègia de comptar a partir del
primer, fet que ens va portar a suposar, atesos els errors que cometia, que el seu apre-
nentatge havia estat més memorístic que significatiu, sense una comprensió real de la
utilització de l’estratègia, i molt rígid, ja que el feia servir amb qualsevol operació, inde-
pendentment de la mida dels sumands.


Pel que fa a la resta, la seva estratègia era constant al llarg de les diferents operacions
amb minuend d’un dígit, i fonamentalment utilitzava la separació. Una dada interessant
que vam observar és que J.M. intentava utilitzar una estratègia diferent en les operacions
multidígit (resta portant-ne), ja que intentava portar el compte progressiu, és a dir, comp-
tar des del subtrahend fins al minuend.


En l’entrevista amb la tutora també vam comprovar que aquesta estratègia s’ensenyava
explícitament i directament en el context de la resta portant-ne, fet que també ens va
dur a pensar que l’ús era més mecànic que comprensible.


En relació amb tots aquests elements, quines conclusions podem treure respecte de J.M.?
Estem d’acord que les seves dificultats es troben en tres nivells:


  1) En el coneixement conceptual del recompte.


  2) Procedimentalment.


  3) En la recuperació de fets.




                                           26
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                       Mòdul 2: Dificultats en els processos de càlcul




Respecte de les dificultats procedimentals, les estratègies de recompte que fa servir són
immadures per la seva edat, a més dels errors que comet i la lentitud que demostra. El
seu aprenentatge més o menys mecànic i rígid fa que no apliqui l’estratègia que utilitza
correctament en determinades operacions, fet que el condueix a cometre errors. La no-
recuperació de fets de la memòria pot estar motivada per la velocitat en la utilització de
l’estratègia, i això li impedeix associar el resultat amb l’operació en utilitzar tots els seus
recursos cognitius en el recompte.


Les decisions que podem adoptar amb J.M. poden ser les que hi ha a continuació:


  a) Consolidar el seu coneixement conceptual del recompte.


Un cop aconseguit això, es pot plantejar:


  b) La utilització d’estratègies de recompte més sofisticades, però des d’un punt de vista
  més significatiu que memorístic, a partir de la comprensió d’aquestes.


A més, i atesa la lentitud que el nen presenta en la utilització de les estratègies,


  c) pot ser interessant plantejar l’ensenyament directe d’uns fets numèrics, fonamental-
  ment a partir de regles.


Una altra qüestió: aprofitem aquest cas per a reclamar la necessitat de disposar d’una
teoria que ens expliqui no tan sols les dificultats que poden sorgir, sinó també que ens
indiqui el desenvolupament que segueixen aquestes habilitats.


El cas de la resta de J.M. reflecteix clarament aquesta qüestió. En una situació manipu-
lativa, utilitza l’estratègia de separació, mentre que en el context de la resta portant-ne,
conceptualment més complex, està “obligat” a fer servir una estratègia molt més sofisti-
cada evolutivament i cognitivament parlant, com és el compte progressiu, la qual cosa no
deixa de ser paradoxal.


En aquest cas, aquesta estratègia tan sols s’hauria d’utilitzar en la resta portant-ne quan
l’alumna o alumne la comprengui en contextos manipulatius.




                                          27
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




5. LA INTERVENCIÓ EN OPERACIONS BÀSIQUES
Si partim dels pressupòsits que hem desenvolupat en l’apartat anterior, la intervenció amb
alumnes que presenten dificultats d’aprenentatge de les matemàtiques s’hauria de centrar
en els aspectes deficitaris mostrats pel nen o la nena, és a dir, en els punts dèbils. D’acord
amb això, i com ja hem vist, la intervenció es pot orientar vers les habilitats numèriques
prèvies o vers les estratègies de càlcul pròpiament dites. Vegem, a continuació, alguns pro-
cediments relacionats amb cadascun d’aquests aspectes.


5.1 Desenvolupament del número

Com hem tingut l’oportunitat de veure, l’execució de les operacions bàsiques, almenys en
els seus inicis, necessita el domini de l’enumeració i de la sèrie numèrica. Com han demostrat
D.C. Geary i altres (1992), el desenvolupament de les habilitats de còmput depèn en certa
manera del coneixement del recompte i de les violacions dels seus principis.


Vegem alguns procediments centrats tant en els principis per a enumerar conjunts com en
l’establiment de la sèrie numèrica.


Per a treballar l’enumeració


En l’enumeració vèiem que confluïen les regles processals del recompte, per la qual cosa
l’ensenyament hauria de destacar les operacions següents:


  a) comptar a poc a poc i amb atenció;


  b) aplicar una etiqueta a cada element;


  c) assenyalar cada element només un cop;


  d) comptar organitzadament per a estalviar esforç en el control.


Quan els elements són mòbils, una estratègia adequada per a comptar-los pot ser separar
clarament els elements comptats dels que encara queden per comptar; i quan els elements




                                          28
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                        Mòdul 2: Dificultats en els processos de càlcul




són fitxes, el control dels objectes comptats i dels que queden per comptar es pot facilitar
amb estratègies d’aprenentatge com ara començar per un lloc ben definit i continuar
sistemàticament en una direcció.


També pot ser molt interessant fer servir històries i discutir-les posteriorment, com les
que figuren a continuació per a les estratègies “només una vegada” i “l’ordre no importa”,
corresponents als principis de recompte de correspondència i irrellevància (adaptades
dels exemples del llibre d’A.J. Baroody, 1987):

  Només una vegada


  Comptamalament estava molt content perquè preparava la seva festa d’aniversari. El cuiner li preguntà
  quants amics hi estaven convidats, i Comptamalament va treure una llista que començà a comptar. Tot
  i que va perdre el compte dels noms que ja havia comptat, continuà i li’n sortiren 27. Per a assegurar-se,
  els tornà a comptar, i aquest cop li’n sortiren 22. Estava molt confús i el cuiner li digué que no podia
  preparar la festa fins que no sabés quanta gent hi aniria.


  Comptamalament estava molt trist, però arribà el seu germà Comptabé i li preguntà què li passava.
  Després d’explicar-li-ho, Comptabé va agafar la llista i proposà a Comptamalament que comptessin
  plegats. Va treure un retolador màgic i començaren a comptar la llista des del principi.


  Cada vegada que comptaven un nom, li posaven una marca. D’aquesta manera, van comptar cada nom
  de la llista una sola vegada. N’hi havia 25 i Comptamalament, molt content, va anar a dir-ho al cuiner.


  L’ordre no importa


  Comptamalament havia planificat un dia molt divertit amb els amics, però no gosava sortir del llit i baixar
  les escales. El matí anterior havia comptat els graons en baixar a esmorzar i li n’havien sortit 10. Però,
  quan pujà a dormir, n’havia comptat 11. Si hi havia menys graons en baixar que en pujar, potser cauria de
  morros per terra! Així que, quan els amics el cridaren, es quedà al llit.


  Aleshores arribà Comptabé i pujà les escales per a preguntar al seu germà què li passava. Quan sentí que
  Comptamalament tenia por de caure per les escales va dir que no podia ser; les escales tenen el mateix
  nombre de graons tant si puges com si baixes! Arrossegà Comptamalament fins a les escales i Compta-
  malament, molt espantat, donava les gràcies al seu germà per arriscar-se a caure. Baixaren les escales
  comptant-les: 10!; després, van tornar a pujar i també els en sortiren 10.


  Aleshores Comptabé li digué que era la mateixa escala i que, per tant, tenia el mateix nombre de graons.
  Comptamalament se n’alegrà i sortí corrent a trobar els amics.


Un altre problema que poden trobar els alumnes amb dificultats pot ser el d’establir el



                                                29
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                                Mòdul 2: Dificultats en els processos de càlcul



valor cardinal d’un conjunt, de tal manera que necessiten comptar una vegada i una altra
el nombre d’elements del conjunt per tal de saber quants n’hi ha.


Per a solucionar-ho, es pot establir amb l’alumne que, quan compta, l’últim que diu es pot
utilitzar per a recordar quantes coses ha comptat; o també proposar-li que repeteixi el darrer
número. En aquesta línia, W. Secada, K.C. Fuson i J. Hall (1983) plantegen un procediment
més inductiu basat en dues etapes:


  1) La primera etapa consisteix a presentar un conjunt a l’infant i indicar-li verbalment i
  mitjançant un número escrit el cardinal d’aquest conjunt. Se li demana que compti el
  conjunt i que observi que el resultat del recompte coincideix amb la designació cardinal.


  2) En la segona etapa es presenta un altre conjunt amb la designació cardinal i se li
  demana que el compti, però abans d’acabar se li diu que predigui el resultat, tal com es
  mostra a continuació.
                          Etapa A                                            Etapa B
                               Pas 1                                          Pas 1

   Mestre: “Tenim cinc cercles (ensenya cinc cercles    Mestre: “Tenim quatre quadres, compta’ls per
   i una targeta amb el número cinc); compta’ls per     veure quants n’hi ha”.
   veure quants n’hi ha”.

       5                                                  4


                               Pas 2                                          Pas 2

       5                                                   4


    Infant: “1, 2, 3, 4, 5”.                            Infant: “1, 2...”.

    Mestre: “Mira, t’he donat cinc cercles (assenyala   Mestre: “Quin serà el darrer número que diràs
    la targeta amb el número) i, quan els has comp-     quan acabis de comptar?” (El mestre corregeix i
    tat, l’últim número que has dit era 5. El nombre    continua si ho creu necessari.)
    de cercles que hi ha és sempre el mateix que el
    darrer número que dius quan els comptes”.


  Jerarquia de tasques d’enumeració organitzades per ordre de dificultat


  Com podem veure en el quadre de la pàgina següent, una tasca com comptar objectes mòbils (B) és més
  senzilla que una tasca de recompte (C) d’objectes que no poden moure’s (per exemple, una filera de
  punts en un full). Amb els objectes mòbils, els nens i les nenes van separant els elements del conjunt i



                                                   30
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



etiquetant-los; cada vegada que se separa un objecte es diu un número i es comprova si hi queden més
elements; quan no n’hi queden més, s’anuncia l’últim número com a cardinal.


El fet de separar físicament els objectes permet als infants ajustar-se al criteri de “només una vegada”.
Amb tot, quan els objectes no es poden moure la tasca és molt similar a l’anterior, però amb un pas
addicional. Cal recordar els elements que s’han comptat sense moure’ls. Aquesta tasca és encara més
complexa si els elements no formen una filera, sinó que estan desorganitzats (D).


Podem considerar una tasca encara més difícil per a molts nens i nenes, com és la de comptar un sub-
conjunt d’un conjunt donat (E). En aquest cas, hi ha un element més afegit, ja que cada vegada que es
compta un element cal comparar-lo amb el número que ens han demanat i que prèviament ha hagut de ser
emmagatzemat. Per tant, hem de tenir en compte aquestes consideracions quan treballem l’enumeració
amb canalla que presenta dificultats.
                              F
                                     Un número donat i diversos
                                      conjunts d’objectes fixos


                                       Escollir un conjunt de la
                                     grandària indicada pel núm.


                                         D
          Conjunt d’objectes fix,
               no ordenat
                                                            E
                                                                        Un número donat i un
           Comptar els objectes                                          conjunt d’objectes


                                         C                           Comptar un subconjunt de la
           Conjunt d’objectes fix,                                       grandària donada
                 ordenat


            Comptar els objectes



                              B
                                         Conjunt d’objectes
                                              mòbils


                                        Comptar els objectes,
                                       extraient-los del conjunt

                              A
                                     Conjunt de fins a 5 objectes,
                                       o de fins a 10 objectes


                                     Recitar els números en ordre



                                              31
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                          Mòdul 2: Dificultats en els processos de càlcul




Per a treballar la sèrie numèrica


Alhora que es promou l’enumeració, els nens i les nenes han d’anar dominant la sèrie
numèrica. Tanmateix, això no suposa que recitin els números de memòria, sinó que re-
quereix un coneixement ple i significatiu per al seu ús posterior en les operacions elemen-
tals. Així, és necessari que la criatura sigui capaç de fer elaboracions de la sèrie numèrica
establint, per exemple, el número següent i l’anterior d’un número donat, de la mateixa
manera que comptar regressivament.


Per a dur-ho a terme, i en la mesura que es trobin dificultats en aquest punt, la intervenció
hauria de començar ajudant la criatura a establir el número següent i l’anterior amb la part
més familiar de la seqüència (de l’1 al 5 o al 10). Al principi, es podrien utilitzar representa-
cions concretes, com ara una llista de números escrits i, més endavant, fer-ho mentalment.

  Una activitat per a treballar la seriació


  Un procediment senzill, descrit a N.S. Bley i C.A. Thornton (1981), consisteix a estendre targetes numera-
  des i en ordre damunt la taula. Sense que la criatura ho pugui veure, es posa una carta de cap per avall i se
  li demana (ara ja pot mirar) que esbrini quina és la carta tapada. Per a poder-ho descobrir, s’assenyala la
  carta posterior (anterior) a la carta tapada i es diu: quina carta és aquesta?, quina ve just després (abans)?
  Es continua així, fins que es tapen tots els números. Posteriorment, es van eliminant els indicis visibles de
  la sèrie aritmètica i se li demana que ho resolgui mentalment. Es col·loquen totes les cartes de cap per
  avall i se’n gira una, preguntant al nen o a la nena quin número va abans o després de l’aixecat.



     En definitiva, aquestes activitats i d’altres que es poden crear a partir dels
     principis exposats van encaminades que els nens i les nenes dominin la sèrie
     numèrica i l’enumeració, ja que per a poder afrontar les operacions aritmèti-
     ques elementals abans han de dominar les tècniques bàsiques per a comptar.


     Si els infants no han tingut experiències de numeració abundants i precises no
     aprendran, per exemple, que els efectes d’afegir un element a un conjunt fan
     variar la seva designació cardinal per a convertir-la en el número següent de
     la sèrie numèrica, aspecte amb el qual comencem la intervenció en les opera-
     cions bàsiques.




                                                   32
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                       Mòdul 2: Dificultats en els processos de càlcul




5.2 Operacions bàsiques

Abans del domini de les combinacions numèriques bàsiques, la intervenció es pot recolzar
en els procediments de càlcul basats en el recompte amb objectes concrets (dits o blocs).


Per a treballar les estratègies de recompte


En aquest punt, diversos autors afirmen (vegeu A.J. Baroody, 1984, 1987; P. Starkey i L.
Gelman, 1982, entre d’altres) que el més convenient seria començar pels problemes més
senzills del tipus n + 1 (n – 1) amb el suport del domini de la tècnica del número següent
(anterior), és a dir, amb l’ús eficaç de la sèrie numèrica per a determinar les relacions en-
tre n i el número que el segueix o el precedeix, tal com comentàvem en el subapartat
anterior.


Posteriorment, es poden anar introduint addicions més grans, com ara n + 2 o n + 3, on els
alumnes poden utilitzar estratègies de recompte, per bé que al principi és convenient que
els sumands siguin petits (d’1 a 5) perquè els infants puguin utilitzar pautes digitals.


Això no obstant, on més problemes troben algunes criatures amb dificultats és en la utilit-
zació de procediments de recompte més madurs per a l’addició o la subtracció, com hem
tingut l’oportunitat de veure en tractar de les dificultats.


Ara bé, com ja sabem, els infants sense dificultats inventen o descobreixen les estratègies
més sofisticades per si mateixos. Aleshores, es podria proposar l’ensenyament directe i ex-
plícit de procediments més madurs, com pot ser comptar a partir del primer número per a
l’addició o el compte progressiu per a la subtracció, i no dependre de la possible invenció
per part de la mainada.


Però cal tenir en compte que alguns treballs sobre el tema semblen no donar suport a
aquesta idea. Per exemple, L.B. Resnick (L.B. Resnick i W.W. Ford, 1981; L.B. Resnick i
R. Neches, 1984) argumenta que l’ensenyament verbal i explícit pot resultar confús i in-
comprensible, per la qual cosa suggereix que l’objectiu de la intervenció s’orienti cap a la
creació de situacions de l’aprenentatge on s’optimitzin les probabilitats que es produeixin
aquestes transicions vers estratègies més madures. Vegem alguns plantejaments que van
en aquesta línia.



                                          33
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



Per exemple, Karen Fuson i els seus col·laboradors (K.C. Fuson, 1986; K.C. Fuson i W.
Secada, 1986; K.C. Fuson i G.B. Willis, 1988; K.C. Fuson, 1992; W. Secada, K.C. Fuson i J.
Hall, 1983) han desenvolupat una pro-posta per a ajudar els infants a utilitzar dues estratè-
gies relativament complexes, com són comptar a partir del primer i el compte progressiu.


Pel que fa a la primera, ja hem comentat que per a passar d’una estratègia de comptar-
ho tot a comptar a partir d’un dels sumands, W. Secada i altres (1983) estableixen que
l’infant ha de ser capaç de comptar a partir de qualsevol punt de la sèrie numèrica, ha de
poder convertir el cardinal del primer conjunt en un número més amb què prosseguir el
recompte i saber començar el recompte del segon sumand amb el següent element de la
seqüència de recompte.


En aquest sentit, proposen el procediment següent per a treballar amb nens i nenes:

                                           8+5



                       Tècnica 1: “Quan comptes tots els punts, què
                                  dius per a aquest punt?”

                                           8+5



                       Tècnica 2: “Quan comptes tots els punts, què
                                  dius per a aquest punt?”

                                           8+5

                              Comptar a partir d’un sumand.
                                  Quants punts hi ha?


Basant-se en aquest plantejament, K.C. Fuson (1986; K.C.Fuson i G.B. Willis, 1988) introdueix
l’ensenyament de l’estratègia del compte progressiu per a la subtracció, ja que aquesta



                                            34
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                          Mòdul 2: Dificultats en els processos de càlcul




operació és conceptualment similar a comptar a partir d’un sumand.

                          8+5                                                    13 - 8

  1. Comptar 5 a partir de 8.                             1. Comptar des del 8 fins al 13.

  2. Parar quan el patró dels dits estigui en 5.          2. Parar quan es digui 13.

  3. Respondre l’última paraula dita.                     3. Respondre amb el patró de la mà.


Aquesta estratègia s’introdueix a partir de la utilització de pautes digitals. A més, ho fa en
el context de resolució de problemes verbals d’igualació. Per exemple, “en Joan té 8 bales;
en Pere en té 13; quantes bales li falten a en Joan per a tenir-ne les mateixes que en Pere?”.


                                      8               +         ?          = 13



A.J. Baroody (1987) ha proposat una forma més senzilla d’emprar aquest procediment: la
utilització d’objectes concrets que progressivament es poden anar retirant o barrejant amb
els dits.




                                                                        En aquest cas es treballa amb objectes
                                                                        concrets demanant a l’infant que
                                                                        determini quants pesos cal afegir al
                                                                        plat que té menys elements per a
                                                                        aconseguir que el pes d’ambdós plats
                                                                        sigui el mateix, una tasca força similar
                                                                        a la que es planteja en els problemes
                                                                        d’igualació. Per a dur-ho a terme, pot
                                                                        anar afegint blocs (que poden ser
                                                                        d’un color diferent) fins que s’arribi a
               10 9 8 7
                          6543                                          l’equilibri i comptar-los, o bé comp-
                                 21   12345
                                              6789                      tar-los a mesura que els va afegint.
                                                     10
                                                                        Posteriorment, es poden utilitzar
                                                                        suports semiconcrets com la barra re-
                                                                        glada de la figura i, finalment, instar
                                                                        l’infant a utilitzar els dits o el recompte
                                                                        mental.


                                                   35
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                     Mòdul 2: Dificultats en els processos de càlcul



Com podem veure, aquests són alguns dels procediments que es poden fer servir per a
l’ensenyament d’estratègies cada cop més complexes i sofisticades. Amb l’efecte de la
pràctica, les alumnes i els alumnes aniran automatitzant progressivament aquestes estra-
tègies i, el més important, aniran creant associacions entre les combinacions numèriques
bàsiques i el resultat de l’operació, de tal forma que les estratègies de recompte aniran
desapareixent en favor de la recuperació de fets de la memòria, com ja hem vist en el
model proposat per R.S Siegler.


Tanmateix, també indicàvem que en molts casos això no serà així (recordem els treballs
de D.C. Geary i altres, 1991, i S.R. Goldman i altres, 1988). És del tot previsible que molts
alumnes amb dificultats en les matemàtiques tinguin problemes en la recuperació de fets,
per la qual cosa, en aquests casos també caldrà una intervenció directa.


Per a treballar la recuperació de fets


Alguns treballs (vegeu, per exemple, R. Howell, E. Sidorenko i J. Jurica, 1987) han demostrat
que la simple exposició de fets, perquè siguin memoritzats, no és efectiva per a la mainada
que presenta dificultats.


Per tant, i encara que pot ser necessària una certa interiorització de dades específiques,
sembla més eficient un plantejament d’intervenció basat en l’aprenentatge de regles (R.
Steinberg, 1985; C.A. Thornton, 1990; C.A. Thornton, G.A. Jones i M.A. Toohey, 1983; G.A.
Jones, C.A. Thornton i M.A. Toohey, 1985).


Per exemple, C.A. Thornton i els seus col·laboradors han seguit una línia d’investigació
per a l’ensenyament de fets a infants amb dificultats, basant-se en l’entrenament en
estratègies o procediments que afavoreixen la transició al record automàtic. El seu pro-
grama es fonamenta en l’ensenyament d’una sèrie de regles ordenades de més a menys
complexitat. Aquestes regles són:


  a) Comptar, a partir d’un número donat, fets que contenen 1 o 2 afegits.


  Gràcies al domini de la sèrie numèrica, els infants poden afrontar sense dificultat les
  combinacions elementals del tipus n + 1, com comentàvem més amunt. Tocant a això,
  també tenen la possibilitat de descobrir l’ús de les relacions ben conegudes de la sèrie
  numèrica entre el número donat i el que el segueix o, saltant-se un número, el que ve


                                          36
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                    Mòdul 2: Dificultats en els processos de càlcul




després d’aquest (A.J. Baroody, 1987). Alguns dels procediments descrits més amunt,
com els de N.S. Bley i C.A. Thornton (1981), poden ser interessants per a aplicar-los
aquí.


b) Regla del 0 (per exemple: 0 + 6).


S’acostuma a aprendre amb relativa facilitat, igual que alguns dobles amb núme-
ros petits com ara 1 + 1 o 2 + 2; malgrat això, les sumes de dobles més grans poden
ser més difícils d’adquirir. Per a evitar-ne la memorització, C.A. Thornton i els seus
col·laboradors proposen la utilització de mnemotècnies visuals com, per exemple, l’ús
de les dues mans per a 5 + 5, la representació d’una caixa d’ous per al 6 o una aranya
per al doble 4 + 4, tal com figura en el dibuix.




                “Això és un vuit”         “Quatre potes i quatre potes fan vuit”




c) Dobles amb l’ús de mnemotècnies visuals.


Aquestes representacions visuals es poden anar substituint per la utilització de cubs de
diferent color que es poden posar en correspondència (R. Steinberg, 1985).


d) Dobles propers, afegint 1 o 2 al doble (per exemple: 6 + 7).


Es pot dur a terme afegint, per exemple, un cub o dos a una filera de cubs.


e) Redistribució basada en el 10, és a dir, utilitzar el 10 per a fets el número més gran
dels quals s’apropi a aquest número.



                                         37
LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES
                                      Mòdul 2: Dificultats en els processos de càlcul




  Aquesta darrera és la regla més complexa i consisteix a descompondre el sumand menor
  per a fer que el sumand més gran sigui deu i després sumar la resta a deu, tal com es
  veu en la figura per a 9 + 4.




                          9                                      10
                        +4
                        ___                                     +3
                                                                ___
                         13                                      13



Aquestes regles es poden aplicar de la mateixa manera per al record de fets de restes
(C.A. Thornton, 1990; R. Steinberg, 1985), utilitzant el concepte de subtracció com a
invers del d’addició.


     En definitiva, la intervenció amb els alumnes i les alumnes que presenten
     dificultats en les operacions s’ha d’orientar cap als processos que poden
     estar alterats. En aquest sentit, hem presentat un seguit de procediments
     encaminats al desenvolupament de les habilitats numèriques prèvies com són
     l’enumeració o l’establiment de la sèrie numèrica. Uns altres procediments
     s’han centrat en les operacions pròpiament dites, tant en les estratègies de
     recompte com en la recuperació de fets.




                                         38

More Related Content

What's hot

Cèl·lula. Característiques de les cèl·lules procariotes
Cèl·lula. Característiques de les cèl·lules procariotesCèl·lula. Característiques de les cèl·lules procariotes
Cèl·lula. Característiques de les cèl·lules procariotes
Carme Alós
 
Exemple pi-educació -infantil
Exemple pi-educació -infantilExemple pi-educació -infantil
Exemple pi-educació -infantilCarmina Hernandez
 
Treball per projectes pdf
Treball per projectes pdfTreball per projectes pdf
Treball per projectes pdfb7000381
 
temari_6_arts.pdf
temari_6_arts.pdftemari_6_arts.pdf
temari_6_arts.pdf
MariaRguezFlorido
 
Text instructiu: la recepta de cuina a CM
Text instructiu: la recepta de cuina a CMText instructiu: la recepta de cuina a CM
Text instructiu: la recepta de cuina a CM
mercebolufer
 
Els animals.
Els animals.Els animals.
Els animals.
MAICA CIMA
 
Tallers infantil
Tallers infantilTallers infantil
Tallers infantilcpsoncanals
 
Competències bàsiques coneixement del medi primària
Competències bàsiques coneixement del medi primàriaCompetències bàsiques coneixement del medi primària
Competències bàsiques coneixement del medi primària
Dolors Matilló
 
Presentació textura
Presentació texturaPresentació textura
Presentació texturaslegna3
 
Que es un conte
Que es un conteQue es un conte
Que es un conte
sarai jarque
 
Eix Graella capacitats i sabers infantil.pdf
Eix Graella capacitats i sabers infantil.pdfEix Graella capacitats i sabers infantil.pdf
Eix Graella capacitats i sabers infantil.pdf
Escola Àngel Serafí Casanovas
 
Els elements del llenguatge visual i plàstic
Els elements del llenguatge visual i plàsticEls elements del llenguatge visual i plàstic
Els elements del llenguatge visual i plàstic
valletejedor
 
Els dictats1(1)
Els dictats1(1)Els dictats1(1)
Els dictats1(1)Dictats
 
Abril bravo reina (la castanyada)
Abril bravo reina (la castanyada)Abril bravo reina (la castanyada)
Abril bravo reina (la castanyada)abrilbravo
 
Pràctica de la mucosa bucal
Pràctica de la mucosa bucalPràctica de la mucosa bucal
Pràctica de la mucosa bucal7 CIÈNCIES
 
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantilContextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
CREAMAT
 
Unitat didàctica de plàstica
Unitat didàctica de plàsticaUnitat didàctica de plàstica
Unitat didàctica de plàsticamagefra
 
Preguntes explicites
Preguntes explicitesPreguntes explicites
Preguntes explicites
silvia
 

What's hot (20)

Cèl·lula. Característiques de les cèl·lules procariotes
Cèl·lula. Característiques de les cèl·lules procariotesCèl·lula. Característiques de les cèl·lules procariotes
Cèl·lula. Característiques de les cèl·lules procariotes
 
Exemple pi-educació -infantil
Exemple pi-educació -infantilExemple pi-educació -infantil
Exemple pi-educació -infantil
 
Treball per projectes pdf
Treball per projectes pdfTreball per projectes pdf
Treball per projectes pdf
 
temari_6_arts.pdf
temari_6_arts.pdftemari_6_arts.pdf
temari_6_arts.pdf
 
Text instructiu: la recepta de cuina a CM
Text instructiu: la recepta de cuina a CMText instructiu: la recepta de cuina a CM
Text instructiu: la recepta de cuina a CM
 
Els animals.
Els animals.Els animals.
Els animals.
 
Tallers infantil
Tallers infantilTallers infantil
Tallers infantil
 
Projecte Terra i Univers
Projecte Terra i Univers Projecte Terra i Univers
Projecte Terra i Univers
 
Competències bàsiques coneixement del medi primària
Competències bàsiques coneixement del medi primàriaCompetències bàsiques coneixement del medi primària
Competències bàsiques coneixement del medi primària
 
Presentació textura
Presentació texturaPresentació textura
Presentació textura
 
Que es un conte
Que es un conteQue es un conte
Que es un conte
 
Eix Graella capacitats i sabers infantil.pdf
Eix Graella capacitats i sabers infantil.pdfEix Graella capacitats i sabers infantil.pdf
Eix Graella capacitats i sabers infantil.pdf
 
Els elements del llenguatge visual i plàstic
Els elements del llenguatge visual i plàsticEls elements del llenguatge visual i plàstic
Els elements del llenguatge visual i plàstic
 
Els dictats1(1)
Els dictats1(1)Els dictats1(1)
Els dictats1(1)
 
Abril bravo reina (la castanyada)
Abril bravo reina (la castanyada)Abril bravo reina (la castanyada)
Abril bravo reina (la castanyada)
 
Pràctica de la mucosa bucal
Pràctica de la mucosa bucalPràctica de la mucosa bucal
Pràctica de la mucosa bucal
 
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantilContextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
Contextos de vida quotidiana per aprendre matemàtiques a l'educació infantil
 
Unitat didàctica de plàstica
Unitat didàctica de plàsticaUnitat didàctica de plàstica
Unitat didàctica de plàstica
 
Preguntes explicites
Preguntes explicitesPreguntes explicites
Preguntes explicites
 
Reciclem l'escola
Reciclem l'escolaReciclem l'escola
Reciclem l'escola
 

Similar to Dam m2

Presentacioprojecte
PresentacioprojectePresentacioprojecte
PresentacioprojecteJoan Tardà
 
Annex4 curriculum
Annex4 curriculumAnnex4 curriculum
Annex4 curriculum
M T
 
A. Miró. Metadidactical Analysis of Mathematics Teaching
A. Miró. Metadidactical Analysis of Mathematics TeachingA. Miró. Metadidactical Analysis of Mathematics Teaching
A. Miró. Metadidactical Analysis of Mathematics Teaching
Francisco Javier Mora Serrano
 
Resolució de problemes
Resolució de problemesResolució de problemes
Resolució de problemes
Maria Vicenta Lambies Miguel
 
Currículum per competències a secundària
Currículum per competències a secundàriaCurrículum per competències a secundària
Currículum per competències a secundàriahospitaletcrp
 
La resolució de problemes a cicle mitjà
La resolució de problemes a cicle mitjàLa resolució de problemes a cicle mitjà
La resolució de problemes a cicle mitjàgranellmiquel
 
AraMat. Mòdul 3. Resolució de problemes. Presentació
AraMat. Mòdul 3. Resolució de problemes. PresentacióAraMat. Mòdul 3. Resolució de problemes. Presentació
AraMat. Mòdul 3. Resolució de problemes. Presentació
CREAMAT
 
AraMat. Mòdul 3. Ressolució de problemes. Idees clau
AraMat. Mòdul 3. Ressolució de problemes. Idees clauAraMat. Mòdul 3. Ressolució de problemes. Idees clau
AraMat. Mòdul 3. Ressolució de problemes. Idees clau
CREAMAT
 
temari_5_mates.pdf
temari_5_mates.pdftemari_5_mates.pdf
temari_5_mates.pdf
MariaRguezFlorido
 
Programació mates Tram-2
Programació mates Tram-2Programació mates Tram-2
Programació mates Tram-2
Imma Clua
 
Mathmagics Abeam 08
Mathmagics Abeam 08Mathmagics Abeam 08
Mathmagics Abeam 08
Pili Royo
 
Matemàtiques i mitjans digitals
Matemàtiques i mitjans digitalsMatemàtiques i mitjans digitals
Matemàtiques i mitjans digitals
Lluís Mora
 
Creamat Competencies Eso Pili Royo
Creamat Competencies Eso Pili RoyoCreamat Competencies Eso Pili Royo
Creamat Competencies Eso Pili Royo
guest0b7991
 
Aprenentatge de l'aritmètica..pdf
Aprenentatge de l'aritmètica..pdfAprenentatge de l'aritmètica..pdf
Aprenentatge de l'aritmètica..pdf
AlbaCostaCliment
 
Memoria TIC_ 2013
Memoria TIC_ 2013Memoria TIC_ 2013
Memoria TIC_ 2013Anna Muma
 
Galceran sanchez maite_pac2.5_disseny.doc
Galceran sanchez maite_pac2.5_disseny.docGalceran sanchez maite_pac2.5_disseny.doc
Galceran sanchez maite_pac2.5_disseny.docmaite_galceran_sanchez
 

Similar to Dam m2 (18)

Dam m1
Dam m1Dam m1
Dam m1
 
Presentacioprojecte
PresentacioprojectePresentacioprojecte
Presentacioprojecte
 
Annex4 curriculum
Annex4 curriculumAnnex4 curriculum
Annex4 curriculum
 
A. Miró. Metadidactical Analysis of Mathematics Teaching
A. Miró. Metadidactical Analysis of Mathematics TeachingA. Miró. Metadidactical Analysis of Mathematics Teaching
A. Miró. Metadidactical Analysis of Mathematics Teaching
 
Resolució de problemes
Resolució de problemesResolució de problemes
Resolució de problemes
 
Currículum per competències a secundària
Currículum per competències a secundàriaCurrículum per competències a secundària
Currículum per competències a secundària
 
La resolució de problemes a cicle mitjà
La resolució de problemes a cicle mitjàLa resolució de problemes a cicle mitjà
La resolució de problemes a cicle mitjà
 
AraMat. Mòdul 3. Resolució de problemes. Presentació
AraMat. Mòdul 3. Resolució de problemes. PresentacióAraMat. Mòdul 3. Resolució de problemes. Presentació
AraMat. Mòdul 3. Resolució de problemes. Presentació
 
AraMat. Mòdul 3. Ressolució de problemes. Idees clau
AraMat. Mòdul 3. Ressolució de problemes. Idees clauAraMat. Mòdul 3. Ressolució de problemes. Idees clau
AraMat. Mòdul 3. Ressolució de problemes. Idees clau
 
Dam m3
Dam m3Dam m3
Dam m3
 
temari_5_mates.pdf
temari_5_mates.pdftemari_5_mates.pdf
temari_5_mates.pdf
 
Programació mates Tram-2
Programació mates Tram-2Programació mates Tram-2
Programació mates Tram-2
 
Mathmagics Abeam 08
Mathmagics Abeam 08Mathmagics Abeam 08
Mathmagics Abeam 08
 
Matemàtiques i mitjans digitals
Matemàtiques i mitjans digitalsMatemàtiques i mitjans digitals
Matemàtiques i mitjans digitals
 
Creamat Competencies Eso Pili Royo
Creamat Competencies Eso Pili RoyoCreamat Competencies Eso Pili Royo
Creamat Competencies Eso Pili Royo
 
Aprenentatge de l'aritmètica..pdf
Aprenentatge de l'aritmètica..pdfAprenentatge de l'aritmètica..pdf
Aprenentatge de l'aritmètica..pdf
 
Memoria TIC_ 2013
Memoria TIC_ 2013Memoria TIC_ 2013
Memoria TIC_ 2013
 
Galceran sanchez maite_pac2.5_disseny.doc
Galceran sanchez maite_pac2.5_disseny.docGalceran sanchez maite_pac2.5_disseny.doc
Galceran sanchez maite_pac2.5_disseny.doc
 

More from FLORDECAMP

Lletra lligada resseguir
Lletra lligada resseguirLletra lligada resseguir
Lletra lligada resseguirFLORDECAMP
 
Lamines estimulació parla
Lamines estimulació parlaLamines estimulació parla
Lamines estimulació parlaFLORDECAMP
 
Conte cuc
Conte cucConte cuc
Conte cuc
FLORDECAMP
 
Conte quadret
Conte quadretConte quadret
Conte quadret
FLORDECAMP
 
Consciència fonològica exemple
Consciència fonològica exempleConsciència fonològica exemple
Consciència fonològica exempleFLORDECAMP
 
Psicomotricitat fina
Psicomotricitat finaPsicomotricitat fina
Psicomotricitat finaFLORDECAMP
 
Què ens explicaria una persona amb autisme?
Què ens explicaria una persona amb autisme? Què ens explicaria una persona amb autisme?
Què ens explicaria una persona amb autisme? FLORDECAMP
 

More from FLORDECAMP (8)

Lletra lligada resseguir
Lletra lligada resseguirLletra lligada resseguir
Lletra lligada resseguir
 
Lamines estimulació parla
Lamines estimulació parlaLamines estimulació parla
Lamines estimulació parla
 
Conte cuc
Conte cucConte cuc
Conte cuc
 
Conte quadret
Conte quadretConte quadret
Conte quadret
 
Dam m4
Dam m4Dam m4
Dam m4
 
Consciència fonològica exemple
Consciència fonològica exempleConsciència fonològica exemple
Consciència fonològica exemple
 
Psicomotricitat fina
Psicomotricitat finaPsicomotricitat fina
Psicomotricitat fina
 
Què ens explicaria una persona amb autisme?
Què ens explicaria una persona amb autisme? Què ens explicaria una persona amb autisme?
Què ens explicaria una persona amb autisme?
 

Dam m2

  • 1. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Josetxu Orrantia Formació Psicopedagògica
  • 2. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Formació Psicopedagògica índex 1. Introducció 2 2. Desenvolupament de les habilitats de càlcul 2 2.1 Els esquemes protoquantitatius 3 2.2 El desenvolupament de les primeres destreses numèriques: el recompte 5 2.3 Estratègies de recompte i operacions bàsiques 7 3. Què és el que no fan bé els alumnes amb dificultats 14 3.1. Dificultats en les operacions bàsiques 14 3.2. Explicació de les dificultats 16 3.3. Subtipus de dificultats en les matemàtiques 18 4. El problema de l’avaluació 21 4.1. Avaluació del coneixement conceptual del recompte 21 4.2. Avaluació de les estratègies de recompte 24 5. La intervenció en operacions bàsiques 28 5.1. Desenvolupament del número 28 5.2. Operacions bàsiques 33 1
  • 3. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 1. INTRODUCCIÓ En aquest primer apartat, ens centrarem en les dificultats que troben els alumnes a exe- cutar les operacions bàsiques. Per tal de fer-ho, considerarem els punts següents: a) partirem d’una teoria que ens expliqui el desenvolupament normal d’aquesta habilitat; b) posteriorment, ens centrarem en les dificultats que troben certs alumnes en l’execució de les operacions bàsiques i en l’explicació d’aquestes dificultats; c) acabarem amb l’exposició d’alguns procediments per a avaluar i intervenir amb aquests alumnes. 2 DESENVOLUPAMENT DE LES HABILITATS DE CÀLCUL Els plantejaments més clàssics sobre el desenvolupament del coneixement matemàtic, especialment des de posicions properes a la tradició piagetiana, consideren que aquest es va forjant com a conseqüència de l’evolució d’estructures intel·lectuals més generals, de tal manera que la construcció del nombre és correlativa al desenvolupament del pensa- ment lògic. Els nens i les nenes, abans dels sis o set anys, serien incapaços d’entendre el nombre i l’aritmètica perquè no posseirien el raonament i els conceptes lògics que es necessiten (pen- sem en les conegudes tasques piagetianes de la conservació del nombre i de la classificació). Això no obstant, cada vegada són més els qui pensen que el procés de construcció del coneixement matemàtic comença molt abans que els infants entrin en l’educació primària. Algunes investigacions (per exemple, P. Starkey i R.G. Cooper, 1980; R. Starkey, E.S. Spelke i R. Gelman, 1990; K. Winn, 1992) indiquen, fins i tot, que certs elements bàsics del co- neixement quantitatiu són presents en bebès de sis mesos d’edat, de tal manera que són capaços de discriminar la “nombrositat” de conjunts petits. Per exemple, mitjançant el paradigma de l’habituació, s’ha comprovat que els bebès presten atenció a imatges amb objectes a què estan habituats quan aquestes han estat modificades numèricament i no pas quan es modifiquen altres variables com ara la densitat o la grandària. 2
  • 4. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Tot i que aquestes primeres nocions del nombre són importants, és a partir dels tres anys d’edat quan la mainada comença a desenvolupar el primer coneixement quantitatiu. Aquest desenvolupament s’acompleix per mitjà de l’adquisició, d’una banda, d’uns esquemes que L.B. Resnick (1989) anomena protoquantitatius i, de l’altra, de la primera destresa numèrica: comptar. Concretament, establirem com, gràcies a la integració d’aquests es- quemes amb l’experiència de comptar, es desenvolupen les habilitats implicades en les operacions bàsiques, tal com es recull en la figura: Esquemes protoquantitatius Operacions bàsiques Recompte 2.1 Els esquemes protoquantitatius El primer coneixement quantitatiu que constitueix una de les bases més importants per al posterior desenvolupament matemàtic s’adquireix per mitjà de tres esquemes proto- quantitatius: 1) Un d’aquests esquemes s’anomena esquema protoquantitatiu de la comparació. Gràcies a l’adquisició d’aquest esquema, la mainada pot anar disposant d’un seguit de termes que expressen judicis de quantitat sense precisió numèrica, com més gran, més petit, més o menys, la qual cosa permet decidir, per exemple, si un vas d’aigua conté més quantitat que un altre o si una pilota és més gran que una altra. En aquest sentit, mitjançant aquest esquema s’assignen etiquetes lingüístiques a la comparació de grandàries. 2) El següent esquema definit per L.B. Resnick és l’esquema protoquantitatiu incre- ment-decrement. Utilitzant aquest esquema, els infants de tres anys són capaços de raonar sobre canvis en les quantitats quan se’ls afegeix o se’ls pren algun element. Per exemple, un infant sap que si té certa quantitat de qualsevol cosa, posem dues joguines, i n’aconsegueix una altra, en tindrà més que no pas abans. Així mateix, si li prenen una joguina, en té menys o, si no canvia el nombre, en té igual quantitat, fins i tot en el cas que es modifiqui la distribució espacial dels objectes. 3
  • 5. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Aquest raonament indicaria alguna mena de comprensió bàsica de la conservació del nom- bre, com s’observa en la tasca de la “sessió de màgia” desenvolupada per R. Gelman (1972, citat per J.H. Flavell, 1984, de l’edició en castellà) amb nens i nenes d’educació infantil. Tasca de la sessió de màgia de R. Gelman En aquesta tasca, es presentaven als infants dues safates, cadascuna de les quals contenia una filera de ratolins i havien de designar quina safata era la guanyadora. Posteriorment, es cobrien les safates i es feien transformacions numèriques (es treia, per exemple, un ratolí de la filera guanyadora) o transfor- macions que no eren pertinents per a la quantitat (s’allargava o s’escurçava la filera guanyadora). La mainada no parava esment a les transformacions no pertinents per a la quantitat (la safata guanyadora continuava sent la guanyadora). Això no obstant, se sorprenien moltíssim quan es destapaven les safates i no apareixia la guanyadora; quan se’ls preguntava què havia passat, deien que s’havia tret un ratolí de la safata guanyadora; i quan se’ls demanava com es podia arreglar, deien que afegint la figura que falta- va, un component sens dubte important per al posterior coneixement del nombre 3) Per acabar, l’esquema protoquantitatiu part-tot permet als preescolars acceptar que qualsevol peça, per exemple un pastís, pot ser dividida en parts més petites i que, si les tornem a ajuntar, donen lloc a la peça original. A més, poden raonar que quan uneixen dues quantitats, obtenen una quantitat més gran. Així, almenys de manera implícita, els infants comencen a conèixer la propietat additiva de les quantitats. Poden saber, per exemple, que el tot és més gran que les parts i poden arribar a eme- tre aquest tipus de judicis sense necessitat de tenir a la vista les quantitats (el pastís i les seves parts). Tal com assenyala L.B. Resnick (1989), aquesta comprensió de les relacions part-tot sembla que contradiu els plantejaments piagetians de la tasca de la inclusió de classes. En definitiva, malgrat els límits atribuïts als infants pel que fa al coneixement quantitatiu, especialment des de la tradició piagetiana, els esquemes de raonament protoquantitatius constitueixen un element bàsic per al desenvolupament matemàtic posterior. Tanmateix, aquest coneixement, que podem anomenar intuïtiu, no és suficient per a abordar tasques quantitatives (per exemple, saber quantes joguines hi ha o en quantes peces es divideix un pastís), per la qual cosa els infants necessiten utilitzar eines de quantificació més precises, com ara el recompte. 4
  • 6. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 2.2 El desenvolupament de les primeres destreses numèriques: el recompte El recompte és una activitat que als ulls d’un adult pot semblar senzilla però, en realitat, necessita integrar un seguit de tècniques. Per exemple, si volem determinar si un conjunt de nou punts és més gran o més petit que un de vuit, ens caldrà dur a terme un seguit d’accions que van des de generar els noms dels números en l’ordre adequat o aplicar les etiquetes de la sèrie numèrica (un, dos, tres...) una per una a cada objecte d’un conjunt, fins a comprendre que la posició d’un número en la seqüència en defineix la magnitud, de tal forma que es pugui establir que el nou ve després del vuit i, per consegüent, és més gran. A.J. Baroody afirma que el recompte constitueix “un repte intel·lectual imponent per als infants de tres anys d’edat. Quan arribin als cinc, la majoria dominaran aquestes tècniques bàsiques i estaran llestos per a afrontar nous desafiaments”. Arthur J. Baroody (1987). Per tant, des del punt de vista cognitiu, aquesta no és una tasca senzilla. Ara bé, quin curs segueix el desenvolupament d’aquesta habilitat? No hi ha una resposta fàcil per a aquesta qüestió. Alguns creuen en l’existència d’un seguit de principis (coneixement conceptual del recompte) que permeten una progressiva sofisticació del recompte. Des d’aquest punt de vista, hi hauria un coneixement conceptual del recompte que precedeix i, per tant, governa l’adquisició d’aquesta habilitat. D’altres pensen que en un primer moment el recompte és un aprenentatge memorístic i mancat de sentit, especialment de la seqüència numèrica estàndard, per anar dotant, a poc a poc, aquestes rutines de continguts conceptuals (D.J. Briars, R.S. Siegler, 1984; A.J. Baroody, H.P. Ginsburg, 1986; C. Sophian, 1987). En aquest cas, l’ús del procediment estàndard del recompte (recitar els números) precedeix el coneixement dels principis subjacents. No és aquest el lloc per a determinar quina d’aquestes dues posicions és la correcta, es- pecialment perquè el debat encara resta obert. No obstant això, i independentment de si el recompte precedeix o està induït pel coneixement dels principis, el que sí que sembla evident és que una comprensió plena del nombre per a tasques de quantificació passa 5
  • 7. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul pel desenvolupament del coneixement dels principis sobre el coneixement conceptual del recompte. Són els principis de correspondència d’un a un, d’ordre estable, de cardinalitat, d’abstracció i d’irrellevància (R. Gelman i C.R. Gallistel, 1978): 1) El principi de correspondència d’un a un implica etiquetar cada element d’un con- junt només una vegada. Comporta, per tant, la coordinació de dos processos: partició i etiquetació, de tal manera que els infants, mitjançant la partició, van controlant els ele- ments comptats i els que falten per comptar, tant si és separant-los com assenyalant- los, alhora que disposen d’un seguit d’etiquetes, de manera que cadascuna correspon a un objecte del conjunt comptat. És interessant fer notar que les etiquetes utilitzades no han de seguir una seqüència correcta, fins i tot es poden repetir etiquetes dins de la seqüència; allò que importa és assenyalar-los una única vegada mentre se’ls assigna una etiqueta, com en el gràfic següent: Assenyala Etiqueta 1 2 4 6 7 2) El principi d’ordre estable estipula que per a comptar és imprescindible l’establiment d’una seqüència coherent, per bé que, com indiquen R. Gelman i C.R Gallistel (1978), aquest principi es pot aplicar sense necessitat d’haver d’utilitzar la seqüència numèrica convencional, ja que es pot emprar una seqüència pròpia no convencional (com pot ser la de l’exemple anterior), però sempre de manera coherent. 3) El principi de cardinalitat estableix que la darrera etiqueta de la seqüència numèrica representa el cardinal del conjunt, és a dir, la quantitat d’elements que conté el con- junt. R. Gelman i C.R. Gallistel (1978) consideren que els infants comprenen aquest principi si repeteixen o posen un èmfasi especial en el darrer element de la seqüència de recompte. 6
  • 8. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 4) El principi d’abstracció determina que els principis anteriors es poden aplicar a qual- sevol tipus de conjunt, tant amb elements homogenis com amb elements heterogenis (objectes de diferent color o de diferent entitat física). 5) Per acabar, el principi d’irrellevància indica que l’ordre pel qual es comenci a enume- rar els elements és irrellevant per a la seva designació cardinal. Així, es pot comptar d’esquerra a dreta, de dreta a esquerra o del centre als extrems, sense que això afecti el resultat del recompte. Els principis de correspondència, d’estabilitat de l’ordre i de cardinalitat establi- rien les regles processuals sobre com comptar un conjunt d’objectes. A partir de les seves experiències amb el recompte, l’infant va adquirint la seqüència numèrica convencional, i això li permetrà establir quants elements té un conjunt, allò que es coneix amb el nom de comptatge. L’abstracció i la irrellevància de l’ordre serveixen per a generalitzar i flexibilitzar el rang d’aplicació dels principis anteriors, allò que d’altres han anomenat carac- terístiques no essencials del recompte (D.J. Briars i R.S. Siegler, 1984). Per exemple, és comú que un infant consideri com a característica essencial el fet de comptar d’esquerra a dreta, de tal forma que, quan es comença a comptar pel centre, ho considera un error. Això significa que no ha adquirit el principi d’irrellevància. Així que els infants han adquirit el coneixement conceptual del recompte, i integren aquest coneixement amb els esquemes protoquantitatius, com es recull en la figura del subapartat 2.1, utilitzen aquesta habilitat per a encarar-se amb tasques més complexes, com poden ser les operacions bàsiques. 2.3 Estratègies de recompte i operacions bàsiques L’experiència de comptar, juntament amb els esquemes protoquantitatius, permeten a la mainada descobrir què fa canviar un nombre. Així, a partir de l’esquema increment- decrement unit al seu coneixement de l’enumeració, els nens i les nenes poden raonar que, si afegim o traiem objectes en un conjunt, el seu cardinal varia. D’aquesta manera 7
  • 9. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul van descobrint els conceptes més elementals relacionats amb les operacions. A partir d’aquestes experiències, els infants inventen estratègies de recompte molt ele- mentals que els permeten resoldre operacions d’addició i de subtracció senzilles. Amb la pràctica, aquestes estratègies es van fent més sofisticades fins que desapareixen en favor de la recuperació immediata de la solució de les operacions des de la memòria. En les línies següents, descriurem breument aquestes estratègies que han estat documentades en nombrosos estudis (T.P. Carpenter i J.M. Moser, 1984; E. de Corte i L. Verschaffel, 1987; K.C. Fuson, 1988, 1992; R.S. Siegler i E. Jen-kins, 1989; entre d’altres) i que recollim en l’esquema següent: Diferents estratègies de recompte que s’utilitzen per a sumar 5 + 3 Estratègia Procediment Acció Comptar-ho tot 1. Comptar objectes (dits) per a representar el primer sumand. “1 2 3 4 5” 2. Comptar objectes per a representar el segon sumand. “1 2 3” 3. Comptar tots els objectes per a determinar la suma. “1 2 3 4 5 6 7 8” Comptar a partir 1. Partir del cardinal del primer del primer sumand. “5” 2. Comptar el segon seguint la sèrie des del cardinal. “6 7 8” Fets coneguts 1. Recuperació immediata del resultat. “5 més 3 és igual a 8” L’estratègia més elemental per a la suma s’anomena comptar-ho tot, o model sum en la terminologia clàssica de G.J. Groen i J.M. Parkman (1972), i els infants la fan servir per a representar els dos sumands amb dos conjunts d’objectes que prèviament han comptat per a formar-los. Aquests objectes, que també poden ser els dits, són comptats de cap i de nou per a trobar el resultat total. Una altra estratègia més sofisticada que l’anterior consisteix a comptar a partir del pri- mer dels sumands. En aquesta no es compta el primer sumand, sinó que el recompte comença amb el seu cardinal, i se li afegeix el segon. És una estratègia més sofisticada que l’anterior, ja que com assenyalen W. Secada, K.C. Fuson i J. Hall (1983) i K.C. Fuson 8
  • 10. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul (1992) calen tres subhabilitats específiques per a la transició d’una estratègia a l’altra: - ser capaç de comptar a partir de qualsevol punt de la seqüència numèrica, - saber convertir el número cardinal del primer conjunt en un número més amb què prosseguir el recompte, i - poder prosseguir el recompte en passar al segon sumand. Una estratègia semblant a aquesta consisteix a comptar a partir del més gran (model min en G.J. Groen i J.M. Parkman, 1972), en què el recompte comença amb el cardinal del sumand més gran; per exemple, per a sumar 3 + 5, l’infant faria “5; 6, 7, 8”. Finalment, i des de la seva experiència amb les operacions, els infants van emmagatzemant en la memòria fets coneguts, de tal manera que recuperen directament la solució de l’operació sense fer ús de cap recompte. Aquesta recuperació es pot fer a partir d’operacions cone- gudes que utilitzen els números que apareixen en l’operació enunciada (per exemple, 6 + 7 = 13), i operacions derivades que utilitzen i posen en relació el record d’altres operacions que no són exactament iguals a l’enunciat (6 + 6 = 12, + 1 = 13). Vegem un resum de les diferents estratègies utilitzades per a restar: Diferents estratègies de recompte que s’utilitzen per a restar 5 - 3 Estratègia Procediment Acció Separació 1. Comptar objectes (dits) per a representar el primer minuend. “1 2 3 4 5” 2. Treure un nombre d’objectes igual al subtrahend. “1 2 3” 3. Comptar els elements restants per a determinar la resposta. “1 2” Retrorecompte 1. Partir del cardinal del minuend. “5” 2. Comptar cap enrere les unitats del subtrahend. “4 3 2” 3. Donar el darrer número comptat com a resposta. “2” 9
  • 11. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Compte 1. Partir del cardinal del progressiu subtrahend. “3” 2. Comptar cap endavant fins a arribar al minuend. “4 5” 3. Respondre amb les unitats comptades. “2” Fets coneguts 1. Recuperació immediata del resultat. “5 menys 3 és igual a 2” Pel que fa a la subtracció, l’estratègia més elemental és la separació en què l’infant forma un conjunt igual al número més gran de l’operació, per separar després tants elements com marca el número petit i comptar els que li han quedat. El retrorecompte és una estratègia més complexa que l’anterior, ja que implica que l’infant sap comptar regressivament, que és més difícil que comptar progressivament. Consisteix a comptar cap enrere tantes unitats com indiqui el subtrahend, per a la qual cosa ha de dur el compte de les unitats que va traient, operació que pot fer amb els dits (per exemple: 5 - 3 és 5; 4 [en trec una], 3 [en trec dues], 2 [en trec tres]; la resposta és dues). Aquesta estratègia és més utilitzada quan el subtrahend és petit però, a mesura que hi intervenen números més grans, els infants han d’aprendre o descobrir altres estratègies, com ara el compte progressiu, en què l’infant comença el compte des del subtrahend fins al minuend o número més gran, i obté la resposta després de comptar els numerals que ha utilitzat en el recompte (per exemple: 9 - 7 és 7; 8 [és un], 9 [és dos]; la resposta és dos). Per acabar, i igual que en les operacions d’addició, la pràctica amb les operacions permet que els infants recuperin directament des de la memòria fets coneguts per a donar la res- posta immediatament. Com es pot observar, hi ha un ampli ventall d’estratègies que els nens i nenes poden posar en funcionament. Alguns autors fins i tot n’han descrit algunes més que es poden intercalar entre les que hem presentat. Evidentment, un infant no posseeix alhora totes les estra- tègies (pensem en la despesa de temps i recursos que suposaria per a un infant haver d’escollir-ne una entre totes cada vegada que s’encarés amb una operació que, a més, 10
  • 12. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul encara no domina). És possible que, fins i tot, algunes estratègies mai no siguin utilitzades per un nen determinat. Malgrat això, el que sí que sembla clar és que els nens i les nenes acostumen a posseir al mateix temps diverses estratègies disponibles per a l’addició o per a la subtracció. A més, unes estratègies són evolutivament més madures que d’altres (generalment, d’acord amb l’ordre en què les hem exposat tant per a l’addició com per a la subtracció). Aleshores, de què depèn la selecció d’una estratègia d’entre les que es posseeixen en un determinat moment? Per a contestar aquesta pregunta són possibles diverses respostes que, en bona part, tindran a veure amb les diferències individuals de cada infant o, fins i tot, amb les circumstàncies variables en un mateix. A més, les estratègies difereixen en l’exactitud, en la quantitat de temps que necessiten per a executar-se, en les demandes cognitives o en el rang de problemes a què es poden aplicar. Una possibilitat ha estat apuntada per R.S. Siegler (1986, 1987, 1988; R.S. Siegler i J. Shra- ger, 1984) en el seu model d’elecció d’estratègies. D’acord amb aquest autor, l’elecció d’una estratègia depèn de dos paràmetres: a) la força de les associacions entre l’operació que s’ha de fer (per exemple: 5 + 3) i els candidats a resposta (per exemple: 8, 7, 9, etc.); b) un criteri de confiança, que representa un estàndard intern amb què es mesura la confiança en l’exactitud de la resposta recuperada. Quan un candidat a resposta té una força associativa prou alta per excedir el criteri de confiança, aleshores aquesta resposta es recupera directament i ràpidament. Si no s’excedeix aquest criteri, es passa a la utilització d’estratègies de suport basades en el recompte. 11
  • 13. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 5+3 Recerca de l’associació en la memòria 8, 7, 9 Recuperació de la resposta Reforç de l’associació Sí Excedeix el criteri Resposta de confiança? No Estratègia de Resposta recompte Dins d’aquest context, i com es recull en la figura anterior, l’elecció d’una estratègia dependrà de la disponibilitat de fets numèrics en la memòria, ja que, pels escassos recursos cognitius que consumeix, aquesta sol ser l’estratègia que s’intenta en primer lloc. Això no obstant, aquesta disponibilitat de fets en la memòria depèn, al seu torn, de les estratègies de recompte, ja que l’execució d’una estratègia de recompte comporta el desenvolupament d’una associació entre els números del problema i la resposta generada. En aquest sentit, amb cada execució d’una estratègia de recompte s’incrementa la probabilitat de recuperació directa de fets per a posteriors solucions d’aquest problema. En resum, i per tancar aquest subapartat dedicat al desenvolupament, po- dem dir que el coneixement de les operacions bàsiques sorgeix a partir del coneixement matemàtic informal que els nens i les nenes adquireixen abans de l’ensenyament formal de les matemàtiques. 12
  • 14. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Aquesta adquisició possiblement no és una qüestió de tot o res, tal com es defensa des de les posicions clàssiques piagetianes on el coneixement mate- màtic no apareix fins a l’estadi de les operacions concretes, sinó que evolucio- na lentament com a resultat directe d’integrar un seguit d’esquemes proto- quantitatius a l’experiència de comptar. Des d’aquesta integració, la mainada va descobrint diferents estratègies cada vegada més sofisticades que utilitza per a resoldre operacions d’addició i de subtracció. 13
  • 15. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 3. QUÈ ÉS EL QUE NO FAN BÉ ELS ALUMNES AMB DIFICULTATS En aquest subapartat, i considerant el marc teòric del subapartat anterior, ens centrarem en l’estudi dels alumnes i les alumnes que presenten dificultats en l’execució de les operacions, basant-nos en treballs que han comparat alumnes amb dificultats en les matemàtiques i alumnes sense dificultats. A més, considerarem les possibles explicacions d’aquestes dificultats. Per acabar, plante- jarem la possibilitat d’establir diferents subtipus de dificultats de càlcul. 3.1 Dificultats en les operacions bàsiques Els estudis que han comparat les habilitats de càlcul d’alumnes amb dificultats en les matemàtiques presenten dos tipus de dèficits funcionals bàsics: dèficits procedimentals i dèficits en la recuperació de fets (D.C. Geary, 1990, 1993; D.C. Geary, S.C. Brown i V.A. Samaranayake, 1991; S.R. Goldman, J.W. Pellegrino i D.L. Mertz, 1988; J.R. Kirby i L.D. Becker, 1988), tal com es recull en el quadre següent: Dèficit Característiques Diagnòstic 1. Procedimental • Estratègies menys Possibles retards en el madures desenvolupament • Errors de recompte • Execució lenta 2. Recuperació de fets • Representació atípica Possibles diferències en el desenvolupament • Errors de recuperació • Temps de resposta no sistemàtics Pel que fa als dèficits procedimentals, en el quadre es recullen les característiques que els defineixen. Els alumnes amb dificultats en les matemàtiques tendeixen a presentar procediments aritmètics (estratègies de recompte) evolutivament immadurs. Per exem- 14
  • 16. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul ple, utilitzen molt més l’estratègia “comptar-ho tot” o “separació”, en comparació amb els alumnes sense dificultats, que tendeixen a utilitzar estratègies més madures com “comptar a partir del més gran”. A més, fan errors freqüents de recompte verbal quan utilitzen les estratègies de recompte. I, quan executen estratègies, mostren una velocitat de recompte més lenta que els alumnes sense dificultats. Alguns treballs han considerat que per a molts d’aquests infants aquestes diferències po- den desaparèixer amb el temps (solen abandonar estratègies menys madures com ara el recompte total en favor del recompte a partir d’un dels sumands), per bé que la velocitat a l’hora de comptar continuï sent més lenta que la dels alumnes sense dificultats. Això ha portat alguns autors (per exemple: S.R. Goldman i altres, 1988) a afirmar que les habilitats procedimentals dels alumnes amb dificultats en les matemàtiques poden arribar a aproximar-se a les dels alumnes sense dificultats, és a dir, hi hauria un retard en el seu desenvolupament. Respecte als dèficits en la recuperació de fets, en el quadre se’n resumeixen les caracterís- tiques. Els alumnes amb dificultats en les matemàtiques mostren una atípica representació de fets aritmètics en la memòria semàntica a llarg termini, de manera que només tenen em- magatzemats uns pocs fets que poden recuperar directament. A més, quan recuperen aquests pocs fets emmagatzemats, hi ha una alta proporció d’errors en comparació amb la dels alumnes normals, i els temps de resposta en la recuperació són molt variables i gens sistemàtics. Per exemple, els infants sense dificultats tarden menys de dos segons a recuperar la resposta, mentre que en els infants amb dificultats en les matemàtiques la variabilitat és gran i, cada vegada que recuperen una res-posta, poden tardar un segon, dos, quatre, o més i tot. Aquestes dificultats se solen mantenir en el temps, és a dir, no hi ha canvis en el nombre de fets que poden recuperar de la memòria, ni en el temps d’execució de la recuperació, la qual cosa pot suggerir que no hi ha un retard en el desenvolupament, sinó més aviat una diferència en el desenvolupament respecte als alumnes que no presenten dificultats. 15
  • 17. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 3.2 Explicació de les dificultats En aquest apartat ens centrarem en les possibles explicacions que poden contribuir a comprendre en què consisteixen els dèficits procedimentals i de recuperació de fets en els infants amb dificultats en les matemàtiques. D’una banda, i pel que fa a l’explicació dels dèficits de tipus procedimental, alguns treballs han plantejat la possibilitat que les estratègies de recompte menys madures i els errors en l’ús d’aquestes estratègies que presenten els infants amb dificultats en les matemàtiques es relacionin amb el desenvolupament del coneixement conceptual de comptar. Concre- tament, es proposa la hipòtesi que un coneixement del recompte evolutivament imma- dur contribueix a les pobres habilitats procedimentals dels infants amb dificultats en les matemàtiques. D.C. Geary (1992) afirma que si els alumnes amb dificultats en les matemàtiques no tenen un coneixement conceptual correcte del recompte no poden “adonar-se” dels errors que fan quan utilitzen estratègies de recompte per a resoldre operacions, com s’ha considerat que succeeix en el cas dels alumnes sense dificultats. En aquest sentit, l’alumnat amb dificultats en les matemàtiques manifesta un coneixement menys madur de les característiques essencials i no essencials del recompte. Per exemple, si se’ls presenta una tasca de detecció d’errors en què han de decidir si el recompte és co- rrecte o no, hi ha un elevat percentatge de fracàs respecte a la resta d’alumnes a l’hora de detectar errors que violen alguns dels principis del recompte, com ara el principi de correspondència; fins i tot alguns pseudoerrors, com ara començar a comptar per la part central d’una filera d’objectes sense ometre’n o repetir-ne cap (relacionat amb el principi d’irrellevància), són considerats com autèntics errors de recompte. Per tant, es veu reforçat l’argument que, per a molts alumnes amb dificultats en les ma- temàtiques, un retard evolutiu en el coneixement conceptual del recompte contribueix a potenciar les dificultats procedimentals. Pel que fa a l’explicació dels dèficits en la recuperació de fets, algunes investigacions apunten la possibilitat que aquests dèficits es relacionen amb la disponibilitat de recursos 16
  • 18. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul de la memòria de treball. Per exemple, L. S. Siegel i E. B. Ryan (1989) han comprovat que els infants amb dificultats en les matemàtiques tenen problemes seriosos per a mante- nir informació numèrica en la memòria de treball, la qual cosa ha dut a considerar que aquests escassos recursos explicarien la dificultat que tenen els alumnes amb dificultats en les matemàtiques per a representar i recuperar fets numèrics de la memòria a llarg termini (D.C. Geary, 1993; D.C. Geary i altres, 1991). L’argument que s’ha seguit per fer aquesta afirmació es basa en el plantejament de R.S. Siegler (1986) sobre el desenvolupament de la representació de fets en la memòria, se- gons el qual l’execució d’estratègies de recompte permet reforçar les associacions entre les operacions i la resposta. Perquè aquesta associació s’efectuï, l’operació i la seva res- posta han d’estar activades simultàniament en la memòria de treball. No obstant això, sabem que els infants amb dificultats en les matemàtiques són més lents i fan més errors executant estratègies de recompte; i com que la quantitat de números que es poden activar en la memòria de treball es relaciona amb la velocitat a l’hora de comptar, si aquesta és lenta hi ha més probabilitat de decaïment de les representacions de la memòria abans de completar el recompte. D’aquesta manera, s’impediria que es creés l’associació entre la resposta generada pel recompte i la representació original de l’operació (D.C. Geary i altres, 1991). En la figura següent es recull l’explicació de les dificultats de càlcul que presenten els alumnes amb dificultats en les matemàtiques. • Coneixement conceptual • Recompte Habilitats procedimentals Execució Recuperació de fets Memòria de treball Font: adaptat de D.C. Geary, 1993. 17
  • 19. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul En la figura es recull, d’una banda, la influència de la comprensió immadura del recompte en les dificultats procedimentals que presenten molts infants amb dificultats en les mate- màtiques. D’altra banda, la influència de la memòria de treball en els dèficits de recuperació de fets. Hi figura també una relació entre les habilitats procedimentals i la recuperació de fets. En realitat, aquesta relació explica la influència de la memòria de treball, ja que els dèficits pro- cedimentals (velocitat lenta en l’execució d’estratègies de recompte i elevada freqüència d’errors de còmput) impedeixen associar l’operació a la resposta. En resum, des dels estudis que hem revisat se suggereixen dos dèficits funcio- nals diferents en els infants amb dificultats en les matemàtiques: procedimentals i de recuperació de fets de la memòria. Les dificultats procedimentals sembla que es relacionen amb un coneixement immadur del recompte i és probable que, en relació amb els infants sense problemes, en certs casos aquestes difi- cultats es considerin un retard en el desenvolupament. Els dèficits relacionats amb la recuperació de fets, en canvi, sembla que persisteixen durant el desenvolupament i és probable que es relacionin amb la velocitat i els errors en l’execució d’estratègies de còmput, així com amb la disponibilitat de recursos de la memòria de treball. 3.3 Subtipus de dificultats en les matemàtiques Alguns estudis elaborats des de la neuropsicologia cognitiva també plante-gen aquesta distinció entre dèficits procedimentals i de recuperació de fets. Un estudi neuropsicològic que té especial interès és el dut a terme per Christine Temple en el camp de les discapacitats de càlcul evolutives (C. Temple, 1991), atès l’escàs nombre de treballs que hi ha en aquest tipus de casos. Estudi sobre les discapacitats de càlcul evolutives C. Temple (1991) aporta dos casos de discapacitat de càlcul evolutiva en adolescents que il·lustren la distinció entre dificultats procedimentals i de recuperació. Així, en un dels casos, un noi de disset anys, 18
  • 20. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul amb un coeficient intel·lectual dins de la normalitat, una memòria a curt termini també normal, així com la comprensió del vocabulari i la lectura, mostrava problemes continus amb l’aritmètica, malgrat haver tingut l’entrenament i l’experiència educativa perquè no fos així. Les dificultats es trobaven especialment en els procediments aritmètics, sense mostrar aquests problemes en altres àrees de la competència numèrica. Així, el processament numèric en la lectura de números i en els judicis de magnitud era completament normal. En el sistema de càlcul presentava un desenvolupament normal en el record de fets però, això no obstant, tenia una dificultat selectiva amb els procediments arit- mètics quan s’encarava amb operacions multidígits, especialment en la subtracció, la multiplicació i la divisió. Els errors no eren completament aleatoris, ja que, principalment, incloïa passos inadequats en una operació (que podien ser apropiats en una altra operació diferent) o executava passos incorrectes quan manipulava números d’una columna a una altra. Alteració dels sistemes de càlcul En contrast amb l’anterior, C. Temple descriu el cas d’una estudiant d’infermeria de dinou anys sense cap alteració neurològica coneguda. El seu processament numèric era completament normal (lectura i escriptura de números i judicis de magnitud), però mostrava un sistema de càlcul selectivament alterat. Així, els procediments aritmètics els executava sense cap dificultat, llevat d’uns pocs errors en la mul- tiplicació escrita, motivats principalment pels problemes que presentava en la recuperació de fets multiplicatius, que es trobava molt per sota del nivell normal. De fet, aquests pocs errors en la multiplicació eren a causa que el procediment li resultava molt laboriós ja que, quan topava amb algun fet que no coneixia o del qual no esta-va segura (per exemple: 7 x 8), utilitzava l’estratègia de l’addició repetida (escrivia un 7 i afegia 7 per fer 14, 7 per fer 21, etc.). Però quan se li demanava que expliqués els passos per fer una multiplicació, ho feia sense cap problema. En aquest sentit, aquest cas no presenta dificultats en els procediments, però sí en la recuperació de fets, especialment els no inclosos en les taules de multiplicació. De l’anàlisi d’aquests casos, se’n podria establir que els processos implicats en cadascun d’aquests components (procedimental/recuperació de fets) poden ser relativament independents o incloure diferents subsistemes modulars. Aquesta consideració ha propiciat que alguns autors plantegin diferents subtipus de difi- cultats en les matemàtiques. En aquest sentit, D.C. Geary (1993) proposa una taxonomia temptativa en què inclou dos subtipus generals: 19
  • 21. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 1) L’un es relacionaria amb les dificultats en la memorització i en la recuperació de fets, per bé que no és una qüestió de tot o res, atès que alguns infants amb dificultats en les matemàtiques poden recuperar certs fets de la memòria a llarg termini, però mostren altres característiques d’execució que els diferencien dels altres infants, com ara uns temps de resolució poc sistemàtics. 2) L’altre subtipus inclouria la utilització de procediments aritmètics evolutivament immadurs, retard en l’adquisició de conceptes procedimentals bàsics i errors fre- qüents en l’execució de procediments immadurs, encara que no queda del tot clar si aquestes dificultats són reflex d’un retard en el desenvolupament (D.C. Geary i altres, 1991) o són dificultats reals que persisteixen en l’aprenentatge procedimental (C. Tem- ple, 1991). De qualsevol manera, i tal com ho planteja el mateix D.C. Geary (1993), aquesta classi- ficació és temptativa, ja que, malgrat la revisió que hem presentat, es necessita un cos d’investigació més gran per a validar aquests subtipus. 20
  • 22. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 4. EL PROBLEMA DE L’AVALUACIÓ D’acord amb el marc teòric que hem proposat, l’objectiu de l’avaluació seria descriure què és el que fa i no fa correctament un alumne, és a dir, els processos que poden estar alterats quan afronta tasques de càlcul. En aquest sentit, l’avaluació hauria d’indicar si les dificultats que presenta un alumne es troben en la recuperació de fets i/o en les estratègies de recompte per a executar operacions (el grau de maduresa i el grau d’exactitud). En el cas de trobar-se en les estratègies de recompte, també seria convenient avaluar fins a quin punt el coneixement conceptual del recompte és adequat, atesa la seva influència en els dèficits procedimentals. Com que no hi ha al mercat cap test que avaluï aquest tipus de coneixement, plantejarem l’avaluació mitjançant procediments informals. 4.1 Avaluació del coneixement conceptual del recompte Amb la simple observació dels alumnes durant les tasques de recompte, és probable que ens adonem del funcionament d’aquesta activitat. Malgrat això, s’han utilitzat un seguit de tasques experimentals per a comprovar els principis fonamentals relacionats amb el re- compte. Per exemple, V. Bermejo i M.O. Lago (1991) utilitzen un seguit de tasques recollides de la bibliografia experimental per a avaluar el coneixement que tenen els infants quant al valor funcional del recompte: a) Una de les tasques que fan servir avalua la correspondència, i consisteix a inferir el cardinal d’un conjunt a partir de la relació quantitativa d’equivalència entre dos con- junts després del recompte previ d’un dels dos. Per a fer-ho, es presenten dues fileres de fitxes de dos colors (per exemple, vermell i blau) i es demana a l’infant que comprovi si hi ha alguna fitxa de color vermell que no tingui la fitxa blava corresponent. Un cop hagi arribat a la conclusió que són equi- valents, se li demana que compti la filera de cercles vermells, tot preguntant-li per la cardinalitat. 21
  • 23. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Per acabar, se li pregunta pel nombre de fitxes blaves. La tasca és correcta quan es respon amb el cardinal de la filera comptada, sense necessitat de comptar les fitxes blaves. b) Una altra tasca que presenten s’utilitza per a avaluar el principi d’ordre estable. Primerament, es componen dues fileres de cercles del mateix color disposades en corres- pondència d’un per un, entre les quals hi ha una diferència quantitativa de tres elements. La tasca de l’infant consisteix a comptar, per començar, la filera gran i a dir-ne la cardina- litat i, posteriorment, a comptar la filera petita i a establir-ne també el cardinal. A continuació, es repeteixen els cardinals que ha obtingut mentre s’assenyalen les fileres corresponents, i se li demana que creï una nova filera, més petita que la del cardinal major i més gran que la del cardinal menor (independentment que hagi assolit o no el resultat correcte). És una tasca utilitzada comunament en la comparació de magnituds. c) Finalment, proposen una tasca per a avaluar la cardinalitat, en què presenten a l’infant una filera d’elements i li demanen que compti la filera i n’indiqui el cardinal. Un cop fet això, se li repeteix el cardinal obtingut i se li demana que construeixi un conjunt equivalent a aquest cardinal i que li afegeixi x elements més. La tasca és correcta si les respostes ofereixen la quantitat exacta indicada en les instruccions. Gràcies a aquestes tasques es pot establir fins a quin punt un alumne compta amb les regles processuals sobre com comptar un conjunt d’objectes, és a dir, si té el coneixement dels principis relacionats amb el procés de recompte. Un altre plantejament diferent per a l’avaluació del coneixement de recompte es basa en el paradigma de la detecció d’errors (R. Gelman i E. Meck, 1983, 1986; D.J. Briars i R.S. Sie- gler, 1984). En aquest cas, la tasca de la criatura consisteix a jutjar correcte o incorrecte el recompte que fa un titella. Per exemple, en el treball de D.J. Briars i R.S.Siegler (1984), el titella comet diversos tipus d’errors i pseudoerrors que violen algunes de les caracterís- tiques essencials i no essencials del recompte, tal com es recull en la figura següent: 22
  • 24. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Errors Paraula omesa Saltar objecte Paraula extra Doble recompte Assenyalament Etiquetació 1 2 1 2 1 2 3 4 1 2 3 4 Pseudoerrors Direcció inversa Adjacència Començar pel mig Doble assenyalament Assenyalament Etiquetació 3 2 1 1 3 2 3 1 2 1 2 3 Com es pot apreciar en la figura, alguns errors violen característiques essencials del recompte: ometre un numeral tot assenyalant l’objecte; saltar-se un numeral sense assenyalar l’objecte; etiquetar un lloc on no hi ha cap element o utilitzar múltiples etiquetes per a un objecte assenyalat. Molts alumnes que no són capaços de percebre aquestes violacions de les caracte- rístiques essencials del recompte tendeixen a mostrar errors de càlcul en l’execució d’operacions. D’altra banda, els pseudoerrors no són errors, ja que violen característiques no essencials del recompte. Són, per exemple: - el recompte en direcció contrària a la que l’alumna o alumne utilitza habitualment; - comptar primer els elements del mateix color (adjacència); - començar el recompte per la meitat de la filera; - el doble assenyalament d’un dels objectes, però assignant-li un únic numeral. Amb aquestes tasques podem fer-nos una idea de fins a quin punt l’infant que presenta dificultats en les operacions té un coneixement conceptual adequat del recompte. 23
  • 25. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul D’aquesta manera, podem esbrinar si els errors que es fan en les operacions tenen ben establerts els principis sobre el recompte, aspecte que tindrà un interès especial a l’hora de la intervenció. 4.2 Avaluació de les estratègies de recompte Pel que fa a l’avaluació de les estratègies de recompte utilitzades en l’execució d’operacions bàsiques, la simple observació directa del comportament dels infants també pot ser suficient per a comprovar-ne el grau de maduresa. Això no obstant, pot succeir que l’observació no ens proporcioni gaire informació. En aquest cas, pot servir la simple utilització d’objectes concrets o bé un senzill procedi- ment ideat per W. Secada, K.C. Fuson i J. Hall (1983), que consisteix a utilitzar un seguit de targetes en què es representen fileres de punts i d’altres amb el cardinal d’aquests con- junts, tal com es recull en la figura següent: 8 5 sumand no visible * * * * * 8 5 * * * * * * * * * * * * * La tasca consisteix a ensenyar a l’alumne la primera targeta amb punts, tot indicant “aquí tenim vuit punts” i, alhora, mostrar-li la targeta amb el cardinal corresponent. Posterior- ment, es gira la targeta amb els punts i se li mostren dues targetes més (l’una amb punts i l’altra amb el cardinal). Aleshores, li demanem que dugui a terme l’operació correspo- nent, fent-li explícita la possibilitat de tornar a girar la targeta oculta. Els nens i les nenes que utilitzin estratègies menys madures (per exemple, comptar-ho tot) necessitaran girar la targeta, mentre que els qui utilitzin estratègies més sofisticades, no. 24
  • 26. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Amb aquesta senzilla tasca podem observar el grau de maduresa de les diferents estratègies que fa servir l’alumnat quan s’encara amb les operacions. Tot i que, insistim, l’experiència ens diu que la simple observació, juntament amb les explicacions que puguin donar els infants sobre allò que fan, pot ser suficient. En definitiva, l’avaluació ens ha de ser útil per a establir quins són els punts forts i els punts febles dels alumnes amb dificultats en les matemàtiques. Te- nint-ho en compte, la intervenció s’ha de centrar a recuperar aquells processos fonamentals per a executar operacions que estiguin alterats (tant perquè no hi ha un coneixement conceptual adequat del recompte, com perquè no s’utilitzen les estratègies més apropiades o s’utilitzen incorrectament). A continuació exposem un exemple real del que s’ha explicat: Un exemple concret: el cas de J.M. J.M. va ser avaluat en el primer trimestre del tercer curs de primària de les seves habilitats re- lacionades amb el càlcul. Es va utilitzar una prova aplicada per ordinador en la qual sortia a la pantalla la suma de cadascuna de les combinacions possibles de dos dígits (per exemple, 5 + 9) col·locades en vertical. La tasca del nen consistia a donar tan de pressa com li fos possible el resultat per un micròfon que recollia el temps de resposta. A més, l’examinador observava el tipus d’estratègia que utilitzava el nen per a cada operació, i quan no n’estava segur li preguntava directament què havia fet per a respondre (generalment els infants no tenen dificultats a ex- plicar com arriben al resultat). Això darrer no va ser necessari, ja que sempre utilitzava l’estratègia de comptar amb els dits a partir del primer sumand, independentment de la mida dels sumands, és a dir, feia el mateix per a 3 + 1 que per a 6 + 8 o per a 1 + 6: anomenava el primer sumand i anava afegint-hi dits fins a completar el segon sumand, amb l’agreujant que de vegades (segons la mida dels sumands) arribava a un resultat incorrecte, generalment el resultat –1 (per exemple, 7 + 8 = 14). 25
  • 27. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Unit a això, la seva velocitat de recompte era significativament més lenta que la que mostraven els companys i les companyes de la seva classe, la qual cosa implicava temps de resposta molt més lents. Atesa la fixació de J.M. a utilitzar sempre la mateixa estratègia, vam decidir avaluar el seu coneixement del recompte a través del paradigma de detecció d’errors. El seu coneixe- ment era relativament bo, tret dels pseudoerrors, en els quals mostrava dubtes a l’hora de considerar-los errors autèntics. En l’entrevista amb la tutora també vam comprovar que en el curs anterior van ensen- yar a J.M. a operar explícitament amb la mecànica de l’estratègia de comptar a partir del primer, fet que ens va portar a suposar, atesos els errors que cometia, que el seu apre- nentatge havia estat més memorístic que significatiu, sense una comprensió real de la utilització de l’estratègia, i molt rígid, ja que el feia servir amb qualsevol operació, inde- pendentment de la mida dels sumands. Pel que fa a la resta, la seva estratègia era constant al llarg de les diferents operacions amb minuend d’un dígit, i fonamentalment utilitzava la separació. Una dada interessant que vam observar és que J.M. intentava utilitzar una estratègia diferent en les operacions multidígit (resta portant-ne), ja que intentava portar el compte progressiu, és a dir, comp- tar des del subtrahend fins al minuend. En l’entrevista amb la tutora també vam comprovar que aquesta estratègia s’ensenyava explícitament i directament en el context de la resta portant-ne, fet que també ens va dur a pensar que l’ús era més mecànic que comprensible. En relació amb tots aquests elements, quines conclusions podem treure respecte de J.M.? Estem d’acord que les seves dificultats es troben en tres nivells: 1) En el coneixement conceptual del recompte. 2) Procedimentalment. 3) En la recuperació de fets. 26
  • 28. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Respecte de les dificultats procedimentals, les estratègies de recompte que fa servir són immadures per la seva edat, a més dels errors que comet i la lentitud que demostra. El seu aprenentatge més o menys mecànic i rígid fa que no apliqui l’estratègia que utilitza correctament en determinades operacions, fet que el condueix a cometre errors. La no- recuperació de fets de la memòria pot estar motivada per la velocitat en la utilització de l’estratègia, i això li impedeix associar el resultat amb l’operació en utilitzar tots els seus recursos cognitius en el recompte. Les decisions que podem adoptar amb J.M. poden ser les que hi ha a continuació: a) Consolidar el seu coneixement conceptual del recompte. Un cop aconseguit això, es pot plantejar: b) La utilització d’estratègies de recompte més sofisticades, però des d’un punt de vista més significatiu que memorístic, a partir de la comprensió d’aquestes. A més, i atesa la lentitud que el nen presenta en la utilització de les estratègies, c) pot ser interessant plantejar l’ensenyament directe d’uns fets numèrics, fonamental- ment a partir de regles. Una altra qüestió: aprofitem aquest cas per a reclamar la necessitat de disposar d’una teoria que ens expliqui no tan sols les dificultats que poden sorgir, sinó també que ens indiqui el desenvolupament que segueixen aquestes habilitats. El cas de la resta de J.M. reflecteix clarament aquesta qüestió. En una situació manipu- lativa, utilitza l’estratègia de separació, mentre que en el context de la resta portant-ne, conceptualment més complex, està “obligat” a fer servir una estratègia molt més sofisti- cada evolutivament i cognitivament parlant, com és el compte progressiu, la qual cosa no deixa de ser paradoxal. En aquest cas, aquesta estratègia tan sols s’hauria d’utilitzar en la resta portant-ne quan l’alumna o alumne la comprengui en contextos manipulatius. 27
  • 29. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 5. LA INTERVENCIÓ EN OPERACIONS BÀSIQUES Si partim dels pressupòsits que hem desenvolupat en l’apartat anterior, la intervenció amb alumnes que presenten dificultats d’aprenentatge de les matemàtiques s’hauria de centrar en els aspectes deficitaris mostrats pel nen o la nena, és a dir, en els punts dèbils. D’acord amb això, i com ja hem vist, la intervenció es pot orientar vers les habilitats numèriques prèvies o vers les estratègies de càlcul pròpiament dites. Vegem, a continuació, alguns pro- cediments relacionats amb cadascun d’aquests aspectes. 5.1 Desenvolupament del número Com hem tingut l’oportunitat de veure, l’execució de les operacions bàsiques, almenys en els seus inicis, necessita el domini de l’enumeració i de la sèrie numèrica. Com han demostrat D.C. Geary i altres (1992), el desenvolupament de les habilitats de còmput depèn en certa manera del coneixement del recompte i de les violacions dels seus principis. Vegem alguns procediments centrats tant en els principis per a enumerar conjunts com en l’establiment de la sèrie numèrica. Per a treballar l’enumeració En l’enumeració vèiem que confluïen les regles processals del recompte, per la qual cosa l’ensenyament hauria de destacar les operacions següents: a) comptar a poc a poc i amb atenció; b) aplicar una etiqueta a cada element; c) assenyalar cada element només un cop; d) comptar organitzadament per a estalviar esforç en el control. Quan els elements són mòbils, una estratègia adequada per a comptar-los pot ser separar clarament els elements comptats dels que encara queden per comptar; i quan els elements 28
  • 30. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul són fitxes, el control dels objectes comptats i dels que queden per comptar es pot facilitar amb estratègies d’aprenentatge com ara començar per un lloc ben definit i continuar sistemàticament en una direcció. També pot ser molt interessant fer servir històries i discutir-les posteriorment, com les que figuren a continuació per a les estratègies “només una vegada” i “l’ordre no importa”, corresponents als principis de recompte de correspondència i irrellevància (adaptades dels exemples del llibre d’A.J. Baroody, 1987): Només una vegada Comptamalament estava molt content perquè preparava la seva festa d’aniversari. El cuiner li preguntà quants amics hi estaven convidats, i Comptamalament va treure una llista que començà a comptar. Tot i que va perdre el compte dels noms que ja havia comptat, continuà i li’n sortiren 27. Per a assegurar-se, els tornà a comptar, i aquest cop li’n sortiren 22. Estava molt confús i el cuiner li digué que no podia preparar la festa fins que no sabés quanta gent hi aniria. Comptamalament estava molt trist, però arribà el seu germà Comptabé i li preguntà què li passava. Després d’explicar-li-ho, Comptabé va agafar la llista i proposà a Comptamalament que comptessin plegats. Va treure un retolador màgic i començaren a comptar la llista des del principi. Cada vegada que comptaven un nom, li posaven una marca. D’aquesta manera, van comptar cada nom de la llista una sola vegada. N’hi havia 25 i Comptamalament, molt content, va anar a dir-ho al cuiner. L’ordre no importa Comptamalament havia planificat un dia molt divertit amb els amics, però no gosava sortir del llit i baixar les escales. El matí anterior havia comptat els graons en baixar a esmorzar i li n’havien sortit 10. Però, quan pujà a dormir, n’havia comptat 11. Si hi havia menys graons en baixar que en pujar, potser cauria de morros per terra! Així que, quan els amics el cridaren, es quedà al llit. Aleshores arribà Comptabé i pujà les escales per a preguntar al seu germà què li passava. Quan sentí que Comptamalament tenia por de caure per les escales va dir que no podia ser; les escales tenen el mateix nombre de graons tant si puges com si baixes! Arrossegà Comptamalament fins a les escales i Compta- malament, molt espantat, donava les gràcies al seu germà per arriscar-se a caure. Baixaren les escales comptant-les: 10!; després, van tornar a pujar i també els en sortiren 10. Aleshores Comptabé li digué que era la mateixa escala i que, per tant, tenia el mateix nombre de graons. Comptamalament se n’alegrà i sortí corrent a trobar els amics. Un altre problema que poden trobar els alumnes amb dificultats pot ser el d’establir el 29
  • 31. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul valor cardinal d’un conjunt, de tal manera que necessiten comptar una vegada i una altra el nombre d’elements del conjunt per tal de saber quants n’hi ha. Per a solucionar-ho, es pot establir amb l’alumne que, quan compta, l’últim que diu es pot utilitzar per a recordar quantes coses ha comptat; o també proposar-li que repeteixi el darrer número. En aquesta línia, W. Secada, K.C. Fuson i J. Hall (1983) plantegen un procediment més inductiu basat en dues etapes: 1) La primera etapa consisteix a presentar un conjunt a l’infant i indicar-li verbalment i mitjançant un número escrit el cardinal d’aquest conjunt. Se li demana que compti el conjunt i que observi que el resultat del recompte coincideix amb la designació cardinal. 2) En la segona etapa es presenta un altre conjunt amb la designació cardinal i se li demana que el compti, però abans d’acabar se li diu que predigui el resultat, tal com es mostra a continuació. Etapa A Etapa B Pas 1 Pas 1 Mestre: “Tenim cinc cercles (ensenya cinc cercles Mestre: “Tenim quatre quadres, compta’ls per i una targeta amb el número cinc); compta’ls per veure quants n’hi ha”. veure quants n’hi ha”. 5 4 Pas 2 Pas 2 5 4 Infant: “1, 2, 3, 4, 5”. Infant: “1, 2...”. Mestre: “Mira, t’he donat cinc cercles (assenyala Mestre: “Quin serà el darrer número que diràs la targeta amb el número) i, quan els has comp- quan acabis de comptar?” (El mestre corregeix i tat, l’últim número que has dit era 5. El nombre continua si ho creu necessari.) de cercles que hi ha és sempre el mateix que el darrer número que dius quan els comptes”. Jerarquia de tasques d’enumeració organitzades per ordre de dificultat Com podem veure en el quadre de la pàgina següent, una tasca com comptar objectes mòbils (B) és més senzilla que una tasca de recompte (C) d’objectes que no poden moure’s (per exemple, una filera de punts en un full). Amb els objectes mòbils, els nens i les nenes van separant els elements del conjunt i 30
  • 32. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul etiquetant-los; cada vegada que se separa un objecte es diu un número i es comprova si hi queden més elements; quan no n’hi queden més, s’anuncia l’últim número com a cardinal. El fet de separar físicament els objectes permet als infants ajustar-se al criteri de “només una vegada”. Amb tot, quan els objectes no es poden moure la tasca és molt similar a l’anterior, però amb un pas addicional. Cal recordar els elements que s’han comptat sense moure’ls. Aquesta tasca és encara més complexa si els elements no formen una filera, sinó que estan desorganitzats (D). Podem considerar una tasca encara més difícil per a molts nens i nenes, com és la de comptar un sub- conjunt d’un conjunt donat (E). En aquest cas, hi ha un element més afegit, ja que cada vegada que es compta un element cal comparar-lo amb el número que ens han demanat i que prèviament ha hagut de ser emmagatzemat. Per tant, hem de tenir en compte aquestes consideracions quan treballem l’enumeració amb canalla que presenta dificultats. F Un número donat i diversos conjunts d’objectes fixos Escollir un conjunt de la grandària indicada pel núm. D Conjunt d’objectes fix, no ordenat E Un número donat i un Comptar els objectes conjunt d’objectes C Comptar un subconjunt de la Conjunt d’objectes fix, grandària donada ordenat Comptar els objectes B Conjunt d’objectes mòbils Comptar els objectes, extraient-los del conjunt A Conjunt de fins a 5 objectes, o de fins a 10 objectes Recitar els números en ordre 31
  • 33. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Per a treballar la sèrie numèrica Alhora que es promou l’enumeració, els nens i les nenes han d’anar dominant la sèrie numèrica. Tanmateix, això no suposa que recitin els números de memòria, sinó que re- quereix un coneixement ple i significatiu per al seu ús posterior en les operacions elemen- tals. Així, és necessari que la criatura sigui capaç de fer elaboracions de la sèrie numèrica establint, per exemple, el número següent i l’anterior d’un número donat, de la mateixa manera que comptar regressivament. Per a dur-ho a terme, i en la mesura que es trobin dificultats en aquest punt, la intervenció hauria de començar ajudant la criatura a establir el número següent i l’anterior amb la part més familiar de la seqüència (de l’1 al 5 o al 10). Al principi, es podrien utilitzar representa- cions concretes, com ara una llista de números escrits i, més endavant, fer-ho mentalment. Una activitat per a treballar la seriació Un procediment senzill, descrit a N.S. Bley i C.A. Thornton (1981), consisteix a estendre targetes numera- des i en ordre damunt la taula. Sense que la criatura ho pugui veure, es posa una carta de cap per avall i se li demana (ara ja pot mirar) que esbrini quina és la carta tapada. Per a poder-ho descobrir, s’assenyala la carta posterior (anterior) a la carta tapada i es diu: quina carta és aquesta?, quina ve just després (abans)? Es continua així, fins que es tapen tots els números. Posteriorment, es van eliminant els indicis visibles de la sèrie aritmètica i se li demana que ho resolgui mentalment. Es col·loquen totes les cartes de cap per avall i se’n gira una, preguntant al nen o a la nena quin número va abans o després de l’aixecat. En definitiva, aquestes activitats i d’altres que es poden crear a partir dels principis exposats van encaminades que els nens i les nenes dominin la sèrie numèrica i l’enumeració, ja que per a poder afrontar les operacions aritmèti- ques elementals abans han de dominar les tècniques bàsiques per a comptar. Si els infants no han tingut experiències de numeració abundants i precises no aprendran, per exemple, que els efectes d’afegir un element a un conjunt fan variar la seva designació cardinal per a convertir-la en el número següent de la sèrie numèrica, aspecte amb el qual comencem la intervenció en les opera- cions bàsiques. 32
  • 34. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul 5.2 Operacions bàsiques Abans del domini de les combinacions numèriques bàsiques, la intervenció es pot recolzar en els procediments de càlcul basats en el recompte amb objectes concrets (dits o blocs). Per a treballar les estratègies de recompte En aquest punt, diversos autors afirmen (vegeu A.J. Baroody, 1984, 1987; P. Starkey i L. Gelman, 1982, entre d’altres) que el més convenient seria començar pels problemes més senzills del tipus n + 1 (n – 1) amb el suport del domini de la tècnica del número següent (anterior), és a dir, amb l’ús eficaç de la sèrie numèrica per a determinar les relacions en- tre n i el número que el segueix o el precedeix, tal com comentàvem en el subapartat anterior. Posteriorment, es poden anar introduint addicions més grans, com ara n + 2 o n + 3, on els alumnes poden utilitzar estratègies de recompte, per bé que al principi és convenient que els sumands siguin petits (d’1 a 5) perquè els infants puguin utilitzar pautes digitals. Això no obstant, on més problemes troben algunes criatures amb dificultats és en la utilit- zació de procediments de recompte més madurs per a l’addició o la subtracció, com hem tingut l’oportunitat de veure en tractar de les dificultats. Ara bé, com ja sabem, els infants sense dificultats inventen o descobreixen les estratègies més sofisticades per si mateixos. Aleshores, es podria proposar l’ensenyament directe i ex- plícit de procediments més madurs, com pot ser comptar a partir del primer número per a l’addició o el compte progressiu per a la subtracció, i no dependre de la possible invenció per part de la mainada. Però cal tenir en compte que alguns treballs sobre el tema semblen no donar suport a aquesta idea. Per exemple, L.B. Resnick (L.B. Resnick i W.W. Ford, 1981; L.B. Resnick i R. Neches, 1984) argumenta que l’ensenyament verbal i explícit pot resultar confús i in- comprensible, per la qual cosa suggereix que l’objectiu de la intervenció s’orienti cap a la creació de situacions de l’aprenentatge on s’optimitzin les probabilitats que es produeixin aquestes transicions vers estratègies més madures. Vegem alguns plantejaments que van en aquesta línia. 33
  • 35. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Per exemple, Karen Fuson i els seus col·laboradors (K.C. Fuson, 1986; K.C. Fuson i W. Secada, 1986; K.C. Fuson i G.B. Willis, 1988; K.C. Fuson, 1992; W. Secada, K.C. Fuson i J. Hall, 1983) han desenvolupat una pro-posta per a ajudar els infants a utilitzar dues estratè- gies relativament complexes, com són comptar a partir del primer i el compte progressiu. Pel que fa a la primera, ja hem comentat que per a passar d’una estratègia de comptar- ho tot a comptar a partir d’un dels sumands, W. Secada i altres (1983) estableixen que l’infant ha de ser capaç de comptar a partir de qualsevol punt de la sèrie numèrica, ha de poder convertir el cardinal del primer conjunt en un número més amb què prosseguir el recompte i saber començar el recompte del segon sumand amb el següent element de la seqüència de recompte. En aquest sentit, proposen el procediment següent per a treballar amb nens i nenes: 8+5 Tècnica 1: “Quan comptes tots els punts, què dius per a aquest punt?” 8+5 Tècnica 2: “Quan comptes tots els punts, què dius per a aquest punt?” 8+5 Comptar a partir d’un sumand. Quants punts hi ha? Basant-se en aquest plantejament, K.C. Fuson (1986; K.C.Fuson i G.B. Willis, 1988) introdueix l’ensenyament de l’estratègia del compte progressiu per a la subtracció, ja que aquesta 34
  • 36. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul operació és conceptualment similar a comptar a partir d’un sumand. 8+5 13 - 8 1. Comptar 5 a partir de 8. 1. Comptar des del 8 fins al 13. 2. Parar quan el patró dels dits estigui en 5. 2. Parar quan es digui 13. 3. Respondre l’última paraula dita. 3. Respondre amb el patró de la mà. Aquesta estratègia s’introdueix a partir de la utilització de pautes digitals. A més, ho fa en el context de resolució de problemes verbals d’igualació. Per exemple, “en Joan té 8 bales; en Pere en té 13; quantes bales li falten a en Joan per a tenir-ne les mateixes que en Pere?”. 8 + ? = 13 A.J. Baroody (1987) ha proposat una forma més senzilla d’emprar aquest procediment: la utilització d’objectes concrets que progressivament es poden anar retirant o barrejant amb els dits. En aquest cas es treballa amb objectes concrets demanant a l’infant que determini quants pesos cal afegir al plat que té menys elements per a aconseguir que el pes d’ambdós plats sigui el mateix, una tasca força similar a la que es planteja en els problemes d’igualació. Per a dur-ho a terme, pot anar afegint blocs (que poden ser d’un color diferent) fins que s’arribi a 10 9 8 7 6543 l’equilibri i comptar-los, o bé comp- 21 12345 6789 tar-los a mesura que els va afegint. 10 Posteriorment, es poden utilitzar suports semiconcrets com la barra re- glada de la figura i, finalment, instar l’infant a utilitzar els dits o el recompte mental. 35
  • 37. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Com podem veure, aquests són alguns dels procediments que es poden fer servir per a l’ensenyament d’estratègies cada cop més complexes i sofisticades. Amb l’efecte de la pràctica, les alumnes i els alumnes aniran automatitzant progressivament aquestes estra- tègies i, el més important, aniran creant associacions entre les combinacions numèriques bàsiques i el resultat de l’operació, de tal forma que les estratègies de recompte aniran desapareixent en favor de la recuperació de fets de la memòria, com ja hem vist en el model proposat per R.S Siegler. Tanmateix, també indicàvem que en molts casos això no serà així (recordem els treballs de D.C. Geary i altres, 1991, i S.R. Goldman i altres, 1988). És del tot previsible que molts alumnes amb dificultats en les matemàtiques tinguin problemes en la recuperació de fets, per la qual cosa, en aquests casos també caldrà una intervenció directa. Per a treballar la recuperació de fets Alguns treballs (vegeu, per exemple, R. Howell, E. Sidorenko i J. Jurica, 1987) han demostrat que la simple exposició de fets, perquè siguin memoritzats, no és efectiva per a la mainada que presenta dificultats. Per tant, i encara que pot ser necessària una certa interiorització de dades específiques, sembla més eficient un plantejament d’intervenció basat en l’aprenentatge de regles (R. Steinberg, 1985; C.A. Thornton, 1990; C.A. Thornton, G.A. Jones i M.A. Toohey, 1983; G.A. Jones, C.A. Thornton i M.A. Toohey, 1985). Per exemple, C.A. Thornton i els seus col·laboradors han seguit una línia d’investigació per a l’ensenyament de fets a infants amb dificultats, basant-se en l’entrenament en estratègies o procediments que afavoreixen la transició al record automàtic. El seu pro- grama es fonamenta en l’ensenyament d’una sèrie de regles ordenades de més a menys complexitat. Aquestes regles són: a) Comptar, a partir d’un número donat, fets que contenen 1 o 2 afegits. Gràcies al domini de la sèrie numèrica, els infants poden afrontar sense dificultat les combinacions elementals del tipus n + 1, com comentàvem més amunt. Tocant a això, també tenen la possibilitat de descobrir l’ús de les relacions ben conegudes de la sèrie numèrica entre el número donat i el que el segueix o, saltant-se un número, el que ve 36
  • 38. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul després d’aquest (A.J. Baroody, 1987). Alguns dels procediments descrits més amunt, com els de N.S. Bley i C.A. Thornton (1981), poden ser interessants per a aplicar-los aquí. b) Regla del 0 (per exemple: 0 + 6). S’acostuma a aprendre amb relativa facilitat, igual que alguns dobles amb núme- ros petits com ara 1 + 1 o 2 + 2; malgrat això, les sumes de dobles més grans poden ser més difícils d’adquirir. Per a evitar-ne la memorització, C.A. Thornton i els seus col·laboradors proposen la utilització de mnemotècnies visuals com, per exemple, l’ús de les dues mans per a 5 + 5, la representació d’una caixa d’ous per al 6 o una aranya per al doble 4 + 4, tal com figura en el dibuix. “Això és un vuit” “Quatre potes i quatre potes fan vuit” c) Dobles amb l’ús de mnemotècnies visuals. Aquestes representacions visuals es poden anar substituint per la utilització de cubs de diferent color que es poden posar en correspondència (R. Steinberg, 1985). d) Dobles propers, afegint 1 o 2 al doble (per exemple: 6 + 7). Es pot dur a terme afegint, per exemple, un cub o dos a una filera de cubs. e) Redistribució basada en el 10, és a dir, utilitzar el 10 per a fets el número més gran dels quals s’apropi a aquest número. 37
  • 39. LES DIFICULTATS D’APRENENTATGE DE LES MATEMÀTIQUES Mòdul 2: Dificultats en els processos de càlcul Aquesta darrera és la regla més complexa i consisteix a descompondre el sumand menor per a fer que el sumand més gran sigui deu i després sumar la resta a deu, tal com es veu en la figura per a 9 + 4. 9 10 +4 ___ +3 ___ 13 13 Aquestes regles es poden aplicar de la mateixa manera per al record de fets de restes (C.A. Thornton, 1990; R. Steinberg, 1985), utilitzant el concepte de subtracció com a invers del d’addició. En definitiva, la intervenció amb els alumnes i les alumnes que presenten dificultats en les operacions s’ha d’orientar cap als processos que poden estar alterats. En aquest sentit, hem presentat un seguit de procediments encaminats al desenvolupament de les habilitats numèriques prèvies com són l’enumeració o l’establiment de la sèrie numèrica. Uns altres procediments s’han centrat en les operacions pròpiament dites, tant en les estratègies de recompte com en la recuperació de fets. 38