SlideShare a Scribd company logo
1 of 19
Download to read offline
THE COPPERBELT UNIVERSITY
SCHOOL OF ENGINEERING
CS211 – Applied Computing
Group Assignment two
Due Date: 25 August 2023
Instructions:
1. The assignment is to be undertaken in groups of at most four students.
2. Each group will be required to submit hardcopy and PDF reports.
3. Each group will be required to make a 20-minute video presentation explaining the GUI and functionality of code
developed. Each student in a group is required to speak for a minimum of three minutes on a sizeable section of the GUI
project.
4. Each group’s softcopy submission should be saved as a folder with the Group leader’s name as the name of the folder.
The folder should contain a PDF report, video presentation and MATLAB files.
5. The two class representatives will be provided a flash disk through which all the group folders will be submitted to faculty
for evaluation.
6. Follow the detailed assignment instructions on page three and the associated video-based guidelines.
Problem sets:
Develop a GUI-based application that has the following capabilities: -
i. The programme should be able to compute several scenarios of equations assigned to a group and display the graph
on a GUI. Use appropriate functional and/ or class abstraction to encapsulate this capability. Figure 1 below shows an
example of how scenarios can be visualised.
ii. The programme should be able to read and write data generated from scenarios analysed onto properly annotated
excel tables.
iii. The programme should be able to evaluate such statistics as maximum, minimum, mean and standard deviation for
the generated data. Use for-loops or while loops and other flow control structures. Use of built-in MATLAB functions
such as min, max and std will be penalised.
Fig 1 Scenario visualization for a projectile under various
firing angles and initial velocities
S/N NAMES SIN EQUATIONS
1 NATASHA MUMBA 21172328
Fg =
G ∗ Msat ∗ ME
(RE + horbit)2
Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡
2 CHIFUNDA FREDRICK 21168198 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ (
𝑥
𝑣
− 𝑡))
Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
3 MOSES KALENGA 21164789
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
4 MWABA MWAPE 21170878 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
5 COMFORT SALUNDA 21163547
𝑡 =
√ℎ1
2
+ 𝑥2
𝑉1
+
√ℎ2
2
+ (𝐿 − 𝑥)2
𝑉2
Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2
6 JOSHUA BANDA 21171962
𝐼 = 𝐼𝑜 ∗ [
sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿)
𝜋 ∗ 𝑎 ∗ sin (𝜃)/2
]
2
Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
7 ALINANI SINKAMBA 21166737
𝐸 =
𝑚 ∗ 𝐶2
√1 −
𝑣2
𝑐2
Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐
8 ANDREW MUSUNGA 21164463 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
9 SEBASTIAN MTONGA 21163249
𝑉 =
√
2 ∗ 𝑔 ∗ ℎ
(
𝐴1
𝐴2
)
2
− 1
Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
10 TRYWELL CHANDA 21167051
Fg =
G ∗ Msat ∗ ME
(RE + horbit)2
Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡
11 DIMBANI MVULA 21166143 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ (
𝑥
𝑣
− 𝑡))
Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
12 MERCY MVULA 21171643
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
13 CHIBALE MIKE 21167131 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
14 ANGEL CHOMBA 21162513
𝑡 =
√ℎ1
2
+ 𝑥2
𝑉1
+
√ℎ2
2
+ (𝐿 − 𝑥)2
𝑉2
Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2
15 CHITENGI JAMES 21165007
𝑟𝑠𝑎𝑡 =
𝑎 ∗ (1 − 𝑒2
)
1 + 𝑒 ∗ cos (𝜃)
Variables: 𝜃 𝑎𝑛𝑑 𝑒
Produce polar plots of the above satellite orbit.
16 GAD MASTAKI
NTAMBWE
21940386
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
17 PATSON CHIKUTA
CHAOKA
21170884
𝑉 =
1
4 ∗ 𝜋 ∗ 𝜖𝑜
∗
𝑄
2 ∗ 𝑎
∗ 𝐿𝑛 (
√𝑎2 + 𝑥2 + 𝑎
√𝑎2 + 𝑥2 − 𝑎
)
Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄
18 SIKOMBE ELIJAH 21169993
𝑔 =
𝐺 ∗ 𝑀𝐸
(𝑅𝐸 + ℎ𝑜𝑟𝑏𝑖𝑡)2
Variables: ℎ𝑜𝑟𝑏𝑖𝑡 , 𝑅𝐸 𝑎𝑛𝑑 𝑀𝐸
19 KASUBA CHARLES 21166978
𝐶 =
𝜋 ∗ 𝜀 ∗ 𝐿
𝐿𝑛 [
𝑑
𝑟
+ √(
𝑑
𝑟
)
2
− 1]
Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿
20 WENCE MWALE 21164732
𝐹 =
𝑄2
4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2
∗ 𝐿𝑛 (
(𝑎 + 𝐿)2
𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2
)
Variables: Q, L and a
21 SAMSON CHIZINGUKA 21162696 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡)
Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡
22 JULLIEN PHIRI 20150573
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
23 MOSES KAMBOLE 21167525
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
24 KELVIN MUGWAGWA 21162958 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
25 INNOCENT MULENGA 21166878
𝑉 =
√
2 ∗ 𝑔 ∗ ℎ
(
𝐴1
𝐴2
)
2
− 1
Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
26 MWALE FRANCIS 21162415 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡)
Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡
27 ANDREW KAWINA 21178266
𝐶 =
𝜋 ∗ 𝜀 ∗ 𝐿
𝐿𝑛 [
𝑑
𝑟
+ √(
𝑑
𝑟
)
2
− 1]
Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿
28 ANGEL LONGOLONGO 21162549
𝐹 =
𝑄2
4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2
∗ 𝐿𝑛 (
(𝑎 + 𝐿)2
𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2
)
Variables: Q, L and a
29 BLESSINGS KUNDA 21163987 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ (
𝑥
𝑣
− 𝑡))
Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
30 AUGUSTINE BALENGU 21168766
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
31 BLESSINGS JAMES
BWALYA
21162923
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅
32 MICHAEL KALUBA 21163517
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
33 MADALITSO NJOVU 21163550 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
34 PHILIP BWALE MULUME 21162318
𝐸 =
𝑚 ∗ 𝐶2
√1 −
𝑣2
𝑐2
Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐
35 MICHELLE KAMPEKETE 21178270
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
36 MALELE KABOLEKA 21162446
Fg =
G ∗ Msat ∗ ME
(RE + horbit)2
Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡
37 DEOGRACIOUS
HAMAKALA
21168204
𝑦 = 𝐴 ∗ cos (2 ∗ π ∗ (
𝑥
𝐿
−
𝑡
𝑇
))
Variables: 𝐿, 𝑡 𝑎𝑛𝑑 𝑥
38 VICTOR SAKUWAHA 21165455 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
39 OBED KAKOMPE 21172582
𝑡 =
√ℎ1
2
+ 𝑥2
𝑉1
+
√ℎ2
2
+ (𝐿 − 𝑥)2
𝑉2
Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2
40 KAPOKA CHIBAMBA 21161380
𝐼 = 𝐼𝑜 ∗ [
sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿)
𝜋 ∗ 𝑎 ∗ sin (𝜃)/2
]
2
Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
41 MAPALO CHIPULU 21165988
𝑟𝑠𝑎𝑡 =
𝑎 ∗ (1 − 𝑒2
)
1 + 𝑒 ∗ cos (𝜃)
Variables: 𝜃 𝑎𝑛𝑑 𝑒
Produce polar plots of the above satellite orbit.
42 LONDE MUSONDA 21940959
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
43 SANGWANI MUSETEKA 21169346
𝑉 =
1
4 ∗ 𝜋 ∗ 𝜖𝑜
∗
𝑄
2 ∗ 𝑎
∗ 𝐿𝑛 (
√𝑎2 + 𝑥2 + 𝑎
√𝑎2 + 𝑥2 − 𝑎
)
Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄
44 INNOCENT MWAPE 21169995
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
45 VIVIAN CHINGA 21169245
𝑉 =
√
2 ∗ 𝑔 ∗ ℎ
(
𝐴1
𝐴2
)
2
− 1
Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
46 BOYD KALUFYENTI 21162861
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
47 KELVIN JACOB PHIRI 21165246 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
48 STEVEN MUMBA
CHILONGA
21162140
𝑟𝑠𝑎𝑡 =
𝑎 ∗ (1 − 𝑒2
)
1 + 𝑒 ∗ cos (𝜃)
Variables: 𝜃 𝑎𝑛𝑑 𝑒
Produce polar plots of the above satellite orbit.
49 MULUSA SIMUKONDA
PUPE
21162140 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡)
Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡
50 CHIKUNJI ELIJAH 21166782
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
51 IAN MULENGA 21164179
𝐼 = 𝐼𝑜 ∗ [
sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿)
𝜋 ∗ 𝑎 ∗ sin (𝜃)/2
]
2
Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
52 KINGSLEY MWAPE 21172260
𝑇 = 𝑇𝑎 +
𝑃
𝛿
∗ [1 − 𝑒
(−
𝛿
𝑐∗𝑚
∗𝑡)
]
Variables: 𝛿, 𝑡 𝑎𝑛𝑑 𝑃
53 TUZA ZIMBA 21169188 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ (
𝑥
𝑣
− 𝑡))
Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
54 SHADRICK NYIRONGO 21166834
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
55 ALICK PHIRI 21166320 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
56 CHISHIMBA DICKSON 21172548
𝑡 =
√ℎ1
2
+ 𝑥2
𝑉1
+
√ℎ2
2
+ (𝐿 − 𝑥)2
𝑉2
Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2
57 MWAPE ERNEST 21172436
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅
58 DWIGHTY CHISI 20149720
𝑇 = 𝑇𝑎 +
𝑃
𝛿
∗ [1 − 𝑒
(−
𝛿
𝑐∗𝑚
∗𝑡)
]
Variables: 𝛿, 𝑡 𝑎𝑛𝑑 𝑃
59 MUKULI SYAMUNTU 21164781
𝑉 =
1
4 ∗ 𝜋 ∗ 𝜖𝑜
∗
𝑄
2 ∗ 𝑎
∗ 𝐿𝑛 (
√𝑎2 + 𝑥2 + 𝑎
√𝑎2 + 𝑥2 − 𝑎
)
Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄
60 MAPALO MUKALULA 21172772
𝐼 = 𝐼𝑜 ∗ [
sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿)
𝜋 ∗ 𝑎 ∗ sin (𝜃)/2
]
2
Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
61 SALIFTYANJI JULLIET
MUKANGA
21172496
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
62 JOSEPH CHANGA 21164860 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
63 PATRICK MULENGA 21163317
𝐸 =
𝑚 ∗ 𝐶2
√1 −
𝑣2
𝑐2
Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐
64 RAYMOND MUJALA 21164465
𝐹 =
𝑄2
4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2
∗ 𝐿𝑛 (
(𝑎 + 𝐿)2
𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2
)
Variables: Q, L and a
65 KABUNDA JASON 21166919
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
66 IBRAHIM AHMED 21172413
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
67 AZARIAH SHABBANI 21169398 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
68 KASAKULA MAMWE 21161371 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ (
𝑥
𝑣
− 𝑡))
Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
69 DELGRACIOUS TIMBA 21168679
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
70 MUTALE KANGWA 20147392
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
71 CHEELO HIMOONGA 21169633 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
72 HAGUTA LWINI 12137071
𝐶 =
𝜋 ∗ 𝜀 ∗ 𝐿
𝐿𝑛 [
𝑑
𝑟
+ √(
𝑑
𝑟
)
2
− 1]
Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿
73 MOSES FUMBESHI 21163845 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡)
Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡
74 KENFIELD WATSON
KANDESHA
21164747
𝑖 = (
𝐸
𝑅
) ∗ [1 − 𝑒−𝛽∗𝑡
∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1
∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))]
Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
75 MWABU PETER 21165695
𝐼 = 𝐼𝑜 ∗ [
sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿)
𝜋 ∗ 𝑎 ∗ sin (𝜃)/2
]
2
Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
76 JOSEPH SILWIMBA 21165046
𝑡 =
√ℎ1
2
+ 𝑥2
𝑉1
+
√ℎ2
2
+ (𝐿 − 𝑥)2
𝑉2
Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2
77 RICHARD MULENGA 21165483
𝑉 =
√
2 ∗ 𝑔 ∗ ℎ
(
𝐴1
𝐴2
)
2
− 1
Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
78 CHRISPINE CHUNGU 21171100 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅
79 MULENGA RONTYA 21170169
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅
80 BANDA CHRISTINE 21171050 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
81 LUSAYO SIMBEYE 21159654 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡)
Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡
82
SINKENDE MANDA 21172469
𝑉 =
√
2 ∗ 𝑔 ∗ ℎ
(
𝐴1
𝐴2
)
2
− 1
Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
83 VICTOR MUSUKU
CHISHALA
21170113
𝐸 =
𝑚 ∗ 𝐶2
√1 −
𝑣2
𝑐2
Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐
84 KULELWA LAMYA 21164075
𝑞 = 𝐴 ∗ 𝑒
−(
𝑅
2∗𝐿
)𝑡
∗ 𝑐𝑜𝑠 (√
1
𝐿 ∗ 𝐶
−
𝑅2
4 ∗ 𝐿2
∗ 𝑡 + ∅)
Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅
85 DANIEL CHISHALA 21168494 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡
∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿
86 DAKA MEKI 20147008
𝐸𝑦 =
𝑞
4 ∗ 𝜋 ∗ 𝜀𝑜
∗ (
1
(𝑦 − 𝑑/2)2
−
1
(𝑦 + 𝑑/2)2
)
Variables: y, q and d
87 CECILIA KANENGO 21172055
𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗
𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2]
𝑘 ∗ 𝑎 ∗ sin (𝜃)/2
Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔
88 MAPESHA M SIKALIMA 21163852
𝑉 =
1
4 ∗ 𝜋 ∗ 𝜖𝑜
∗
𝑄
2 ∗ 𝑎
∗ 𝐿𝑛 (
√𝑎2 + 𝑥2 + 𝑎
√𝑎2 + 𝑥2 − 𝑎
)
Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄
89 STEIN NUNDWE 21168586
𝑔 =
𝐺 ∗ 𝑀𝐸
(𝑅𝐸 + ℎ𝑜𝑟𝑏𝑖𝑡)2
Variables: ℎ𝑜𝑟𝑏𝑖𝑡 , 𝑅𝐸 𝑎𝑛𝑑 𝑀𝐸

More Related Content

Similar to CS211 Assignment two 2023.pdf

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 

Similar to CS211 Assignment two 2023.pdf (20)

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptx
 
Tool mathematics l4
Tool mathematics l4Tool mathematics l4
Tool mathematics l4
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
 
Formulas
FormulasFormulas
Formulas
 
FUNCTIONS L.1.pdf
FUNCTIONS L.1.pdfFUNCTIONS L.1.pdf
FUNCTIONS L.1.pdf
 
Semana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionSemana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacion
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Ta 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealTa 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra lineal
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
Helicopter rotor dynamics
Helicopter rotor dynamicsHelicopter rotor dynamics
Helicopter rotor dynamics
 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 

Recently uploaded

Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
drm1699
 

Recently uploaded (20)

Encryption Recap: A Refresher on Key Concepts
Encryption Recap: A Refresher on Key ConceptsEncryption Recap: A Refresher on Key Concepts
Encryption Recap: A Refresher on Key Concepts
 
BusinessGPT - Security and Governance for Generative AI
BusinessGPT  - Security and Governance for Generative AIBusinessGPT  - Security and Governance for Generative AI
BusinessGPT - Security and Governance for Generative AI
 
Wired_2.0_CREATE YOUR ULTIMATE LEARNING ENVIRONMENT_JCON_16052024
Wired_2.0_CREATE YOUR ULTIMATE LEARNING ENVIRONMENT_JCON_16052024Wired_2.0_CREATE YOUR ULTIMATE LEARNING ENVIRONMENT_JCON_16052024
Wired_2.0_CREATE YOUR ULTIMATE LEARNING ENVIRONMENT_JCON_16052024
 
The Strategic Impact of Buying vs Building in Test Automation
The Strategic Impact of Buying vs Building in Test AutomationThe Strategic Impact of Buying vs Building in Test Automation
The Strategic Impact of Buying vs Building in Test Automation
 
Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
Abortion Pills For Sale WhatsApp[[+27737758557]] In Birch Acres, Abortion Pil...
 
Abortion Pill Prices Mthatha (@](+27832195400*)[ 🏥 Women's Abortion Clinic In...
Abortion Pill Prices Mthatha (@](+27832195400*)[ 🏥 Women's Abortion Clinic In...Abortion Pill Prices Mthatha (@](+27832195400*)[ 🏥 Women's Abortion Clinic In...
Abortion Pill Prices Mthatha (@](+27832195400*)[ 🏥 Women's Abortion Clinic In...
 
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
 
Evolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI EraEvolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI Era
 
Navigation in flutter – how to add stack, tab, and drawer navigators to your ...
Navigation in flutter – how to add stack, tab, and drawer navigators to your ...Navigation in flutter – how to add stack, tab, and drawer navigators to your ...
Navigation in flutter – how to add stack, tab, and drawer navigators to your ...
 
The Evolution of Web App Testing_ An Ultimate Guide to Future Trends.pdf
The Evolution of Web App Testing_ An Ultimate Guide to Future Trends.pdfThe Evolution of Web App Testing_ An Ultimate Guide to Future Trends.pdf
The Evolution of Web App Testing_ An Ultimate Guide to Future Trends.pdf
 
Microsoft365_Dev_Security_2024_05_16.pdf
Microsoft365_Dev_Security_2024_05_16.pdfMicrosoft365_Dev_Security_2024_05_16.pdf
Microsoft365_Dev_Security_2024_05_16.pdf
 
Abortion Clinic In Johannesburg ](+27832195400*)[ 🏥 Safe Abortion Pills in Jo...
Abortion Clinic In Johannesburg ](+27832195400*)[ 🏥 Safe Abortion Pills in Jo...Abortion Clinic In Johannesburg ](+27832195400*)[ 🏥 Safe Abortion Pills in Jo...
Abortion Clinic In Johannesburg ](+27832195400*)[ 🏥 Safe Abortion Pills in Jo...
 
From Theory to Practice: Utilizing SpiraPlan's REST API
From Theory to Practice: Utilizing SpiraPlan's REST APIFrom Theory to Practice: Utilizing SpiraPlan's REST API
From Theory to Practice: Utilizing SpiraPlan's REST API
 
UNI DI NAPOLI FEDERICO II - Il ruolo dei grafi nell'AI Conversazionale Ibrida
UNI DI NAPOLI FEDERICO II - Il ruolo dei grafi nell'AI Conversazionale IbridaUNI DI NAPOLI FEDERICO II - Il ruolo dei grafi nell'AI Conversazionale Ibrida
UNI DI NAPOLI FEDERICO II - Il ruolo dei grafi nell'AI Conversazionale Ibrida
 
Software Engineering - Introduction + Process Models + Requirements Engineering
Software Engineering - Introduction + Process Models + Requirements EngineeringSoftware Engineering - Introduction + Process Models + Requirements Engineering
Software Engineering - Introduction + Process Models + Requirements Engineering
 
GraphSummit Milan - Neo4j: The Art of the Possible with Graph
GraphSummit Milan - Neo4j: The Art of the Possible with GraphGraphSummit Milan - Neo4j: The Art of the Possible with Graph
GraphSummit Milan - Neo4j: The Art of the Possible with Graph
 
architecting-ai-in-the-enterprise-apis-and-applications.pdf
architecting-ai-in-the-enterprise-apis-and-applications.pdfarchitecting-ai-in-the-enterprise-apis-and-applications.pdf
architecting-ai-in-the-enterprise-apis-and-applications.pdf
 
From Knowledge Graphs via Lego Bricks to scientific conversations.pptx
From Knowledge Graphs via Lego Bricks to scientific conversations.pptxFrom Knowledge Graphs via Lego Bricks to scientific conversations.pptx
From Knowledge Graphs via Lego Bricks to scientific conversations.pptx
 
Lessons Learned from Building a Serverless Notifications System.pdf
Lessons Learned from Building a Serverless Notifications System.pdfLessons Learned from Building a Serverless Notifications System.pdf
Lessons Learned from Building a Serverless Notifications System.pdf
 
Transformer Neural Network Use Cases with Links
Transformer Neural Network Use Cases with LinksTransformer Neural Network Use Cases with Links
Transformer Neural Network Use Cases with Links
 

CS211 Assignment two 2023.pdf

  • 1. THE COPPERBELT UNIVERSITY SCHOOL OF ENGINEERING CS211 – Applied Computing Group Assignment two Due Date: 25 August 2023
  • 2. Instructions: 1. The assignment is to be undertaken in groups of at most four students. 2. Each group will be required to submit hardcopy and PDF reports. 3. Each group will be required to make a 20-minute video presentation explaining the GUI and functionality of code developed. Each student in a group is required to speak for a minimum of three minutes on a sizeable section of the GUI project. 4. Each group’s softcopy submission should be saved as a folder with the Group leader’s name as the name of the folder. The folder should contain a PDF report, video presentation and MATLAB files. 5. The two class representatives will be provided a flash disk through which all the group folders will be submitted to faculty for evaluation. 6. Follow the detailed assignment instructions on page three and the associated video-based guidelines.
  • 3. Problem sets: Develop a GUI-based application that has the following capabilities: - i. The programme should be able to compute several scenarios of equations assigned to a group and display the graph on a GUI. Use appropriate functional and/ or class abstraction to encapsulate this capability. Figure 1 below shows an example of how scenarios can be visualised. ii. The programme should be able to read and write data generated from scenarios analysed onto properly annotated excel tables. iii. The programme should be able to evaluate such statistics as maximum, minimum, mean and standard deviation for the generated data. Use for-loops or while loops and other flow control structures. Use of built-in MATLAB functions such as min, max and std will be penalised. Fig 1 Scenario visualization for a projectile under various firing angles and initial velocities
  • 4. S/N NAMES SIN EQUATIONS 1 NATASHA MUMBA 21172328 Fg = G ∗ Msat ∗ ME (RE + horbit)2 Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡 2 CHIFUNDA FREDRICK 21168198 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ ( 𝑥 𝑣 − 𝑡)) Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣 3 MOSES KALENGA 21164789 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 4 MWABA MWAPE 21170878 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 5 COMFORT SALUNDA 21163547 𝑡 = √ℎ1 2 + 𝑥2 𝑉1 + √ℎ2 2 + (𝐿 − 𝑥)2 𝑉2 Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2 6 JOSHUA BANDA 21171962 𝐼 = 𝐼𝑜 ∗ [ sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿) 𝜋 ∗ 𝑎 ∗ sin (𝜃)/2 ] 2 Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
  • 5. 7 ALINANI SINKAMBA 21166737 𝐸 = 𝑚 ∗ 𝐶2 √1 − 𝑣2 𝑐2 Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐 8 ANDREW MUSUNGA 21164463 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 9 SEBASTIAN MTONGA 21163249 𝑉 = √ 2 ∗ 𝑔 ∗ ℎ ( 𝐴1 𝐴2 ) 2 − 1 Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2 10 TRYWELL CHANDA 21167051 Fg = G ∗ Msat ∗ ME (RE + horbit)2 Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡 11 DIMBANI MVULA 21166143 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ ( 𝑥 𝑣 − 𝑡)) Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
  • 6. 12 MERCY MVULA 21171643 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 13 CHIBALE MIKE 21167131 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 14 ANGEL CHOMBA 21162513 𝑡 = √ℎ1 2 + 𝑥2 𝑉1 + √ℎ2 2 + (𝐿 − 𝑥)2 𝑉2 Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2 15 CHITENGI JAMES 21165007 𝑟𝑠𝑎𝑡 = 𝑎 ∗ (1 − 𝑒2 ) 1 + 𝑒 ∗ cos (𝜃) Variables: 𝜃 𝑎𝑛𝑑 𝑒 Produce polar plots of the above satellite orbit. 16 GAD MASTAKI NTAMBWE 21940386 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅 17 PATSON CHIKUTA CHAOKA 21170884 𝑉 = 1 4 ∗ 𝜋 ∗ 𝜖𝑜 ∗ 𝑄 2 ∗ 𝑎 ∗ 𝐿𝑛 ( √𝑎2 + 𝑥2 + 𝑎 √𝑎2 + 𝑥2 − 𝑎 ) Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄
  • 7. 18 SIKOMBE ELIJAH 21169993 𝑔 = 𝐺 ∗ 𝑀𝐸 (𝑅𝐸 + ℎ𝑜𝑟𝑏𝑖𝑡)2 Variables: ℎ𝑜𝑟𝑏𝑖𝑡 , 𝑅𝐸 𝑎𝑛𝑑 𝑀𝐸 19 KASUBA CHARLES 21166978 𝐶 = 𝜋 ∗ 𝜀 ∗ 𝐿 𝐿𝑛 [ 𝑑 𝑟 + √( 𝑑 𝑟 ) 2 − 1] Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿 20 WENCE MWALE 21164732 𝐹 = 𝑄2 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2 ∗ 𝐿𝑛 ( (𝑎 + 𝐿)2 𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2 ) Variables: Q, L and a 21 SAMSON CHIZINGUKA 21162696 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡) Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡 22 JULLIEN PHIRI 20150573 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅 23 MOSES KAMBOLE 21167525 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 24 KELVIN MUGWAGWA 21162958 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
  • 8. Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 25 INNOCENT MULENGA 21166878 𝑉 = √ 2 ∗ 𝑔 ∗ ℎ ( 𝐴1 𝐴2 ) 2 − 1 Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2 26 MWALE FRANCIS 21162415 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡) Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡 27 ANDREW KAWINA 21178266 𝐶 = 𝜋 ∗ 𝜀 ∗ 𝐿 𝐿𝑛 [ 𝑑 𝑟 + √( 𝑑 𝑟 ) 2 − 1] Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿 28 ANGEL LONGOLONGO 21162549 𝐹 = 𝑄2 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2 ∗ 𝐿𝑛 ( (𝑎 + 𝐿)2 𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2 ) Variables: Q, L and a 29 BLESSINGS KUNDA 21163987 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ ( 𝑥 𝑣 − 𝑡)) Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣
  • 9. 30 AUGUSTINE BALENGU 21168766 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 31 BLESSINGS JAMES BWALYA 21162923 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅ 32 MICHAEL KALUBA 21163517 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) 33 MADALITSO NJOVU 21163550 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 34 PHILIP BWALE MULUME 21162318 𝐸 = 𝑚 ∗ 𝐶2 √1 − 𝑣2 𝑐2 Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐
  • 10. 35 MICHELLE KAMPEKETE 21178270 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅 36 MALELE KABOLEKA 21162446 Fg = G ∗ Msat ∗ ME (RE + horbit)2 Variables: 𝑀𝑠𝑎𝑡, 𝑀𝐸, 𝐺 𝑎𝑛𝑑 ℎ𝑜𝑟𝑏𝑖𝑡 37 DEOGRACIOUS HAMAKALA 21168204 𝑦 = 𝐴 ∗ cos (2 ∗ π ∗ ( 𝑥 𝐿 − 𝑡 𝑇 )) Variables: 𝐿, 𝑡 𝑎𝑛𝑑 𝑥 38 VICTOR SAKUWAHA 21165455 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 39 OBED KAKOMPE 21172582 𝑡 = √ℎ1 2 + 𝑥2 𝑉1 + √ℎ2 2 + (𝐿 − 𝑥)2 𝑉2 Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2 40 KAPOKA CHIBAMBA 21161380 𝐼 = 𝐼𝑜 ∗ [ sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿) 𝜋 ∗ 𝑎 ∗ sin (𝜃)/2 ] 2 Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
  • 11. 41 MAPALO CHIPULU 21165988 𝑟𝑠𝑎𝑡 = 𝑎 ∗ (1 − 𝑒2 ) 1 + 𝑒 ∗ cos (𝜃) Variables: 𝜃 𝑎𝑛𝑑 𝑒 Produce polar plots of the above satellite orbit. 42 LONDE MUSONDA 21940959 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅 43 SANGWANI MUSETEKA 21169346 𝑉 = 1 4 ∗ 𝜋 ∗ 𝜖𝑜 ∗ 𝑄 2 ∗ 𝑎 ∗ 𝐿𝑛 ( √𝑎2 + 𝑥2 + 𝑎 √𝑎2 + 𝑥2 − 𝑎 ) Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄 44 INNOCENT MWAPE 21169995 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) 45 VIVIAN CHINGA 21169245 𝑉 = √ 2 ∗ 𝑔 ∗ ℎ ( 𝐴1 𝐴2 ) 2 − 1 Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2
  • 12. 46 BOYD KALUFYENTI 21162861 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 47 KELVIN JACOB PHIRI 21165246 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 48 STEVEN MUMBA CHILONGA 21162140 𝑟𝑠𝑎𝑡 = 𝑎 ∗ (1 − 𝑒2 ) 1 + 𝑒 ∗ cos (𝜃) Variables: 𝜃 𝑎𝑛𝑑 𝑒 Produce polar plots of the above satellite orbit. 49 MULUSA SIMUKONDA PUPE 21162140 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡) Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡 50 CHIKUNJI ELIJAH 21166782 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅 51 IAN MULENGA 21164179 𝐼 = 𝐼𝑜 ∗ [ sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿) 𝜋 ∗ 𝑎 ∗ sin (𝜃)/2 ] 2 Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿
  • 13. 52 KINGSLEY MWAPE 21172260 𝑇 = 𝑇𝑎 + 𝑃 𝛿 ∗ [1 − 𝑒 (− 𝛿 𝑐∗𝑚 ∗𝑡) ] Variables: 𝛿, 𝑡 𝑎𝑛𝑑 𝑃 53 TUZA ZIMBA 21169188 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ ( 𝑥 𝑣 − 𝑡)) Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣 54 SHADRICK NYIRONGO 21166834 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 55 ALICK PHIRI 21166320 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 56 CHISHIMBA DICKSON 21172548 𝑡 = √ℎ1 2 + 𝑥2 𝑉1 + √ℎ2 2 + (𝐿 − 𝑥)2 𝑉2 Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2 57 MWAPE ERNEST 21172436 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅
  • 14. 58 DWIGHTY CHISI 20149720 𝑇 = 𝑇𝑎 + 𝑃 𝛿 ∗ [1 − 𝑒 (− 𝛿 𝑐∗𝑚 ∗𝑡) ] Variables: 𝛿, 𝑡 𝑎𝑛𝑑 𝑃 59 MUKULI SYAMUNTU 21164781 𝑉 = 1 4 ∗ 𝜋 ∗ 𝜖𝑜 ∗ 𝑄 2 ∗ 𝑎 ∗ 𝐿𝑛 ( √𝑎2 + 𝑥2 + 𝑎 √𝑎2 + 𝑥2 − 𝑎 ) Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄 60 MAPALO MUKALULA 21172772 𝐼 = 𝐼𝑜 ∗ [ sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿) 𝜋 ∗ 𝑎 ∗ sin (𝜃)/2 ] 2 Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿 61 SALIFTYANJI JULLIET MUKANGA 21172496 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 62 JOSEPH CHANGA 21164860 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 63 PATRICK MULENGA 21163317 𝐸 = 𝑚 ∗ 𝐶2 √1 − 𝑣2 𝑐2
  • 15. Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐 64 RAYMOND MUJALA 21164465 𝐹 = 𝑄2 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ 𝐿2 ∗ 𝐿𝑛 ( (𝑎 + 𝐿)2 𝑎 ∗ (𝑎 + 2 ∗ 𝐿)2 ) Variables: Q, L and a 65 KABUNDA JASON 21166919 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 66 IBRAHIM AHMED 21172413 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 67 AZARIAH SHABBANI 21169398 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 68 KASAKULA MAMWE 21161371 𝑦 = 𝐴 ∗ cos (2 ∗ 𝜋 ∗ 𝑓 ∗ ( 𝑥 𝑣 − 𝑡)) Variables: 𝑡, 𝑓, 𝑥 𝑎𝑛𝑑 𝑣 69 DELGRACIOUS TIMBA 21168679 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅)
  • 16. 70 MUTALE KANGWA 20147392 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 71 CHEELO HIMOONGA 21169633 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 72 HAGUTA LWINI 12137071 𝐶 = 𝜋 ∗ 𝜀 ∗ 𝐿 𝐿𝑛 [ 𝑑 𝑟 + √( 𝑑 𝑟 ) 2 − 1] Variables: 𝑑, 𝑟 𝑎𝑛𝑑 𝐿 73 MOSES FUMBESHI 21163845 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡) Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡 74 KENFIELD WATSON KANDESHA 21164747 𝑖 = ( 𝐸 𝑅 ) ∗ [1 − 𝑒−𝛽∗𝑡 ∗ ((2 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶)−1 ∗ sin(𝜔 ∗ 𝑡) + cos (𝜔 ∗ 𝑡))] Variables: 𝑡, 𝜔 𝑎𝑛𝑑 𝑅
  • 17. 75 MWABU PETER 21165695 𝐼 = 𝐼𝑜 ∗ [ sin (𝜋 ∗ 𝑎 ∗ sin (𝜃)/𝐿) 𝜋 ∗ 𝑎 ∗ sin (𝜃)/2 ] 2 Variables: 𝜃, 𝑎, 𝑎𝑛𝑑 𝐿 76 JOSEPH SILWIMBA 21165046 𝑡 = √ℎ1 2 + 𝑥2 𝑉1 + √ℎ2 2 + (𝐿 − 𝑥)2 𝑉2 Variables: 𝑥, ℎ1 𝑎𝑛𝑑 ℎ2 77 RICHARD MULENGA 21165483 𝑉 = √ 2 ∗ 𝑔 ∗ ℎ ( 𝐴1 𝐴2 ) 2 − 1 Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2 78 CHRISPINE CHUNGU 21171100 𝑃 = 𝑉 ∗ 𝐼 ∗ cos(∅) ∗ 𝑐𝑜𝑠2(𝜔 ∗ 𝑡) − 𝑉 ∗ 𝐼 ∗ sin(∅) ∗ cos(𝜔 ∗ 𝑡) ∗ sin(𝜔 ∗ 𝑡) Variables: 𝑡, 𝜔, 𝑉 𝑎𝑛𝑑 ∅ 79 MULENGA RONTYA 21170169 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅ 80 BANDA CHRISTINE 21171050 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
  • 18. Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 81 LUSAYO SIMBEYE 21159654 𝑦 = (2 ∗ 𝐴(sin(𝑘 ∗ 𝑥)) ∗ sin (𝜔𝑡) Variables: 𝑥, 𝑤 𝑎𝑛𝑑 𝑡 82 SINKENDE MANDA 21172469 𝑉 = √ 2 ∗ 𝑔 ∗ ℎ ( 𝐴1 𝐴2 ) 2 − 1 Variables: ℎ, 𝐴1 𝑎𝑛𝑑 𝐴2 83 VICTOR MUSUKU CHISHALA 21170113 𝐸 = 𝑚 ∗ 𝐶2 √1 − 𝑣2 𝑐2 Variables: 𝑣, 𝑚 𝑎𝑛𝑑 𝑐 84 KULELWA LAMYA 21164075 𝑞 = 𝐴 ∗ 𝑒 −( 𝑅 2∗𝐿 )𝑡 ∗ 𝑐𝑜𝑠 (√ 1 𝐿 ∗ 𝐶 − 𝑅2 4 ∗ 𝐿2 ∗ 𝑡 + ∅) Variables: 𝑡, 𝐿 𝑎𝑛𝑑 ∅ 85 DANIEL CHISHALA 21168494 𝑦 = 𝐴 ∗ 𝑒−𝑏∗𝑡 ∗ sin (𝜔 ∗ √1 − 𝛿2 ∗ 𝑡)
  • 19. Variables: 𝑡, 𝜔, 𝑏 𝑎𝑛𝑑 𝛿 86 DAKA MEKI 20147008 𝐸𝑦 = 𝑞 4 ∗ 𝜋 ∗ 𝜀𝑜 ∗ ( 1 (𝑦 − 𝑑/2)2 − 1 (𝑦 + 𝑑/2)2 ) Variables: y, q and d 87 CECILIA KANENGO 21172055 𝐸 = 𝐸𝑜 ∗ sin(𝑘 ∗ 𝐷 − 𝜔 ∗ 𝑡) ∗ 𝑠𝑖𝑛[𝑘 ∗ 𝑎 ∗ sin (𝜃)/2] 𝑘 ∗ 𝑎 ∗ sin (𝜃)/2 Variables: 𝑡, 𝜃 𝑎𝑛𝑑 𝜔 88 MAPESHA M SIKALIMA 21163852 𝑉 = 1 4 ∗ 𝜋 ∗ 𝜖𝑜 ∗ 𝑄 2 ∗ 𝑎 ∗ 𝐿𝑛 ( √𝑎2 + 𝑥2 + 𝑎 √𝑎2 + 𝑥2 − 𝑎 ) Variables: 𝑥, 𝑎 𝑎𝑛𝑑 𝑄 89 STEIN NUNDWE 21168586 𝑔 = 𝐺 ∗ 𝑀𝐸 (𝑅𝐸 + ℎ𝑜𝑟𝑏𝑖𝑡)2 Variables: ℎ𝑜𝑟𝑏𝑖𝑡 , 𝑅𝐸 𝑎𝑛𝑑 𝑀𝐸