Version 1
Lesson slides
Topic E2.13: Functions
Lesson 2: Composite functions
Cambridge IGCSE™
Mathematics 0580
Starter – substitution practice
Substitute into, and simplify, the following equations.
Substitute into
Substitute into
Substitute into
𝒚 =𝟏𝟎 𝒙 −𝟏
𝒚 =𝟗 𝒙𝟐
𝒚 =𝟏𝟐 𝒙 −𝟑
What is a composite function?
If something is a ‘composite’ then it is made up of two or more things.
A composite function is two or more functions being substituted into one another.
What is a composite function?
Say we have two functions: f (𝑥)=2 𝑥 +5 g( 𝑥 )= 𝑥2
We can now find the composite function
You start with the function closest to the input, and then work your way backwards.
Start by finding .
This is pronounced: ‘f’ of ‘g’ of 2
𝐟𝐠 (𝟐 )=𝐟 (𝟐𝟐
)
¿ 𝐟 ( 𝟒 )
𝐟 (𝟒)=𝟐 (𝟒)+𝟓
¿ 𝟖 +𝟓
¿ 𝟏𝟑
𝐟𝐠 (𝟐)=𝟏𝟑
Example 1
Find
𝐟𝐠 (𝟏)=𝐟 (𝐠(𝟏))
¿ 𝐟 (𝟐+ 𝟒 (𝟏))
¿ 𝐟 ( 𝟔 )
𝐟 (𝟔)=𝟔𝟐
+ 𝟔
¿ 𝟑𝟔 +𝟔
¿ 𝟒𝟐
Example 2
Find
𝐠𝐟 (𝟏)=𝐠(𝐟 (𝟏))
¿ 𝐠 (𝟏𝟐
+𝟔)
¿ 𝐠 ( 𝟕 )
𝐠(𝟕)=𝟐 +𝟒(𝟕)
¿ 𝟐+𝟐𝟖
¿ 𝟑𝟎
Your turn
1. Find
𝐟𝐠 (𝟒)=𝐟 (𝟑(𝟒))
¿ √𝟏𝟐+ 𝟒
¿ √ 𝟏𝟔
¿ 𝟒
2. Find
𝐠𝐡(−𝟒)=𝐠(𝟐(−𝟒)+𝟏)
¿ 𝐠 (− 𝟕)
¿ 𝟑( − 𝟕)
¿ − 𝟐𝟏
Non-Calculator
Your turn
1. Find Give the answer correct to 2 decimal places.
𝐟𝐡(𝟏𝟏)=𝐟(𝟐(𝟏𝟏)+𝟏)
¿ √𝟐𝟑+ 𝟕
¿ 𝟓 . 𝟐𝟎
Calculator
Finding the equation of composite functions
f (𝑥 )=2 𝑥 +1
Find
g ( 𝑥)=3 𝑥2
+ 6
No input this time. We substitute one function into another:
¿12 𝑥2
+12 𝑥+9
Notice how they are different. The order of the functions is important.
Find
𝐟𝐠 ( 𝒙)=𝒇 (𝟑 𝒙𝟐
+𝟔)
¿ 𝟐 (𝟑 𝒙
𝟐
+ 𝟔)+𝟏
¿ 𝟔 𝒙𝟐
+𝟏𝟐 +𝟏
¿ 𝟔 𝒙 𝟐
+𝟏𝟑
𝐟 ( 𝒙)=𝒈 (𝟐 𝒙+𝟏)
¿ 𝟑(𝟐 𝒙+ 𝟏)𝟐
+𝟔
¿ 𝟑(𝟒 𝒙𝟐
+𝟒 𝒙+𝟏)+𝟔
¿𝟏𝟐 𝒙𝟐
+𝟏𝟐 𝒙+𝟑+𝟔
¿ 𝟏𝟐 𝒙𝟐
+𝟏𝟐 𝒙+𝟗
Your turn
f (𝑥 )=3 𝑥 −1
1. Find
g ( 𝑥)=4 − 𝑥2
2. Find
𝐟𝐠(𝒙)= 𝒇 (𝟒− 𝒙𝟐
) 𝐠𝐟 (𝒙 )=𝒈(𝟑 𝒙 − 𝟏)
¿𝟒−(𝟗 𝒙𝟐
−𝟔 𝒙 +𝟏)
Your turn – challenge
, Find the value of
𝐟𝐠 (𝒃)=𝐟 ( 𝒃−𝟏)=−𝟏𝟒
(𝒃− 𝟏)𝟐
−𝟕(𝒃− 𝟏)− 𝟐=− 𝟏𝟒
𝒃𝟐
−𝟐 𝒃+𝟏−𝟕𝒃+𝟕−𝟐=−𝟏𝟒
𝒃𝟐
−𝟗 𝒃+𝟔=−𝟏𝟒
𝒃𝟐
−𝟗 𝒃+𝟐𝟎=𝟎
(𝒃−𝟒)(𝒃−𝟓)=𝟎
or
Now work through worksheet 2

Composite Functions- Dealing with Composite Functions

  • 1.
    Version 1 Lesson slides TopicE2.13: Functions Lesson 2: Composite functions Cambridge IGCSE™ Mathematics 0580
  • 2.
    Starter – substitutionpractice Substitute into, and simplify, the following equations. Substitute into Substitute into Substitute into 𝒚 =𝟏𝟎 𝒙 −𝟏 𝒚 =𝟗 𝒙𝟐 𝒚 =𝟏𝟐 𝒙 −𝟑
  • 3.
    What is acomposite function? If something is a ‘composite’ then it is made up of two or more things. A composite function is two or more functions being substituted into one another.
  • 4.
    What is acomposite function? Say we have two functions: f (𝑥)=2 𝑥 +5 g( 𝑥 )= 𝑥2 We can now find the composite function You start with the function closest to the input, and then work your way backwards. Start by finding . This is pronounced: ‘f’ of ‘g’ of 2 𝐟𝐠 (𝟐 )=𝐟 (𝟐𝟐 ) ¿ 𝐟 ( 𝟒 ) 𝐟 (𝟒)=𝟐 (𝟒)+𝟓 ¿ 𝟖 +𝟓 ¿ 𝟏𝟑 𝐟𝐠 (𝟐)=𝟏𝟑
  • 5.
    Example 1 Find 𝐟𝐠 (𝟏)=𝐟(𝐠(𝟏)) ¿ 𝐟 (𝟐+ 𝟒 (𝟏)) ¿ 𝐟 ( 𝟔 ) 𝐟 (𝟔)=𝟔𝟐 + 𝟔 ¿ 𝟑𝟔 +𝟔 ¿ 𝟒𝟐
  • 6.
    Example 2 Find 𝐠𝐟 (𝟏)=𝐠(𝐟(𝟏)) ¿ 𝐠 (𝟏𝟐 +𝟔) ¿ 𝐠 ( 𝟕 ) 𝐠(𝟕)=𝟐 +𝟒(𝟕) ¿ 𝟐+𝟐𝟖 ¿ 𝟑𝟎
  • 7.
    Your turn 1. Find 𝐟𝐠(𝟒)=𝐟 (𝟑(𝟒)) ¿ √𝟏𝟐+ 𝟒 ¿ √ 𝟏𝟔 ¿ 𝟒 2. Find 𝐠𝐡(−𝟒)=𝐠(𝟐(−𝟒)+𝟏) ¿ 𝐠 (− 𝟕) ¿ 𝟑( − 𝟕) ¿ − 𝟐𝟏 Non-Calculator
  • 8.
    Your turn 1. FindGive the answer correct to 2 decimal places. 𝐟𝐡(𝟏𝟏)=𝐟(𝟐(𝟏𝟏)+𝟏) ¿ √𝟐𝟑+ 𝟕 ¿ 𝟓 . 𝟐𝟎 Calculator
  • 9.
    Finding the equationof composite functions f (𝑥 )=2 𝑥 +1 Find g ( 𝑥)=3 𝑥2 + 6 No input this time. We substitute one function into another: ¿12 𝑥2 +12 𝑥+9 Notice how they are different. The order of the functions is important. Find 𝐟𝐠 ( 𝒙)=𝒇 (𝟑 𝒙𝟐 +𝟔) ¿ 𝟐 (𝟑 𝒙 𝟐 + 𝟔)+𝟏 ¿ 𝟔 𝒙𝟐 +𝟏𝟐 +𝟏 ¿ 𝟔 𝒙 𝟐 +𝟏𝟑 𝐟 ( 𝒙)=𝒈 (𝟐 𝒙+𝟏) ¿ 𝟑(𝟐 𝒙+ 𝟏)𝟐 +𝟔 ¿ 𝟑(𝟒 𝒙𝟐 +𝟒 𝒙+𝟏)+𝟔 ¿𝟏𝟐 𝒙𝟐 +𝟏𝟐 𝒙+𝟑+𝟔 ¿ 𝟏𝟐 𝒙𝟐 +𝟏𝟐 𝒙+𝟗
  • 10.
    Your turn f (𝑥)=3 𝑥 −1 1. Find g ( 𝑥)=4 − 𝑥2 2. Find 𝐟𝐠(𝒙)= 𝒇 (𝟒− 𝒙𝟐 ) 𝐠𝐟 (𝒙 )=𝒈(𝟑 𝒙 − 𝟏) ¿𝟒−(𝟗 𝒙𝟐 −𝟔 𝒙 +𝟏)
  • 11.
    Your turn –challenge , Find the value of 𝐟𝐠 (𝒃)=𝐟 ( 𝒃−𝟏)=−𝟏𝟒 (𝒃− 𝟏)𝟐 −𝟕(𝒃− 𝟏)− 𝟐=− 𝟏𝟒 𝒃𝟐 −𝟐 𝒃+𝟏−𝟕𝒃+𝟕−𝟐=−𝟏𝟒 𝒃𝟐 −𝟗 𝒃+𝟔=−𝟏𝟒 𝒃𝟐 −𝟗 𝒃+𝟐𝟎=𝟎 (𝒃−𝟒)(𝒃−𝟓)=𝟎 or
  • 12.
    Now work throughworksheet 2