Day 3
Common
Logarithms
Express each number using exponents.
O A. 36 G. 1
O B. 121 What about . . .
O C. 4 H. 345
O D. I. 0.0023
O E. 100
O F. 1000
Logarithms give you a way to
solve for an exponent.
O Ex: 5x = 12
Common Logarithms are any
logarithm of base 10
Ex: log10 or log
Rewriting:
10b = a log10a=b
A. 102 = 100
B. 33 = 27
C. 25 = 32
log10 100 = 2
log3 27 = 3
log2 32 = 5
E. 641/2 = 8
F. log6 36 = 2
Log64 8 = 1/2
D. 9-2 =
1
81
G. log3 81 = 4
H. log14 = -2
1
196
I. log10 10 = 1
J. Log 1 = 0
Log9 = -2
1
81
62 = 36
34 = 81
101 = 10
100 = 1
14-2 =
1
196
Evaluate without a calculator:
A. Log4 64
Step 1: set = to x Log4 64 = x
Step 2: rewrite in
exp. form
4x = 64
Step 3: break down
the #’s
22x = 26
Step 4: once the bases
are the same,
set exp. =
2x = 6
x = 3
B) Log5 125
5x = 125
5x = 55
x = 5
C) Log4 16
4x = 16
22x = 24
2x = 4
x = 2
D) Log343 7
343 = 7x
73x = 71
x = 1/3
Log343 7 = x
3x = 1
E) Log3
3x = 3-5
Log3 = x
x = -5
243
1
3x = 243
1
243
1
Evaluate using a calculator.
A) Log 75 1.8751
B) Log -3 Not possible
** log10 (-3) = x
10x = -3
C) Log 1 0
** log10 1= x 10x = 1
But what if the base isn’t 10?
Use Change of Base Formula:
logb a = or
A) log5 3 log 3
log 5
= 0.6826
B) log11 18 log 18
log 11
= 1.2054
C) log4 8
log 8
log 4 = 1.5

Common Logarithms

  • 1.
  • 2.
    Express each numberusing exponents. O A. 36 G. 1 O B. 121 What about . . . O C. 4 H. 345 O D. I. 0.0023 O E. 100 O F. 1000
  • 3.
    Logarithms give youa way to solve for an exponent. O Ex: 5x = 12 Common Logarithms are any logarithm of base 10 Ex: log10 or log
  • 4.
    Rewriting: 10b = alog10a=b A. 102 = 100 B. 33 = 27 C. 25 = 32 log10 100 = 2 log3 27 = 3 log2 32 = 5
  • 5.
    E. 641/2 =8 F. log6 36 = 2 Log64 8 = 1/2 D. 9-2 = 1 81 G. log3 81 = 4 H. log14 = -2 1 196 I. log10 10 = 1 J. Log 1 = 0 Log9 = -2 1 81 62 = 36 34 = 81 101 = 10 100 = 1 14-2 = 1 196
  • 6.
    Evaluate without acalculator: A. Log4 64 Step 1: set = to x Log4 64 = x Step 2: rewrite in exp. form 4x = 64 Step 3: break down the #’s 22x = 26 Step 4: once the bases are the same, set exp. = 2x = 6 x = 3
  • 7.
    B) Log5 125 5x= 125 5x = 55 x = 5 C) Log4 16 4x = 16 22x = 24 2x = 4 x = 2
  • 8.
    D) Log343 7 343= 7x 73x = 71 x = 1/3 Log343 7 = x 3x = 1
  • 9.
    E) Log3 3x =3-5 Log3 = x x = -5 243 1 3x = 243 1 243 1
  • 10.
    Evaluate using acalculator. A) Log 75 1.8751 B) Log -3 Not possible ** log10 (-3) = x 10x = -3 C) Log 1 0 ** log10 1= x 10x = 1
  • 11.
    But what ifthe base isn’t 10? Use Change of Base Formula: logb a = or
  • 12.
    A) log5 3log 3 log 5 = 0.6826 B) log11 18 log 18 log 11 = 1.2054 C) log4 8 log 8 log 4 = 1.5