SlideShare a Scribd company logo
Prof. Samirsinh P. Parmar
samirddu@gmail.com, spp.cl@ddu.ac.in
Asst. Prof. Dept. of Civil Engineering
Dharmasinh Desai University, Nadiad, Gujarat, India
COLLISIONS
CL-101 ENGINEERING MECHANICS
B. Tech Semester-I
Momentum
Impulse
Direct collisions
Collision with a smooth plane
Examination-style questions
Contents
Conservation of momentum
Total momentum before collision = Total momentum after
p = mv
The principle of conservation of momentum states that:
Moving objects are said to have momentum, p, which is the
product of mass and velocity, measured in kg ms-1 or
Newton seconds (Ns), which are equivalent.
Momentum is a vector quantity with direction as well as
magnitude. The momentum of a stationary object is zero.
When two objects collide, their velocity and momentum may
be affected.
0.2
0.2
Before
impact
After
impact
0.5
0.5
6 8
v
7
A B
Conservation of momentum
Two smooth spheres A and B, of masses 0.2 kg and 0.5 kg
respectively, are projected towards each other with speeds of 6 ms-1
and 8 ms-1. After they collide sphere A rebounds with a speed of 7
ms-1.
Calculate the speed with which sphere B moves after the collision
and state its direction.
Conservation of momentum
Therefore the speed of B after the collision is 2.8 ms-1 and
the particle continues moving in the same direction as before
the collision (i.e. from right to left).
v = –2.8
0.5v = –1.4
1.2 – 4 = –1.4 + 0.5v
Taking the positive direction of motion to be from
left to right:
(0.2 × 6) – (0.5 × 8) = (0.2 × –7) + (0.5 × v)
Impulse
Momentum
Impulse
Direct collisions
Collision with a smooth plane
Examination-style questions
Impulse
The change to a body’s momentum caused by a collision is
called impulse, measured in Ns. Impulse is a vector quantity
with magnitude and direction.
I = mv – mu
where u is the initial velocity and v is the final velocity.
Impulse = change in momentum
The impulse that a body A exerts on a body B is of equal
magnitude to the impulse that B exerts on A, but it acts in
the opposite direction.
Impulse
A ball of mass 0.75 kg hits the floor with a speed of 10 ms-1.
It rebounds with a speed of 7 ms-1.
Find the impulse exerted by the floor on the ball.
Taking the upwards direction to be positive:
Impulse = (0.75 × 7) – (0.75 × –10)
= 5.25 + 7.5
= 12.75 Ns
Momentum & impulse as vectors
Sometimes a collision alters the line along which a particle is
travelling, as in the example below.
In these cases, we might need to find the magnitude and
direction of the impulse by resolving a vector quantity into its
horizontal and vertical components.
Impulse vector question
A ball of mass 2 kg is travelling horizontally at a speed of
6 ms-1 when it is struck by a bat. After the collision the ball
is travelling upwards at 30° to the horizontal in the opposite
direction at a speed of 8 ms-1.
Find the impulse exerted on the ball by the bat.
2
6 ms-1
Before 2 After
8 ms-1
30°
Impulse vector question
Impulse = change in momentum
The velocity of the ball before and after the collision can be
expressed in vector notation as follows:
I = mv – mu = 2 × (–8cos30°i + 8cos60°j) – 2 × 6i
u = 6i
v = –8cos30°i + 8cos60°j
(where i is horizontal and j is vertical). After
2
8ms-1
30°
I = 2 × (–43i + 4j) – 12i
Impulse vector question
 
2
2
8 3 12 8 (3 s.f.)
    27.1 Ns
(–83 – 12)
8
θ
I
I =
θ = (3 s.f.) to the negative i direction.
1 8
8 3 12
tan 7
=1 .2


 
 
 
I = (–83 – 12)i + 8j
Direct collisions
Momentum
Impulse
Direct collisions
Collision with a smooth plane
Examination-style questions
Direct collisions
Two bodies are said to have been in a direct collision when
the velocities before and after impact are in a straight line.
The outcome depends partly on the constitution of the bodies.
This means that the bodies either rebound, continue in the
same direction with reduced speed, or continue with the
same velocity.
Newton’s experimental law
In direct collisions the relative velocity of the two bodies is reversed and
the speed of separation is e times the speed of approach
It follows that the speed of separation is always less than or equal to the speed
of approach.
e depends on the nature of the two surfaces in contact.
For example, between a tennis ball and a concrete floor e will be close to 1, but
e will be much lower between a tennis ball and a carpeted floor.
Newton’s Experimental Law (NEL) states that:
where e is a constant for two surfaces in contact called the coefficient of
restitution, and 0 ≤ e ≤1.
Elastic and inelastic collisions
A perfectly elastic collision is one in which e = 1.
In a perfectly elastic collision, the kinetic energy of the
system will be conserved. In all other collisions kinetic
energy will be lost.
A perfectly inelastic collision is one in which e = 0.
The loss in kinetic energy in the collision is equal to:
where X is the speed of approach.
( )
mm
e X
mm
 2 2
1 2
1 2
1
2
Applying Newton’s Experimental Law
When applying Newton’s Experimental Law, it is advisable
to treat each velocity as either positive or negative in the
same direction.
v2 – v1 = –e(u2 – u1)
So Newton’s Experimental Law can be expressed as:
A and B are travelling in opposite directions, so the speed
of approach is u1 + (–u2) and the speed of separation is
(–v1) + v2.
Before
After
u1 –u2
–v1 v2
A B
Particles question 1
Question 1: A particle A is moving at a speed of 4 ms-1 towards a
particle B moving at a speed of 5 ms-1 in the same line.
After the collision the direction of motion of both particles is reversed. A
moves with a speed of 5 ms-1 and B moves with a speed of 2 ms-1.
Calculate the coefficient of restitution between these particles.
Particles question 1
Before
After
4 –5
–5 2
7 = 9e
7
9
Intuitively, in this simple example, we can see that the
speed of approach is 9 ms-1 and the speed of separation
is 7 ms-1, which also gives the required result.
Apply NEL: (2 – –5) = –e(–5 – 4)
e =
A B
Question 2: Two particles A and B of mass 3 kg and 4 kg respectively
are travelling towards each other in a straight line.
A has a speed of 10 ms-1 and B has a speed of 2 ms-1.
State the direction of motion of each particle.
Given that the coefficient of restitution between the two
particles is , find the speeds of A and B immediately after
the collision.
Particles question 2
1
3
Particles question 2
Use conservation of momentum:
Total momentum before collision = Total momentum after
In this example we have two
unknowns. Therefore, we
need to solve using
simultaneous equations.
30 – 8 = 3v1 + 4v2
(3 × 10) + (4 × –2) = (3 × v1) + (4 × v2)
 3v1 + 4v2 = 22
4 kg
Before
After
10 –2
v1 v2
3 kg
Particles question 2
Apply NEL:
v2 – v1 = – (–2 – 10)
1
3
Solve the equations simultaneously:
Therefore after the collision the speed of A is ms-1 and the
speed of B is ms-1. Since the velocities are positive, both
particles are moving in the original direction of A.
6
7
6
7
4
Adding gives: 7v2 = 34 6
7
4
 v2 =
v2 – v1 = 4 
v2 – v1 = 4
3v2 – 3v1 = 12
3v1 + 4v2 = 22
6
7
 v1 =
Particles question 3
Question 3: Three particles A, B and C of masses 2 kg, 3 kg and 5 kg
respectively are on a straight level smooth surface.
A is moving towards B and C with a speed of 15 ms-1 whilst B and C are at
rest.
If A is brought to rest after the collision with B and B is brought to rest after
the collision with C, find the coefficient of restitution between particles B and
C.
Particles question 3
It is necessary to deal with the two collisions separately.
First, consider the collision between A and B:
Using conservation of momentum:
(2 × 15) + (3 × 0) = (2 × 0) + (3 × v1)
30 = 3v1
 v1 = 10
15 0
v1
0
Before
After
2 kg 3 kg
Particles question 3
Now that we know the speed of B after the first collision, we
can examine the collision between B and C.
Using conservation of momentum:
(3 × 10) + (5 × 0) = (3 × 0) + (5 × v2)
Apply NEL to the collision between B and C:
6 – 0 = – e(0 – 10)
The coefficient of restitution between B and C is 0.6.
30 = 5v2
6 = 10e
 e = 0.6
 v2 = 6
10 0
0 v2
Before
After
3kg 5kg
Collision with a smooth plane
Momentum
Impulse
Direct collisions
Collision with a smooth plane
Examination-style questions
Collision with a smooth plane
v = eu
When looking at a collision between a particle and a
smooth plane we use the formula:
where u is the speed of approach and v is the speed of
separation.
Smooth plane question 1
Question 1: A particle is travelling horizontally with a speed
of 8 ms-1 when it hits a fixed smooth vertical plane. The
coefficient of restitution between the particle and the plane
is .
Calculate the speed with which the particle rebounds after
the impact.
Apply NEL:
v = eu = × 8 = 2
Therefore the particle rebounds with a speed of 2 ms-1.
1
4
1
4
Smooth plane question 2
Question 2: A particle falls from rest onto a fixed smooth
horizontal plane 10 m below. If it rebounds from the plane
with a speed of 3.5 ms-1, calculate the coefficient of
restitution between the particle and the plane.
We know: u = 0, s = 10, a = 9.8
v2 = 0 + 2 × 9.8 × 10 = 196
The particle strikes the plane with a speed of 14 ms-1.
Apply NEL: .
3 5 1
=
4
14
v
e u
 
Therefore the coefficient of restitution is ¼.
 v = 14
Therefore we use v2 = u2 + 2as to calculate the speed of the
particle as it collides with the plane.
Smooth plane question 3
Question 3: A particle is travelling horizontally when it
collides with a smooth fixed vertical plane.
As a result of this collision the particle loses ¼ of its kinetic
energy.
Find the coefficient of restitution between the particle and the
plane.
Let the speed of the particle immediately before the collision
be u ms-1.
Applying NEL, v = eu
Therefore the particle has a speed of eu ms-1
immediately after the collision.
Smooth plane question 3
K.E. before collision = ½ × m × u2
K.E. after collision = ½ × m × (eu)2
Since the particle loses ¼ of its kinetic energy in the
collision
(½ × m × u2) – (½ × m × (eu)2) = ¼(½ × m × u2)
Therefore the coefficient of restitution is .
3
2
Loss in K.E. = (½ × m × u2) – (½ × m × (eu)2)
½m(u2 – e2u2) = ¼(½mu2)
3
4
e2 =
4mu2 – 4me2u2 = mu2
4 – 4e2 = 1
3
2
 e =
Examination-style questions
Momentum
Impulse
Direct collisions
Collision with a smooth plane
Examination-style questions
Exam question 1
A rocket of mass 3000 kg is travelling at 100 ms-1. It then splits into two
sections, the front and the rear, of masses 2000 kg and 1000 kg
respectively.
Both pieces continue to travel in the same direction as before the
separation.
If the speed of the front section is 125 ms-1 after the separation find:
a) The impulse exerted on the front piece as a result of the
separation.
b) The speed of the rear section after the separation.
Exam question 1
Before After
3000 2000
1000
100 125
v
Impulse = (2000 × 125) – (2000 × 100)
Therefore the impulse exerted on the front part of the rocket is 50
kNs.
Impulse = change in momentum
The change in momentum refers to the front part of the rocket only and so
only the front part of the rocket is used when calculating the momentum
before the collision.
= 50 000
Exam question 1
Using conservation of momentum:
3000 × 100 = 1000v + 2000 × 125
Therefore the rear section of the rocket is travelling at a speed of 50 ms-1
after separation.
300 000 = 1000v + 250 000
1000v = 50000
v = 50
Exam question 2
Two particles A and B of masses 2 kg and 0.5 kg respectively are at rest on
a smooth horizontal surface.
A is projected towards B with a speed of 5 ms-1.
As particle A collides with B they coalesce to form a single particle C which
continues to move in the same direction as A.
Particle C strikes a smooth fixed vertical barrier.
If the coefficient of restitution between C and the barrier is ½, calculate the
energy lost in the collision between C and this barrier.
Exam question 2
Before After
2.5
v1
0.5
2
0
5
v2
e = ½
To find the loss in kinetic energy after the second collision
it is first necessary to find the speed of C before and after
the collision.
The first step is to calculate the speed of C immediately
after A and B have coalesced.
Exam question 2
Using conservation of momentum,
2 × 5 + 0 = 2.5 × v1
Therefore the speed of C before the collision with the barrier is 4 ms-
1.
It is now necessary to find the speed of C after the collision with the barrier.
10 = 2.5v1
 v1 = 4
Exam question 2
Apply NEL:
v = eu = ½ × 4 = 2
Therefore the speed of C after the collision is 2 ms-1.
We can now find the loss in kinetic energy asked for.
K.E. before = ½ × 2.5 × 42 = 20
Therefore the energy lost in the collision between C and the barrier is 15
J.
Loss in K.E. = 15
K.E. after = ½ × 2.5 × 22 = 5
Exam question 3
Another sphere B of mass 3m kg is at rest on the table.
a) show that the speed of B immediately after the collision is ½(1 + e)u.
b) find the range of values of e.
c) kinetic energy is lost in the collision. What form of energy could this lost
kinetic energy be transferred to?
A collides directly with B and as a result of this collision its direction of
motion is reversed. If the coefficient of restitution is e:
A smooth sphere A of mass m kg is moving in a straight line on a smooth
horizontal surface with a speed of 2u ms-1.
Exam question 3
a) Using Conservation of Momentum:
2mu + 0 = mv1 + 3mv2
Apply NEL:
v2 – v1 = –e(0 – 2u)
Solve simultaneously by adding:
Therefore the speed of B after the collision is ½(1 + e)u ms-1.
 v1 + 3v2 = 2u
 v2 – v1 = 2eu
v2 = ½u(e + 1)
4v2 = 2eu + 2u
m 3m
2u 0
v1 v2
Exam question 3
v1 = v2 – 2eu
Since v1 < 0: ½u(1 – 3e) < 0
Therefore < e ≤ 1
1
3
c)
u – 3eu < 0
1
3
 e >
1 – 3e < 0
b) To calculate the range of values of e we use the
fact that the motion of A is reversed, i.e. v1 < 0.
v1 = (½u + ½eu) – 2eu
v1 = ½u(1 – 3e)
Kinetic energy could have been transformed into sound
energy.
COLLISION SPP.pptx

More Related Content

Similar to COLLISION SPP.pptx

Power point slides for momentum, Impullse conservation of memntum
Power point slides for momentum, Impullse conservation of memntumPower point slides for momentum, Impullse conservation of memntum
Power point slides for momentum, Impullse conservation of memntum
Karthik537368
 

Similar to COLLISION SPP.pptx (20)

2.4 momentum &amp; energy 2017
2.4 momentum &amp; energy 20172.4 momentum &amp; energy 2017
2.4 momentum &amp; energy 2017
 
Ap review total
Ap review totalAp review total
Ap review total
 
Kinematics of Particles
Kinematics of ParticlesKinematics of Particles
Kinematics of Particles
 
Kinematics of particles
Kinematics of particlesKinematics of particles
Kinematics of particles
 
9. kinematics of particles
9. kinematics of particles9. kinematics of particles
9. kinematics of particles
 
Conservation of Momentum.pptx
Conservation of Momentum.pptxConservation of Momentum.pptx
Conservation of Momentum.pptx
 
12. kinetics of particles impulse momentum method
12. kinetics of particles impulse momentum method12. kinetics of particles impulse momentum method
12. kinetics of particles impulse momentum method
 
Impulse momentum
Impulse momentumImpulse momentum
Impulse momentum
 
Kinetics of particles impulse momentum method
Kinetics of particles impulse momentum methodKinetics of particles impulse momentum method
Kinetics of particles impulse momentum method
 
impuls and momentum
impuls and momentumimpuls and momentum
impuls and momentum
 
Problem and solution i ph o 22
Problem and solution i ph o 22Problem and solution i ph o 22
Problem and solution i ph o 22
 
Power point slides for momentum, Impullse conservation of memntum
Power point slides for momentum, Impullse conservation of memntumPower point slides for momentum, Impullse conservation of memntum
Power point slides for momentum, Impullse conservation of memntum
 
Momentum
MomentumMomentum
Momentum
 
Kinetics of particles
Kinetics of particlesKinetics of particles
Kinetics of particles
 
Kinetics of particles newton's 2nd law
Kinetics of particles newton's 2nd lawKinetics of particles newton's 2nd law
Kinetics of particles newton's 2nd law
 
10. kinetics of particles newton s 2nd law
10. kinetics of particles newton s 2nd law10. kinetics of particles newton s 2nd law
10. kinetics of particles newton s 2nd law
 
2.4 analysing momentum
2.4 analysing momentum2.4 analysing momentum
2.4 analysing momentum
 
Chap9
Chap9Chap9
Chap9
 
032316 momentum week2
032316 momentum week2032316 momentum week2
032316 momentum week2
 
4769694.ppt
4769694.ppt4769694.ppt
4769694.ppt
 

More from Samirsinh Parmar

More from Samirsinh Parmar (20)

When to Be Silent- Situations to Handle .pptx
When to Be Silent- Situations to Handle .pptxWhen to Be Silent- Situations to Handle .pptx
When to Be Silent- Situations to Handle .pptx
 
Lukhdhirji Engineering Collage and Hostels - Morbi-2.pptx
Lukhdhirji Engineering  Collage and Hostels - Morbi-2.pptxLukhdhirji Engineering  Collage and Hostels - Morbi-2.pptx
Lukhdhirji Engineering Collage and Hostels - Morbi-2.pptx
 
What is SPECIAL ABOUT SANATANA DHARMA.pptx
What is SPECIAL ABOUT SANATANA DHARMA.pptxWhat is SPECIAL ABOUT SANATANA DHARMA.pptx
What is SPECIAL ABOUT SANATANA DHARMA.pptx
 
MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdfMUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
 
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
 
Matdan Takavari (Voting Perecentage Guajarati) -2023-24.pdf
Matdan Takavari (Voting Perecentage Guajarati)  -2023-24.pdfMatdan Takavari (Voting Perecentage Guajarati)  -2023-24.pdf
Matdan Takavari (Voting Perecentage Guajarati) -2023-24.pdf
 
Election 2024 Presiding Duty Keypoints_01.pdf
Election 2024 Presiding Duty Keypoints_01.pdfElection 2024 Presiding Duty Keypoints_01.pdf
Election 2024 Presiding Duty Keypoints_01.pdf
 
Pre-Independence JWELLERY DESIGN of India.pptx
Pre-Independence JWELLERY DESIGN of India.pptxPre-Independence JWELLERY DESIGN of India.pptx
Pre-Independence JWELLERY DESIGN of India.pptx
 
Krishna- Jeevan Leela (Pictorial View).pdf
Krishna- Jeevan Leela (Pictorial View).pdfKrishna- Jeevan Leela (Pictorial View).pdf
Krishna- Jeevan Leela (Pictorial View).pdf
 
One more chance- Philosophy of Life.pptx
One more chance- Philosophy of Life.pptxOne more chance- Philosophy of Life.pptx
One more chance- Philosophy of Life.pptx
 
Pre-Independence Toys and Crafts designs in India.pptx
Pre-Independence Toys and Crafts designs in India.pptxPre-Independence Toys and Crafts designs in India.pptx
Pre-Independence Toys and Crafts designs in India.pptx
 
Peruvian Textile patterns before 1950.pptx
Peruvian Textile patterns before 1950.pptxPeruvian Textile patterns before 1950.pptx
Peruvian Textile patterns before 1950.pptx
 
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptxINTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
 
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptxMANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
 
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
 
GABIONS -MESH FACED RETAINING STRUCTURES .pptx
GABIONS -MESH FACED RETAINING STRUCTURES .pptxGABIONS -MESH FACED RETAINING STRUCTURES .pptx
GABIONS -MESH FACED RETAINING STRUCTURES .pptx
 
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptxBEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
 
Personality Development- Self Improvement
Personality Development- Self ImprovementPersonality Development- Self Improvement
Personality Development- Self Improvement
 
TIBETIAN PERSONALITY TEST - FEW QUESTION ANSWERS
TIBETIAN PERSONALITY TEST - FEW QUESTION  ANSWERSTIBETIAN PERSONALITY TEST - FEW QUESTION  ANSWERS
TIBETIAN PERSONALITY TEST - FEW QUESTION ANSWERS
 
The Endangered And Extinct Languages Of India.pptx
The Endangered And Extinct Languages Of India.pptxThe Endangered And Extinct Languages Of India.pptx
The Endangered And Extinct Languages Of India.pptx
 

Recently uploaded

power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
Atif Razi
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 

Recently uploaded (20)

Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
 
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docxThe Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
The Ultimate Guide to External Floating Roofs for Oil Storage Tanks.docx
 
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical SolutionsRS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
RS Khurmi Machine Design Clutch and Brake Exercise Numerical Solutions
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturing
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
Explosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdfExplosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdf
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
Construction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxConstruction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptx
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 

COLLISION SPP.pptx

  • 1. Prof. Samirsinh P. Parmar samirddu@gmail.com, spp.cl@ddu.ac.in Asst. Prof. Dept. of Civil Engineering Dharmasinh Desai University, Nadiad, Gujarat, India COLLISIONS CL-101 ENGINEERING MECHANICS B. Tech Semester-I
  • 2. Momentum Impulse Direct collisions Collision with a smooth plane Examination-style questions Contents
  • 3. Conservation of momentum Total momentum before collision = Total momentum after p = mv The principle of conservation of momentum states that: Moving objects are said to have momentum, p, which is the product of mass and velocity, measured in kg ms-1 or Newton seconds (Ns), which are equivalent. Momentum is a vector quantity with direction as well as magnitude. The momentum of a stationary object is zero. When two objects collide, their velocity and momentum may be affected.
  • 4. 0.2 0.2 Before impact After impact 0.5 0.5 6 8 v 7 A B Conservation of momentum Two smooth spheres A and B, of masses 0.2 kg and 0.5 kg respectively, are projected towards each other with speeds of 6 ms-1 and 8 ms-1. After they collide sphere A rebounds with a speed of 7 ms-1. Calculate the speed with which sphere B moves after the collision and state its direction.
  • 5. Conservation of momentum Therefore the speed of B after the collision is 2.8 ms-1 and the particle continues moving in the same direction as before the collision (i.e. from right to left). v = –2.8 0.5v = –1.4 1.2 – 4 = –1.4 + 0.5v Taking the positive direction of motion to be from left to right: (0.2 × 6) – (0.5 × 8) = (0.2 × –7) + (0.5 × v)
  • 6. Impulse Momentum Impulse Direct collisions Collision with a smooth plane Examination-style questions
  • 7. Impulse The change to a body’s momentum caused by a collision is called impulse, measured in Ns. Impulse is a vector quantity with magnitude and direction. I = mv – mu where u is the initial velocity and v is the final velocity. Impulse = change in momentum The impulse that a body A exerts on a body B is of equal magnitude to the impulse that B exerts on A, but it acts in the opposite direction.
  • 8. Impulse A ball of mass 0.75 kg hits the floor with a speed of 10 ms-1. It rebounds with a speed of 7 ms-1. Find the impulse exerted by the floor on the ball. Taking the upwards direction to be positive: Impulse = (0.75 × 7) – (0.75 × –10) = 5.25 + 7.5 = 12.75 Ns
  • 9. Momentum & impulse as vectors Sometimes a collision alters the line along which a particle is travelling, as in the example below. In these cases, we might need to find the magnitude and direction of the impulse by resolving a vector quantity into its horizontal and vertical components.
  • 10. Impulse vector question A ball of mass 2 kg is travelling horizontally at a speed of 6 ms-1 when it is struck by a bat. After the collision the ball is travelling upwards at 30° to the horizontal in the opposite direction at a speed of 8 ms-1. Find the impulse exerted on the ball by the bat. 2 6 ms-1 Before 2 After 8 ms-1 30°
  • 11. Impulse vector question Impulse = change in momentum The velocity of the ball before and after the collision can be expressed in vector notation as follows: I = mv – mu = 2 × (–8cos30°i + 8cos60°j) – 2 × 6i u = 6i v = –8cos30°i + 8cos60°j (where i is horizontal and j is vertical). After 2 8ms-1 30° I = 2 × (–43i + 4j) – 12i
  • 12. Impulse vector question   2 2 8 3 12 8 (3 s.f.)     27.1 Ns (–83 – 12) 8 θ I I = θ = (3 s.f.) to the negative i direction. 1 8 8 3 12 tan 7 =1 .2         I = (–83 – 12)i + 8j
  • 13. Direct collisions Momentum Impulse Direct collisions Collision with a smooth plane Examination-style questions
  • 14. Direct collisions Two bodies are said to have been in a direct collision when the velocities before and after impact are in a straight line. The outcome depends partly on the constitution of the bodies. This means that the bodies either rebound, continue in the same direction with reduced speed, or continue with the same velocity.
  • 15. Newton’s experimental law In direct collisions the relative velocity of the two bodies is reversed and the speed of separation is e times the speed of approach It follows that the speed of separation is always less than or equal to the speed of approach. e depends on the nature of the two surfaces in contact. For example, between a tennis ball and a concrete floor e will be close to 1, but e will be much lower between a tennis ball and a carpeted floor. Newton’s Experimental Law (NEL) states that: where e is a constant for two surfaces in contact called the coefficient of restitution, and 0 ≤ e ≤1.
  • 16. Elastic and inelastic collisions A perfectly elastic collision is one in which e = 1. In a perfectly elastic collision, the kinetic energy of the system will be conserved. In all other collisions kinetic energy will be lost. A perfectly inelastic collision is one in which e = 0. The loss in kinetic energy in the collision is equal to: where X is the speed of approach. ( ) mm e X mm  2 2 1 2 1 2 1 2
  • 17. Applying Newton’s Experimental Law When applying Newton’s Experimental Law, it is advisable to treat each velocity as either positive or negative in the same direction. v2 – v1 = –e(u2 – u1) So Newton’s Experimental Law can be expressed as: A and B are travelling in opposite directions, so the speed of approach is u1 + (–u2) and the speed of separation is (–v1) + v2. Before After u1 –u2 –v1 v2 A B
  • 18. Particles question 1 Question 1: A particle A is moving at a speed of 4 ms-1 towards a particle B moving at a speed of 5 ms-1 in the same line. After the collision the direction of motion of both particles is reversed. A moves with a speed of 5 ms-1 and B moves with a speed of 2 ms-1. Calculate the coefficient of restitution between these particles.
  • 19. Particles question 1 Before After 4 –5 –5 2 7 = 9e 7 9 Intuitively, in this simple example, we can see that the speed of approach is 9 ms-1 and the speed of separation is 7 ms-1, which also gives the required result. Apply NEL: (2 – –5) = –e(–5 – 4) e = A B
  • 20. Question 2: Two particles A and B of mass 3 kg and 4 kg respectively are travelling towards each other in a straight line. A has a speed of 10 ms-1 and B has a speed of 2 ms-1. State the direction of motion of each particle. Given that the coefficient of restitution between the two particles is , find the speeds of A and B immediately after the collision. Particles question 2 1 3
  • 21. Particles question 2 Use conservation of momentum: Total momentum before collision = Total momentum after In this example we have two unknowns. Therefore, we need to solve using simultaneous equations. 30 – 8 = 3v1 + 4v2 (3 × 10) + (4 × –2) = (3 × v1) + (4 × v2)  3v1 + 4v2 = 22 4 kg Before After 10 –2 v1 v2 3 kg
  • 22. Particles question 2 Apply NEL: v2 – v1 = – (–2 – 10) 1 3 Solve the equations simultaneously: Therefore after the collision the speed of A is ms-1 and the speed of B is ms-1. Since the velocities are positive, both particles are moving in the original direction of A. 6 7 6 7 4 Adding gives: 7v2 = 34 6 7 4  v2 = v2 – v1 = 4  v2 – v1 = 4 3v2 – 3v1 = 12 3v1 + 4v2 = 22 6 7  v1 =
  • 23. Particles question 3 Question 3: Three particles A, B and C of masses 2 kg, 3 kg and 5 kg respectively are on a straight level smooth surface. A is moving towards B and C with a speed of 15 ms-1 whilst B and C are at rest. If A is brought to rest after the collision with B and B is brought to rest after the collision with C, find the coefficient of restitution between particles B and C.
  • 24. Particles question 3 It is necessary to deal with the two collisions separately. First, consider the collision between A and B: Using conservation of momentum: (2 × 15) + (3 × 0) = (2 × 0) + (3 × v1) 30 = 3v1  v1 = 10 15 0 v1 0 Before After 2 kg 3 kg
  • 25. Particles question 3 Now that we know the speed of B after the first collision, we can examine the collision between B and C. Using conservation of momentum: (3 × 10) + (5 × 0) = (3 × 0) + (5 × v2) Apply NEL to the collision between B and C: 6 – 0 = – e(0 – 10) The coefficient of restitution between B and C is 0.6. 30 = 5v2 6 = 10e  e = 0.6  v2 = 6 10 0 0 v2 Before After 3kg 5kg
  • 26. Collision with a smooth plane Momentum Impulse Direct collisions Collision with a smooth plane Examination-style questions
  • 27. Collision with a smooth plane v = eu When looking at a collision between a particle and a smooth plane we use the formula: where u is the speed of approach and v is the speed of separation.
  • 28. Smooth plane question 1 Question 1: A particle is travelling horizontally with a speed of 8 ms-1 when it hits a fixed smooth vertical plane. The coefficient of restitution between the particle and the plane is . Calculate the speed with which the particle rebounds after the impact. Apply NEL: v = eu = × 8 = 2 Therefore the particle rebounds with a speed of 2 ms-1. 1 4 1 4
  • 29. Smooth plane question 2 Question 2: A particle falls from rest onto a fixed smooth horizontal plane 10 m below. If it rebounds from the plane with a speed of 3.5 ms-1, calculate the coefficient of restitution between the particle and the plane. We know: u = 0, s = 10, a = 9.8 v2 = 0 + 2 × 9.8 × 10 = 196 The particle strikes the plane with a speed of 14 ms-1. Apply NEL: . 3 5 1 = 4 14 v e u   Therefore the coefficient of restitution is ¼.  v = 14 Therefore we use v2 = u2 + 2as to calculate the speed of the particle as it collides with the plane.
  • 30. Smooth plane question 3 Question 3: A particle is travelling horizontally when it collides with a smooth fixed vertical plane. As a result of this collision the particle loses ¼ of its kinetic energy. Find the coefficient of restitution between the particle and the plane. Let the speed of the particle immediately before the collision be u ms-1. Applying NEL, v = eu Therefore the particle has a speed of eu ms-1 immediately after the collision.
  • 31. Smooth plane question 3 K.E. before collision = ½ × m × u2 K.E. after collision = ½ × m × (eu)2 Since the particle loses ¼ of its kinetic energy in the collision (½ × m × u2) – (½ × m × (eu)2) = ¼(½ × m × u2) Therefore the coefficient of restitution is . 3 2 Loss in K.E. = (½ × m × u2) – (½ × m × (eu)2) ½m(u2 – e2u2) = ¼(½mu2) 3 4 e2 = 4mu2 – 4me2u2 = mu2 4 – 4e2 = 1 3 2  e =
  • 32. Examination-style questions Momentum Impulse Direct collisions Collision with a smooth plane Examination-style questions
  • 33. Exam question 1 A rocket of mass 3000 kg is travelling at 100 ms-1. It then splits into two sections, the front and the rear, of masses 2000 kg and 1000 kg respectively. Both pieces continue to travel in the same direction as before the separation. If the speed of the front section is 125 ms-1 after the separation find: a) The impulse exerted on the front piece as a result of the separation. b) The speed of the rear section after the separation.
  • 34. Exam question 1 Before After 3000 2000 1000 100 125 v Impulse = (2000 × 125) – (2000 × 100) Therefore the impulse exerted on the front part of the rocket is 50 kNs. Impulse = change in momentum The change in momentum refers to the front part of the rocket only and so only the front part of the rocket is used when calculating the momentum before the collision. = 50 000
  • 35. Exam question 1 Using conservation of momentum: 3000 × 100 = 1000v + 2000 × 125 Therefore the rear section of the rocket is travelling at a speed of 50 ms-1 after separation. 300 000 = 1000v + 250 000 1000v = 50000 v = 50
  • 36. Exam question 2 Two particles A and B of masses 2 kg and 0.5 kg respectively are at rest on a smooth horizontal surface. A is projected towards B with a speed of 5 ms-1. As particle A collides with B they coalesce to form a single particle C which continues to move in the same direction as A. Particle C strikes a smooth fixed vertical barrier. If the coefficient of restitution between C and the barrier is ½, calculate the energy lost in the collision between C and this barrier.
  • 37. Exam question 2 Before After 2.5 v1 0.5 2 0 5 v2 e = ½ To find the loss in kinetic energy after the second collision it is first necessary to find the speed of C before and after the collision. The first step is to calculate the speed of C immediately after A and B have coalesced.
  • 38. Exam question 2 Using conservation of momentum, 2 × 5 + 0 = 2.5 × v1 Therefore the speed of C before the collision with the barrier is 4 ms- 1. It is now necessary to find the speed of C after the collision with the barrier. 10 = 2.5v1  v1 = 4
  • 39. Exam question 2 Apply NEL: v = eu = ½ × 4 = 2 Therefore the speed of C after the collision is 2 ms-1. We can now find the loss in kinetic energy asked for. K.E. before = ½ × 2.5 × 42 = 20 Therefore the energy lost in the collision between C and the barrier is 15 J. Loss in K.E. = 15 K.E. after = ½ × 2.5 × 22 = 5
  • 40. Exam question 3 Another sphere B of mass 3m kg is at rest on the table. a) show that the speed of B immediately after the collision is ½(1 + e)u. b) find the range of values of e. c) kinetic energy is lost in the collision. What form of energy could this lost kinetic energy be transferred to? A collides directly with B and as a result of this collision its direction of motion is reversed. If the coefficient of restitution is e: A smooth sphere A of mass m kg is moving in a straight line on a smooth horizontal surface with a speed of 2u ms-1.
  • 41. Exam question 3 a) Using Conservation of Momentum: 2mu + 0 = mv1 + 3mv2 Apply NEL: v2 – v1 = –e(0 – 2u) Solve simultaneously by adding: Therefore the speed of B after the collision is ½(1 + e)u ms-1.  v1 + 3v2 = 2u  v2 – v1 = 2eu v2 = ½u(e + 1) 4v2 = 2eu + 2u m 3m 2u 0 v1 v2
  • 42. Exam question 3 v1 = v2 – 2eu Since v1 < 0: ½u(1 – 3e) < 0 Therefore < e ≤ 1 1 3 c) u – 3eu < 0 1 3  e > 1 – 3e < 0 b) To calculate the range of values of e we use the fact that the motion of A is reversed, i.e. v1 < 0. v1 = (½u + ½eu) – 2eu v1 = ½u(1 – 3e) Kinetic energy could have been transformed into sound energy.