SlideShare a Scribd company logo
1 of 50
CIRRHOSIS OF LIVER
 PORTAL HYPERTENSION
HEPATIC ENCHEPALOPATHY
Definition of cirrhosis
Cirrhosis is derived from Greek word
  kirros=orange or tawny and osis=condition
-WHO definition :a diffuse process characterized
  by liver necrosis and fibrosis and conversion of
  normal liver architechture into structurally
  abnormal nodules that lack normal lobular
  organisation.
CAUSES OF LIVER CIRRHOSIS
-Infections:post hepatitic cirrhosis(B,D,C).
-Toxins:Alcohol.
-Cholestatic liver disease:PBC,PSC…
-Autoimmune diseases:autoimmune hepatitis.
-Vascular disorders: cardiac cirrhosis,Budd-Chiari
   syndrome ,Veno occlusive disease
-Metabolic and genetic :Wilson disease
   ,hemochromatosis,alpha 1- antitrypsin deficiency
-Non alcoholic steato hepatitis(NASH).
 Cryptogenic.
Pathology of cirrhosis
 -nodularity(regenerating nodules).
-fibrosis(deposition of dense fibrous septa)-
   fragmentation of sample.
-abnormal liver architecture
-hepatocyte
   abnormalities:pleomorphism,dysplasia,hyperp
   lasia
-Gross pathology:irregular surface ,yellowish
   colour,small,firm
HISTOLOGICAL IMAGE OF A NORMAL AND A CIRRHOTIC LIVER




Normal                                                    Cirrhosis




                                                                Nodules surrounded
                                                                by fibrous tissue
HISTOLOGICAL IMAGE OF CIRRHOSIS




                                         Fibrosis




Regenerativ
e nodule
PATHOGENESIS OF LIVER FIBROSIS



Normal Hepatic SInusoid



                                                                       Retinoid
                                                                       droplets
             Fenestrae

                                                                                      Hepatic
                                                                                      stellate cell
      Space of Disse




                           Sinusoidal
                       endothelial cell



                                                                                  Hepatocytes
PATHOGENESIS OF LIVER FIBROSIS


Alterations in Microvasculature in Cirrhosis




                                       • Activation of stellate cells
                                       • Collagen deposition in space of
                                         Disse
                                       • Constriction of sinusoids
                                       • Defenestration of sinusoids
NATURAL HISTORY OF CHRONIC LIVER DISEASE




 Natural History of Chronic Liver Disease



Chronic
liver     Compensated                                     Decompensated
          cirrhosis                                       cirrhosis       Death
disease

                      Development
                      of
                      complications:

                   • Variceal
                     hemorrhage
                   • Ascites
                   • Encephalopathy
                   • Jaundice
CLINICAL FEATURES
•   Hepatomegaly (although liver may also be small)
•   Jaundice
•   Ascites
•   Circulatory changes
    – Spider telangiectasia, palmar erythema, cyanosis
• Endocrine changes
    – Loss of libido, hair loss
    – Men: gynaecomastia, testicular atrophy, impotence
    – Women: breast atrophy, irregular menses, amenorrhoea
• Haemorrhagic tendency
    – Bruises, purpura, epistaxis, menorrhagia
• Portal hypertension
    – Splenomegaly, collateral vessels, variceal bleeding, fetor hepaticus
• Hepatic (portosystemic) encephalopathy
• Other features
    – Pigmentation, digital clubbing
COMPLICATIONS OF CIRRHOSIS




Complications of Cirrhosis Result from Portal
Hypertension or Liver Insufficiency


                                                    Variceal
            Portal                                  hemorrhage
            hypertension                                         Spontaneous
                                                                 bacterial
                                                    Ascites      peritonitis

Cirrhosis                                                        Hepatorenal
                                                                 syndrome

                                                    Encephalopathy
            Liver
            insufficiency
                                                    Jaundice
Diagnosis of cirrhosis
• clinical+laboratory+radiologic+liver biopsy
DIAGNOSIS OF CIRRHOSIS – CLINICAL FINDINGS




In Whom Should We Suspect
Cirrhosis?
• Any patient with chronic liver disease
    • Chronic abnormal aminotransferases and/or
      alkaline phosphatase

• Physical exam findings
    • Stigmata of chronic liver disease (muscle
      wasting, vascular spiders, palmar erythema)
    • Palpable left lobe of the liver
    • Small liver span
    • Splenomegaly
    • Signs of decompensation (jaundice, ascites,
      asterixis)
DIAGNOSIS OF CIRRHOSIS – LABORATORY STUDIES




In Whom Should We Suspect
Cirrhosis?
Laboratory
  • Liver insufficiency
     • Low albumin (< 3.8 g/dL)
     • Prolonged prothrombin time (INR > 1.3)
     • High bilirubin (> 1.5 mg/dL)

  • Portal hypertension
     • Low platelet count (< 175 x1000/µl)

  • AST / ALT ratio > 1
DIAGNOSIS OF CIRRHOSIS – CAT SCAN




         CT Scan in Cirrhosis




Liver with an irregular surface                                  Collaterals   Splenomegaly
DIAGNOSTIC ALGORITHM



Diagnostic Algorithm
   Patient with chronic liver disease and any of the following:
     • Variceal hemorrhage
     • Ascites
     • Hepatic encephalopathy
            Physical findings:                                Laboratory findings:
 Yes No Enlarged left hepatic lobe                            Thrombocytopenia
            Splenomegaly                                      Impaired hepatic synthetic
            Stigmata of chronic liver                         function
            disease
                       Radiological findings:
          Yes No            •   Small nodular liver
                            •   Intra-abdominal collaterals
                            •   Ascites
                            •   Splenomegaly
                            •   Colloid shift to spleen and/or bone marrow
                    Yes
                                      No
   Liver biopsy not
   necessary for the                                                     Liver biopsy
   diagnosis of cirrhosis
Management of cirrhosis
-Specific treatment in some pre cirrhotic
   lesions:wilson disease—
   Dpenicillamine,,hemochromatosis---
   phlebotomy,,antiviral drugs for chronic viral
   hepatitis
-in established cirrhosis---treatment of
   complications
-screening for hepatocellular carcinoma
-liver transplantation
-maintenance of nutrition
CHILD-PUGH CLASSIFICATION OF PROGNOSIS IN
                   CIRRHOSIS


Score                1                 2         3
Encephalopathy       None              Mild      Marked
Bilirubin (mg/dl)    < 2.0             2.0-3.0   > 3.0
Albumin (g/dl)       > 3.5             3.0-3.5   < 3.0
Prothrombin time    <4                 4-6       >6
(seconds prolonged)
Ascites              None              Mild      Marked
Add the individual   < 7 = Child's A
scores:              7-9 = Child's B
                     > 9 = Child's C
MELD SCORE
• MELD = 3.8(SERUM BILIRUBIN –MG/DL)+11.2
  IN INR + 9.6 IN SERUM CREATININE – MG/DL+
  6.4
PORTAL HYPERTENSION
Definition:it is an increase in portal venous
   pressure.
-normal portal pressure:5-10mmHg.
-portal hypertension;>12mmHg
-normal portal blood flow:1-1.5L/minute
-- increased resistance to portal blood flow
   +hyperdynamic circulation-----formation of
   porto systemic collaterals that diver blood to
   systemic circulation bypassing the liver
MECHANISMS OF PORTAL HYPERTENSION




Mechanisms of Portal Hypertension

   • Pressure (P) results from the
     interaction of resistance (R) and flow
     (F):
              P=RxF
   • Portal hypertension can result from:
     • increase in resistance to portal flow
       and/or
     • increase in portal venous inflow
THE NORMAL LIVER OFFERS ALMOST NO RESISTANCE TO FLOW




 Normal Liver



  Hepatic
     vein



Sinusoid                                          Liver




                                                                                    Coronary
                Portal                                                              vein
                 vein
                                                                                Splenic
                                                                                vein
ARCHITECTURAL LIVER DISRUPTION IS THE MAIN MECHANISM THAT LEADS TO AN INCREASED INTRAHEPATIC RESISTANCE




 Cirrhotic Liver
                                                                                                        Portal
                                                                                                        systemic
                                                                                                        collaterals




   Distorted
  sinusoidal
architecture
    leads to
  increased
 resistance
                              Portal
                               vein

                                                                                                                             Splenomegaly
AN INCREASE IN PORTAL VENOUS INFLOW SUSTAINS PORTAL HYPERTENSION




  An Increase in Portal Venous Inflow Sustains
  Portal Hypertension                          20

   Distorted
  sinusoidal
architechure




               Portal
                vein

                                                                      ↑ Flow

         Mesenteric
             veins                                                                         Splanchnic
                                                                                           vasodilatation
CAUSES
CAUSES OF PORTAL HYPERTENSION ACCORDING TO SITE OF ABNORMALITY
Extrahepatic post-sinusoidal

     Budd-Chiari syndrome
Intrahepatic post-sinusoidal

    Veno-occlusive disease
Sinusoidal
     Cirrhosis
• Cystic liver disease
• Partial nodular transformation of the liver
• Metastatic malignant disease

Intrahepatic pre-sinusoidal
     Schistosomiasis
• Sarcoidosis
• Congenital hepatic fibrosis
• Vinyl chloride
• Drugs

Extrahepatic pre-sinusoidal
    Portal vein thrombosis due to sepsis* (umbilical, portal pyaemia) or procoagulopathy (thrombotic
    diseases, oral contraceptives, pregnancy), or secondary to cirrhosis
• Abdominal trauma, including surgery
• Malignant disease of pancreas or liver
• Pancreatitis
• Congenital
Clinical complications of PHT
VARICES:esophageal,gastric,anorectal,retroperit
  oneal.
-portal hypertensive gastropathy and colopathy.
-caput medusae
-ascites
-congestive splenomegaly
-hepatic encephalopathy
VARICES INCREASE IN DIAMETER PROGRESSIVELY




Varices Increase in Diameter
Progressively




   No varices                        Small varices                                  Large varices

                      7-8%/year                                             7-8%/year


Merli et al. J Hepatol 2003;38:266
PROGNOSTIC INDICATORS OF FIRST VARICEAL HEMORRHAGE




       Variceal hemorrhage                                        Varix with red signs
                       Predictors of hemorrhage:
                          • Variceal size
                          • Red signs
                          • Child B/C
NIEC. N Engl J Med 1988; 319:983
Treatment of portal hypertension
-treatment of complications:variceal
   bleeding,,,ascites…
-endoscopic procedures:sclerotherapy +band
   ligation+prophylactic propranolol
TREATMENT OF ACUTE VARICEAL HEMORRHAGE




Treatment of Acute Variceal Hemorrhage
    General Management:
       • Iv acess and fluid resuscitation
       • Do not overtransfuse (hemoglobin ~ 8 g/dL)
       • Antibiotic prophylaxis

    Specific therapy:
       • Pharmacological therapy: terlipressin,
         somatostatin and analogues, vasopressin +
         nitroglycerin
       • Endoscopic therapy: ligation, sclerotherapy
       • Shunt therapy: TIPS, surgical shunt
ENDOSCOPIC VARICEAL BAND LIGATION




Endoscopic Variceal Band
Ligation

• Bleeding controlled in 90%

• Rebleeding rate 30%

• Compared with sclerotherapy:
     • Less rebleeding
     • Lower mortality
     • Fewer complications
     • Fewer treatment sessions
THE TRANSJUGULAR INTRAHEPATIC PORTOSYSTEMIC SHUNT



Transjugular Intrahepatic Portosystemic
Shunt

 Hepatic
 vein



 TIPS




                                                                                Splenic
 Portal vein                                                                    vein

                                                                    Superior mesenteric
                                                                    vein
MANAGEMENT OF UNCOMPLICATED ASCITES




Management of Uncomplicated
Ascites
 Definition: Ascites responsive to diuretics
 in          the absence of infection and
             renal dysfunction
 Sodium restriction
      • Effective in 10-20% of cases
      • Predictors of response: mild or moderate
        ascites, Urine Na excretion > 50 mEq/day
 Diuretics
      • Should be spironolactone-based
      • A progressive schedule (spironolactone 
        furosemide) requires fewer dose adjustments
        than a combined therapy (spironolactone +
        furosemide)
MANAGEMENT OF UNCOMPLICATED ASCITES: DIURETIC THERAPY




Management of Uncomplicated Ascites
 Diuretic Therapy
 Dosage
   • Spironolactone 100-400 mg/day
   • Furosemide (40-160 mg/d) for inadequate weight loss
     or if hyperkalemia develops
 • Increase diuretics if weight loss <1 kg in the first week
   and < 2 kg/week thereafter
 • Decrease diuretics if weight loss >0.5 kg/day in patients
   without edema and >1 kg/day in those with edema

 • Side effects
    • Renal dysfunction, hyponatremia, hyperkalemia,
      encephalopathy, gynecomastia
EARLY DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS (SBP)




     Early Diagnosis of SBP

    • Diagnostic paracentesis:
      • If symptoms / signs of SBP occur
         • Unexplained encephalopathy and / or
           renal dysfunction
         • At any hospital admission

    • Diagnosis based on ascitic fluid
            PMN count >250/mm3

Rimola et al., J Hepatol 2000; 32:142
TREATMENT OF SPONTANEOUS BACTERIAL PERITONITIS (SBP)




Treatment of Spontaneous Bacterial
Peritonitis
   • Recommended antibiotics for initial empiric
     therapy
              • i.v. cefotaxime, amoxicillin-clavulanic acid
              • oral nofloxacin (uncomplicated SBP)
              • avoid aminoglycosides

   • Minimum duration: 5 days

   • Re-evaluation if ascitic fluid PMN count has
     not decreased by at least 25% after 2 days of
     treatment

 Rimola et al., J Hepatol 2000; 32:142
HEPATIC ENCEPHALOPATHY




Hepatic Encephalopathy          60
TYPE C HEPATIC ENCEPHALOPATHY IS THE ENCEPHALOPATHY OF CIRRHOSIS




Type C Hepatic Encephalopathy
is the Encephalopathy of
Cirrhosis
• Neuropsychiatric complication of cirrhosis

• Results from spontaneous or surgical /
  radiological portal-systemic shunt + chronic
  liver failure

• Failure to metabolize neurotoxic substances

• Alterations of astrocyte morphology and
  function (Alzheimer type II astrocytosis)
STAGES OF HEPATIC ENCEPHALOPATHY




 Stages of Hepatic Encephalopathy
Stage          Mental state                                       Neurologic signs
  1     Mild confusion: limited attention                        Incoordination,
                                                                 tremor,
        span, irritability, inverted sleep                       impaired handwriting
        pattern

  2     Drowsiness, personality changes,                         Asterixis, ataxia,
                                                                 dysarthria
        intermittent disorientation

  3     Somnolent, gross disorientation,                         Hyperreflexia,
                                                                 muscle
        marked confusion, slurred speech                         rigidity, Babinski
                                                                 sign

  4     Coma                                                     No response to
pain,
STAGES OF HEPATIC ENCEPHALOPATHY




Stages of Hepatic Encephalopathy


  Confusion


              Drowsiness




                                          Somnolence


                                                        Coma
     1           2                                  3     4
                              Stage
HEPATIC ENCEPHALOPATHY IS A CLINICAL DIAGNOSIS




Hepatic Encephalopathy Is A
Clinical Diagnosis

• Clinical findings and history important
• Ammonia levels are unreliable
• Ammonia has poor correlation with
  diagnosis
• Measurement of ammonia not necessary
• Number connection test
• Slow dominant rhythm on EEG
HEPATIC ENCEPHALOPATHY PRECIPITANTS




       Hepatic Encephalopathy Precipitants

                                                                 Sedatives /
                                                                 hypnotics
Excess protein             GI bleeding



TIPS
                                                                      Diuretics


                                                                Serum K+
                                                                Plasma volume
                 Temp

                                                                Azotemia
                        Infections
PATHOPHYSIOLOGY OF HEPATIC ENCEPHALOPATHY


Hepatic Encephalopathy
Pathogenesis
                                                              Toxins


                        NH3
                        Shunting
   Failure to                                               GABA-BD
   metabolize                                               receptors
   NH3


           Bacterial action
           Protein load
ASTERIXIS IS THE HALLMARK IN THE DIAGNOSIS OF HEPATIC ENCEPHALOPATHY




Asterixis
NUMBER CONNECTION TEST




Number Connection Test                                       Draw a star      70
(NCT)
Time to
complete____________________

                                          End
             6                 10         25
 4
         7                 9              23

                  1                  11
     5    Begin

             14
                               8               24
3
                  2                                      Sample handwriting
     13
                                     12
                       17
15           16                                22
     18                             21
19                    20
TREATMENT OF HEPATIC ENCEPHALOPATHY




Treatment of Hepatic Encephalopathy
  • Identify and treat precipitating factor
     • Infection
     • GI hemorrhage
     • Prerenal azotemia
     • Sedatives
     • Constipation

  • Lactulose (adjust to 2-3 bowel
    movements/day)
  • Protein restriction, short-term (if at all)
ACTIONS OF LACTULOSE




    Actions of Lactulose

                         NH3
        Decreased pH

                         NH4+

     Lactic acid   NH3
     Lactulose

Urease-producing                                Increase
bacteria                                        cathartic effect
HEPATIC ENCEPHALOPATHY – TREATMENT SUMMARY




      Hepatic Encephalopathy
      Treatment: Summary
Increase ammonia
fixation in liver:
• Ornithine aspartate
• Benzoate                                                                          Flumazeni
                                                                                    l

               Shunt
               occlusion or
               reduction



                                                                       Decrease
                                                                       ammonia
                                                                       production in gut:
                                                                       • Lactulose
                                                                       • Antibiotics
                                                                       • Adjustment in
                                                                         dietary protein

More Related Content

What's hot

What's hot (20)

Hepatic failure
Hepatic failureHepatic failure
Hepatic failure
 
Chronic liver disease
Chronic liver diseaseChronic liver disease
Chronic liver disease
 
Thyrotoxicosis
ThyrotoxicosisThyrotoxicosis
Thyrotoxicosis
 
Liver cirrhosis
Liver cirrhosisLiver cirrhosis
Liver cirrhosis
 
Cirrhosis - causes, symptoms, diagnosis, management
Cirrhosis - causes, symptoms, diagnosis, managementCirrhosis - causes, symptoms, diagnosis, management
Cirrhosis - causes, symptoms, diagnosis, management
 
NEPHRITIC SYNDROME / APSGN IN CHILDREN
NEPHRITIC SYNDROME / APSGN IN CHILDREN NEPHRITIC SYNDROME / APSGN IN CHILDREN
NEPHRITIC SYNDROME / APSGN IN CHILDREN
 
Cirrhosis of liver
Cirrhosis of liverCirrhosis of liver
Cirrhosis of liver
 
Polycythemia
PolycythemiaPolycythemia
Polycythemia
 
liver Cirrhosis
liver Cirrhosis liver Cirrhosis
liver Cirrhosis
 
chronic liver disease (CLD)
chronic liver disease (CLD)chronic liver disease (CLD)
chronic liver disease (CLD)
 
Cholelithiasis
CholelithiasisCholelithiasis
Cholelithiasis
 
Splenomegaly
SplenomegalySplenomegaly
Splenomegaly
 
Chronic pancreatitis
Chronic pancreatitisChronic pancreatitis
Chronic pancreatitis
 
Pyelonephritis, ACUTE PYELONEPHRITIS, CHRONIC PYELONEPHRITIS,
Pyelonephritis, ACUTE PYELONEPHRITIS, CHRONIC PYELONEPHRITIS, Pyelonephritis, ACUTE PYELONEPHRITIS, CHRONIC PYELONEPHRITIS,
Pyelonephritis, ACUTE PYELONEPHRITIS, CHRONIC PYELONEPHRITIS,
 
Pancytopenia
PancytopeniaPancytopenia
Pancytopenia
 
Glumeronephritis
GlumeronephritisGlumeronephritis
Glumeronephritis
 
Pancreatitis
PancreatitisPancreatitis
Pancreatitis
 
chronic kidney disease.ppt
chronic kidney disease.pptchronic kidney disease.ppt
chronic kidney disease.ppt
 
Chronic hepatitis
Chronic hepatitis Chronic hepatitis
Chronic hepatitis
 
Vasculitis
VasculitisVasculitis
Vasculitis
 

Viewers also liked (20)

Liver cirrhosis
Liver cirrhosisLiver cirrhosis
Liver cirrhosis
 
Liver Cirrhosis
Liver CirrhosisLiver Cirrhosis
Liver Cirrhosis
 
Liver cirrhosis ppt
Liver cirrhosis pptLiver cirrhosis ppt
Liver cirrhosis ppt
 
Cirrhosis of the liver
Cirrhosis of the liverCirrhosis of the liver
Cirrhosis of the liver
 
Primary care screening tests in adults geriatrics
Primary care screening tests in adults  geriatricsPrimary care screening tests in adults  geriatrics
Primary care screening tests in adults geriatrics
 
Hepatic encephalopathy
Hepatic encephalopathyHepatic encephalopathy
Hepatic encephalopathy
 
Hepatic encephalopathy
Hepatic encephalopathyHepatic encephalopathy
Hepatic encephalopathy
 
Hepatic encephalopathy
Hepatic encephalopathyHepatic encephalopathy
Hepatic encephalopathy
 
[2015] hepatic encephalopathy
[2015] hepatic encephalopathy[2015] hepatic encephalopathy
[2015] hepatic encephalopathy
 
Hepatic encephalopathy 2012 presentation
Hepatic encephalopathy  2012 presentationHepatic encephalopathy  2012 presentation
Hepatic encephalopathy 2012 presentation
 
Encephalopathy with EEG based Grading
Encephalopathy with EEG based GradingEncephalopathy with EEG based Grading
Encephalopathy with EEG based Grading
 
Cirrhosis Of Liver
Cirrhosis Of LiverCirrhosis Of Liver
Cirrhosis Of Liver
 
Cirrhosis
CirrhosisCirrhosis
Cirrhosis
 
Approach to liver disease
Approach to liver diseaseApproach to liver disease
Approach to liver disease
 
Acute Liver Failure
Acute Liver FailureAcute Liver Failure
Acute Liver Failure
 
Chronic liver disease
Chronic liver diseaseChronic liver disease
Chronic liver disease
 
Chronic liver failure
Chronic liver failureChronic liver failure
Chronic liver failure
 
Liver Disease.ppt
Liver Disease.pptLiver Disease.ppt
Liver Disease.ppt
 
Cirrhosis and Portal Hypertension
Cirrhosis and Portal HypertensionCirrhosis and Portal Hypertension
Cirrhosis and Portal Hypertension
 
A case study on cirrhosis of liver
A case study on cirrhosis of liverA case study on cirrhosis of liver
A case study on cirrhosis of liver
 

Similar to Cirrhosis of liver

Cirrhosis of liver
Cirrhosis of liverCirrhosis of liver
Cirrhosis of liveraymenHaseeb1
 
Urine Analysis Part2
Urine Analysis Part2Urine Analysis Part2
Urine Analysis Part2Saikat Mitra
 
Liver Cirrhosis
Liver CirrhosisLiver Cirrhosis
Liver Cirrhosisdorai
 
Cirrhosis Hepar
Cirrhosis HeparCirrhosis Hepar
Cirrhosis HeparEneutron
 
Cirrhosis and Its Complications Elfign.pptx
Cirrhosis and Its Complications Elfign.pptxCirrhosis and Its Complications Elfign.pptx
Cirrhosis and Its Complications Elfign.pptxAbdirisaqJacda1
 
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...Ilkin Bakirli
 
Acute renal failure in icu .....
Acute renal failure in icu .....Acute renal failure in icu .....
Acute renal failure in icu .....Mahmoud El-saharty
 
Cystic diseases of liver
Cystic diseases of liverCystic diseases of liver
Cystic diseases of liverAnang Pangeni
 
Hovhannisyan HS_Propaedeutics of HBS.pdf
Hovhannisyan HS_Propaedeutics of HBS.pdfHovhannisyan HS_Propaedeutics of HBS.pdf
Hovhannisyan HS_Propaedeutics of HBS.pdfShinilLenin
 
Introduction to Renal System and Hematuria
Introduction to Renal System and HematuriaIntroduction to Renal System and Hematuria
Introduction to Renal System and HematuriaThe Medical Post
 

Similar to Cirrhosis of liver (20)

Cirrhosis of liver
Cirrhosis of liverCirrhosis of liver
Cirrhosis of liver
 
Cirrhosisofliver
CirrhosisofliverCirrhosisofliver
Cirrhosisofliver
 
Cirrhosis ppt
Cirrhosis ppt Cirrhosis ppt
Cirrhosis ppt
 
LIVER PATHOLOGY
LIVER PATHOLOGYLIVER PATHOLOGY
LIVER PATHOLOGY
 
Hepatorenal syndrome
Hepatorenal syndromeHepatorenal syndrome
Hepatorenal syndrome
 
Urine Analysis Part2
Urine Analysis Part2Urine Analysis Part2
Urine Analysis Part2
 
Liver Cirrhosis
Liver CirrhosisLiver Cirrhosis
Liver Cirrhosis
 
Cirrhosis Hepar
Cirrhosis HeparCirrhosis Hepar
Cirrhosis Hepar
 
Acute renal failure (2)
Acute renal failure (2)Acute renal failure (2)
Acute renal failure (2)
 
Cirrhosis and Its Complications Elfign.pptx
Cirrhosis and Its Complications Elfign.pptxCirrhosis and Its Complications Elfign.pptx
Cirrhosis and Its Complications Elfign.pptx
 
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...
Liver cirrhosis (Causes, clinical manifestation, complications, diagnosis, tr...
 
Liver Cirrhosis
Liver CirrhosisLiver Cirrhosis
Liver Cirrhosis
 
seminar on Haematuria
seminar on Haematuriaseminar on Haematuria
seminar on Haematuria
 
Cirrhosis
Cirrhosis Cirrhosis
Cirrhosis
 
Acute renal failure in icu .....
Acute renal failure in icu .....Acute renal failure in icu .....
Acute renal failure in icu .....
 
Inherited tubular disorders
Inherited tubular disorders Inherited tubular disorders
Inherited tubular disorders
 
Cystic diseases of liver
Cystic diseases of liverCystic diseases of liver
Cystic diseases of liver
 
Acute renal failure
Acute renal failureAcute renal failure
Acute renal failure
 
Hovhannisyan HS_Propaedeutics of HBS.pdf
Hovhannisyan HS_Propaedeutics of HBS.pdfHovhannisyan HS_Propaedeutics of HBS.pdf
Hovhannisyan HS_Propaedeutics of HBS.pdf
 
Introduction to Renal System and Hematuria
Introduction to Renal System and HematuriaIntroduction to Renal System and Hematuria
Introduction to Renal System and Hematuria
 

Cirrhosis of liver

  • 1. CIRRHOSIS OF LIVER PORTAL HYPERTENSION HEPATIC ENCHEPALOPATHY
  • 2. Definition of cirrhosis Cirrhosis is derived from Greek word kirros=orange or tawny and osis=condition -WHO definition :a diffuse process characterized by liver necrosis and fibrosis and conversion of normal liver architechture into structurally abnormal nodules that lack normal lobular organisation.
  • 3.
  • 4. CAUSES OF LIVER CIRRHOSIS -Infections:post hepatitic cirrhosis(B,D,C). -Toxins:Alcohol. -Cholestatic liver disease:PBC,PSC… -Autoimmune diseases:autoimmune hepatitis. -Vascular disorders: cardiac cirrhosis,Budd-Chiari syndrome ,Veno occlusive disease -Metabolic and genetic :Wilson disease ,hemochromatosis,alpha 1- antitrypsin deficiency -Non alcoholic steato hepatitis(NASH). Cryptogenic.
  • 5. Pathology of cirrhosis -nodularity(regenerating nodules). -fibrosis(deposition of dense fibrous septa)- fragmentation of sample. -abnormal liver architecture -hepatocyte abnormalities:pleomorphism,dysplasia,hyperp lasia -Gross pathology:irregular surface ,yellowish colour,small,firm
  • 6. HISTOLOGICAL IMAGE OF A NORMAL AND A CIRRHOTIC LIVER Normal Cirrhosis Nodules surrounded by fibrous tissue
  • 7. HISTOLOGICAL IMAGE OF CIRRHOSIS Fibrosis Regenerativ e nodule
  • 8. PATHOGENESIS OF LIVER FIBROSIS Normal Hepatic SInusoid Retinoid droplets Fenestrae Hepatic stellate cell Space of Disse Sinusoidal endothelial cell Hepatocytes
  • 9. PATHOGENESIS OF LIVER FIBROSIS Alterations in Microvasculature in Cirrhosis • Activation of stellate cells • Collagen deposition in space of Disse • Constriction of sinusoids • Defenestration of sinusoids
  • 10. NATURAL HISTORY OF CHRONIC LIVER DISEASE Natural History of Chronic Liver Disease Chronic liver Compensated Decompensated cirrhosis cirrhosis Death disease Development of complications: • Variceal hemorrhage • Ascites • Encephalopathy • Jaundice
  • 11. CLINICAL FEATURES • Hepatomegaly (although liver may also be small) • Jaundice • Ascites • Circulatory changes – Spider telangiectasia, palmar erythema, cyanosis • Endocrine changes – Loss of libido, hair loss – Men: gynaecomastia, testicular atrophy, impotence – Women: breast atrophy, irregular menses, amenorrhoea • Haemorrhagic tendency – Bruises, purpura, epistaxis, menorrhagia • Portal hypertension – Splenomegaly, collateral vessels, variceal bleeding, fetor hepaticus • Hepatic (portosystemic) encephalopathy • Other features – Pigmentation, digital clubbing
  • 12. COMPLICATIONS OF CIRRHOSIS Complications of Cirrhosis Result from Portal Hypertension or Liver Insufficiency Variceal Portal hemorrhage hypertension Spontaneous bacterial Ascites peritonitis Cirrhosis Hepatorenal syndrome Encephalopathy Liver insufficiency Jaundice
  • 13. Diagnosis of cirrhosis • clinical+laboratory+radiologic+liver biopsy
  • 14. DIAGNOSIS OF CIRRHOSIS – CLINICAL FINDINGS In Whom Should We Suspect Cirrhosis? • Any patient with chronic liver disease • Chronic abnormal aminotransferases and/or alkaline phosphatase • Physical exam findings • Stigmata of chronic liver disease (muscle wasting, vascular spiders, palmar erythema) • Palpable left lobe of the liver • Small liver span • Splenomegaly • Signs of decompensation (jaundice, ascites, asterixis)
  • 15. DIAGNOSIS OF CIRRHOSIS – LABORATORY STUDIES In Whom Should We Suspect Cirrhosis? Laboratory • Liver insufficiency • Low albumin (< 3.8 g/dL) • Prolonged prothrombin time (INR > 1.3) • High bilirubin (> 1.5 mg/dL) • Portal hypertension • Low platelet count (< 175 x1000/µl) • AST / ALT ratio > 1
  • 16.
  • 17. DIAGNOSIS OF CIRRHOSIS – CAT SCAN CT Scan in Cirrhosis Liver with an irregular surface Collaterals Splenomegaly
  • 18. DIAGNOSTIC ALGORITHM Diagnostic Algorithm Patient with chronic liver disease and any of the following: • Variceal hemorrhage • Ascites • Hepatic encephalopathy Physical findings: Laboratory findings: Yes No Enlarged left hepatic lobe Thrombocytopenia Splenomegaly Impaired hepatic synthetic Stigmata of chronic liver function disease Radiological findings: Yes No • Small nodular liver • Intra-abdominal collaterals • Ascites • Splenomegaly • Colloid shift to spleen and/or bone marrow Yes No Liver biopsy not necessary for the Liver biopsy diagnosis of cirrhosis
  • 19. Management of cirrhosis -Specific treatment in some pre cirrhotic lesions:wilson disease— Dpenicillamine,,hemochromatosis--- phlebotomy,,antiviral drugs for chronic viral hepatitis -in established cirrhosis---treatment of complications -screening for hepatocellular carcinoma -liver transplantation -maintenance of nutrition
  • 20. CHILD-PUGH CLASSIFICATION OF PROGNOSIS IN CIRRHOSIS Score 1 2 3 Encephalopathy None Mild Marked Bilirubin (mg/dl) < 2.0 2.0-3.0 > 3.0 Albumin (g/dl) > 3.5 3.0-3.5 < 3.0 Prothrombin time <4 4-6 >6 (seconds prolonged) Ascites None Mild Marked Add the individual < 7 = Child's A scores: 7-9 = Child's B > 9 = Child's C
  • 21. MELD SCORE • MELD = 3.8(SERUM BILIRUBIN –MG/DL)+11.2 IN INR + 9.6 IN SERUM CREATININE – MG/DL+ 6.4
  • 22. PORTAL HYPERTENSION Definition:it is an increase in portal venous pressure. -normal portal pressure:5-10mmHg. -portal hypertension;>12mmHg -normal portal blood flow:1-1.5L/minute -- increased resistance to portal blood flow +hyperdynamic circulation-----formation of porto systemic collaterals that diver blood to systemic circulation bypassing the liver
  • 23. MECHANISMS OF PORTAL HYPERTENSION Mechanisms of Portal Hypertension • Pressure (P) results from the interaction of resistance (R) and flow (F): P=RxF • Portal hypertension can result from: • increase in resistance to portal flow and/or • increase in portal venous inflow
  • 24. THE NORMAL LIVER OFFERS ALMOST NO RESISTANCE TO FLOW Normal Liver Hepatic vein Sinusoid Liver Coronary Portal vein vein Splenic vein
  • 25. ARCHITECTURAL LIVER DISRUPTION IS THE MAIN MECHANISM THAT LEADS TO AN INCREASED INTRAHEPATIC RESISTANCE Cirrhotic Liver Portal systemic collaterals Distorted sinusoidal architecture leads to increased resistance Portal vein Splenomegaly
  • 26. AN INCREASE IN PORTAL VENOUS INFLOW SUSTAINS PORTAL HYPERTENSION An Increase in Portal Venous Inflow Sustains Portal Hypertension 20 Distorted sinusoidal architechure Portal vein ↑ Flow Mesenteric veins Splanchnic vasodilatation
  • 27. CAUSES CAUSES OF PORTAL HYPERTENSION ACCORDING TO SITE OF ABNORMALITY Extrahepatic post-sinusoidal Budd-Chiari syndrome Intrahepatic post-sinusoidal Veno-occlusive disease Sinusoidal Cirrhosis • Cystic liver disease • Partial nodular transformation of the liver • Metastatic malignant disease Intrahepatic pre-sinusoidal Schistosomiasis • Sarcoidosis • Congenital hepatic fibrosis • Vinyl chloride • Drugs Extrahepatic pre-sinusoidal Portal vein thrombosis due to sepsis* (umbilical, portal pyaemia) or procoagulopathy (thrombotic diseases, oral contraceptives, pregnancy), or secondary to cirrhosis • Abdominal trauma, including surgery • Malignant disease of pancreas or liver • Pancreatitis • Congenital
  • 28. Clinical complications of PHT VARICES:esophageal,gastric,anorectal,retroperit oneal. -portal hypertensive gastropathy and colopathy. -caput medusae -ascites -congestive splenomegaly -hepatic encephalopathy
  • 29. VARICES INCREASE IN DIAMETER PROGRESSIVELY Varices Increase in Diameter Progressively No varices Small varices Large varices 7-8%/year 7-8%/year Merli et al. J Hepatol 2003;38:266
  • 30. PROGNOSTIC INDICATORS OF FIRST VARICEAL HEMORRHAGE Variceal hemorrhage Varix with red signs Predictors of hemorrhage: • Variceal size • Red signs • Child B/C NIEC. N Engl J Med 1988; 319:983
  • 31. Treatment of portal hypertension -treatment of complications:variceal bleeding,,,ascites… -endoscopic procedures:sclerotherapy +band ligation+prophylactic propranolol
  • 32. TREATMENT OF ACUTE VARICEAL HEMORRHAGE Treatment of Acute Variceal Hemorrhage General Management: • Iv acess and fluid resuscitation • Do not overtransfuse (hemoglobin ~ 8 g/dL) • Antibiotic prophylaxis Specific therapy: • Pharmacological therapy: terlipressin, somatostatin and analogues, vasopressin + nitroglycerin • Endoscopic therapy: ligation, sclerotherapy • Shunt therapy: TIPS, surgical shunt
  • 33. ENDOSCOPIC VARICEAL BAND LIGATION Endoscopic Variceal Band Ligation • Bleeding controlled in 90% • Rebleeding rate 30% • Compared with sclerotherapy: • Less rebleeding • Lower mortality • Fewer complications • Fewer treatment sessions
  • 34. THE TRANSJUGULAR INTRAHEPATIC PORTOSYSTEMIC SHUNT Transjugular Intrahepatic Portosystemic Shunt Hepatic vein TIPS Splenic Portal vein vein Superior mesenteric vein
  • 35. MANAGEMENT OF UNCOMPLICATED ASCITES Management of Uncomplicated Ascites Definition: Ascites responsive to diuretics in the absence of infection and renal dysfunction Sodium restriction • Effective in 10-20% of cases • Predictors of response: mild or moderate ascites, Urine Na excretion > 50 mEq/day Diuretics • Should be spironolactone-based • A progressive schedule (spironolactone  furosemide) requires fewer dose adjustments than a combined therapy (spironolactone + furosemide)
  • 36. MANAGEMENT OF UNCOMPLICATED ASCITES: DIURETIC THERAPY Management of Uncomplicated Ascites Diuretic Therapy Dosage • Spironolactone 100-400 mg/day • Furosemide (40-160 mg/d) for inadequate weight loss or if hyperkalemia develops • Increase diuretics if weight loss <1 kg in the first week and < 2 kg/week thereafter • Decrease diuretics if weight loss >0.5 kg/day in patients without edema and >1 kg/day in those with edema • Side effects • Renal dysfunction, hyponatremia, hyperkalemia, encephalopathy, gynecomastia
  • 37. EARLY DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS (SBP) Early Diagnosis of SBP • Diagnostic paracentesis: • If symptoms / signs of SBP occur • Unexplained encephalopathy and / or renal dysfunction • At any hospital admission • Diagnosis based on ascitic fluid PMN count >250/mm3 Rimola et al., J Hepatol 2000; 32:142
  • 38. TREATMENT OF SPONTANEOUS BACTERIAL PERITONITIS (SBP) Treatment of Spontaneous Bacterial Peritonitis • Recommended antibiotics for initial empiric therapy • i.v. cefotaxime, amoxicillin-clavulanic acid • oral nofloxacin (uncomplicated SBP) • avoid aminoglycosides • Minimum duration: 5 days • Re-evaluation if ascitic fluid PMN count has not decreased by at least 25% after 2 days of treatment Rimola et al., J Hepatol 2000; 32:142
  • 40. TYPE C HEPATIC ENCEPHALOPATHY IS THE ENCEPHALOPATHY OF CIRRHOSIS Type C Hepatic Encephalopathy is the Encephalopathy of Cirrhosis • Neuropsychiatric complication of cirrhosis • Results from spontaneous or surgical / radiological portal-systemic shunt + chronic liver failure • Failure to metabolize neurotoxic substances • Alterations of astrocyte morphology and function (Alzheimer type II astrocytosis)
  • 41. STAGES OF HEPATIC ENCEPHALOPATHY Stages of Hepatic Encephalopathy Stage Mental state Neurologic signs 1 Mild confusion: limited attention Incoordination, tremor, span, irritability, inverted sleep impaired handwriting pattern 2 Drowsiness, personality changes, Asterixis, ataxia, dysarthria intermittent disorientation 3 Somnolent, gross disorientation, Hyperreflexia, muscle marked confusion, slurred speech rigidity, Babinski sign 4 Coma No response to pain,
  • 42. STAGES OF HEPATIC ENCEPHALOPATHY Stages of Hepatic Encephalopathy Confusion Drowsiness Somnolence Coma 1 2 3 4 Stage
  • 43. HEPATIC ENCEPHALOPATHY IS A CLINICAL DIAGNOSIS Hepatic Encephalopathy Is A Clinical Diagnosis • Clinical findings and history important • Ammonia levels are unreliable • Ammonia has poor correlation with diagnosis • Measurement of ammonia not necessary • Number connection test • Slow dominant rhythm on EEG
  • 44. HEPATIC ENCEPHALOPATHY PRECIPITANTS Hepatic Encephalopathy Precipitants Sedatives / hypnotics Excess protein GI bleeding TIPS Diuretics Serum K+ Plasma volume Temp Azotemia Infections
  • 45. PATHOPHYSIOLOGY OF HEPATIC ENCEPHALOPATHY Hepatic Encephalopathy Pathogenesis Toxins NH3 Shunting Failure to GABA-BD metabolize receptors NH3 Bacterial action Protein load
  • 46. ASTERIXIS IS THE HALLMARK IN THE DIAGNOSIS OF HEPATIC ENCEPHALOPATHY Asterixis
  • 47. NUMBER CONNECTION TEST Number Connection Test Draw a star 70 (NCT) Time to complete____________________ End 6 10 25 4 7 9 23 1 11 5 Begin 14 8 24 3 2 Sample handwriting 13 12 17 15 16 22 18 21 19 20
  • 48. TREATMENT OF HEPATIC ENCEPHALOPATHY Treatment of Hepatic Encephalopathy • Identify and treat precipitating factor • Infection • GI hemorrhage • Prerenal azotemia • Sedatives • Constipation • Lactulose (adjust to 2-3 bowel movements/day) • Protein restriction, short-term (if at all)
  • 49. ACTIONS OF LACTULOSE Actions of Lactulose NH3 Decreased pH NH4+ Lactic acid NH3 Lactulose Urease-producing Increase bacteria cathartic effect
  • 50. HEPATIC ENCEPHALOPATHY – TREATMENT SUMMARY Hepatic Encephalopathy Treatment: Summary Increase ammonia fixation in liver: • Ornithine aspartate • Benzoate Flumazeni l Shunt occlusion or reduction Decrease ammonia production in gut: • Lactulose • Antibiotics • Adjustment in dietary protein

Editor's Notes

  1. Slide 8 HISTOLOGICAL IMAGE OF A NORMAL AND A CIRRHOTIC LIVER Histological images of two livers. On the left, a normal liver with conserved architecture. On the right, a cirrhotic liver with regenerative nodules surrounded by fibrous tissue (stained blue).
  2. Slide 9 HISTOLOGICAL IMAGE OF CIRRHOSIS Histological image of a cirrhotic liver showing regenerative nodules surrounded by fibrous tissue (stained blue).
  3. Slide 10 PATHOGENESIS OF LIVER FIBROSIS The key pathogenic feature underlying liver fibrosis and cirrhosis is hepatic stellate cell activation. Hepatic stellate cells (also known as Ito cells or perisinusoidal cells) are located in the space of Disse between hepatocytes and sinusoidal endothelial cells (that normally are fenestrated). Normally, hepatic stellate cells are quiescent and serve as the main storage site for retinoids (vitamin A).
  4. Slide 12 PATHOGENESIS OF LIVER FIBROSIS In cirrhosis, activated stellate cells deposit collagen in the space of Disse, leading to defenestration of sinusoidal endothelial cells, and acquire contractile properties that lead to sinusoidal constriction, which is partially responsible for increased intrahepatic vascular resistance.
  5. Slide 14 NATURAL HISTORY OF CHRONIC LIVER DISEASE Cirrhosis represents the end histological stage resulting from chronic liver injury of various etiologies. Initially, cirrhosis is compensated. The transition to a decompensated stage is marked by the development of variceal hemorrhage, ascites, hepatic encephalopathy and/or jaundice. Once decompensation occurs, the patient is at risk of death from liver disease.
  6. Slide 17 COMPLICATIONS OF CIRRHOSIS Cirrhosis leads to two clinical syndromes: portal hypertension and liver insufficiency. Development of variceal hemorrhage and ascites are the direct consequence of portal hypertension, while jaundice occurs as a result of a compromised liver function. Encephalopathy is the result of both portal hypertension (portosystemic shunting) and liver dysfunction (decreased ammonia metabolism). Ascites in turn can become complicated by infection (spontaneous bacterial peritonitis) and by the development of a functional renal failure (hepatorenal syndrome).
  7. Slide 19 DIAGNOSIS OF CIRRHOSIS – CLINICAL FINDINGS Cirrhosis should be investigated in any patient with chronic liver disease. Various physical signs suggest the presence of cirrhosis. In particular, a palpable left lobe with a small right lobe (on percussion) and splenomegaly are highly suggestive of cirrhosis. A recent review of several studies concludes that the listed physical findings, when present in chronic liver disease, confer a high specificity for cirrhosis. However the sensitivity is generally low and the absence of these physical signs does not exclude cirrhosis. De Bruyn G and Graviss EA, BMC Medical Informatics &amp; Decision Making 2001; 1: 6
  8. Slide 20 DIAGNOSIS OF CIRRHOSIS – LABORATORY STUDIES Tests that explore liver synthetic function are serum albumin and prothrombin time, while serum bilirubin investigates the ability of the liver to conjugate and excrete bilirubin. With liver dysfunction there is hypoalbuminemia,a prolonged prothrombin time and hyperbilirubinemia and the presence of either of these findings, in the presence of chronic liver disease, indicates the possibility of cirrhosis. However, an even earlier more sensitive finding suggestive of cirrhosis is a low platelet count that occurs as a result of portal hypertension and hypersplenism. An AST/ALT ratio &gt;1 has also been identified as having a high specificity but a low sensitivity, therefore its absence cannot exclude cirrhosis. Poynard and Bedossa. J Viral Hepat. 1997; 4:199 Dienstag JL, Hepatology 2002; 36 (Suppl 1): S152
  9. Slide 23 DIAGNOSIS OF CIRRHOSIS – CAT SCAN This slide shows typical computed tomography findings in compensated cirrhosis. The contour of the liver is irregular, there is obvious splenomegaly and the presence of collaterals indicates portal hypertension and secures the diagnosis of cirrhosis.
  10. Slide 41 DIAGNOSTIC ALGORITHM Diagnostic algorithm to investigate the presence of cirrhosis in patients with chronic liver disease.
  11. Slide 44 MECHANISMS OF PORTAL HYPERTENSION In fluid mechanics, Ohm’s law states that pressure (P) is dependent upon flow (F) and resistance to flow (R). Therefore, portal hypertension can result from an increase in portal venous inflow, an increase in resistance to portal flow or an increase in both flow and resistance.
  12. Slide 47 THE NORMAL LIVER OFFERS ALMOST NO RESISTANCE TO FLOW The normal liver can withstand significant increases in flow, without resulting in increases in portal pressure. The normal portal venous system is a low-pressure system and vessels draining the intraabdominal organs, such as the coronary vein, drain into it.
  13. Slide 48 ARCHITECTURAL LIVER DISRUPTION IS THE MAIN MECHANISM THAT LEADS TO AN INCREASED INTRAHEPATIC RESISTANCE The deposition of fibrous tissue and the formation of nodules, disrupts the architecture of the liver, leading to an increased resistance to flow and to portal hypertension. Vessels that normally drain into the portal system, such as the coronary vein, reverse their flow and become porto-systemic collaterals. Additionally, with portal hypertension, the spleen increases in size and sequesters platelets and other formed blood cells leading to hypersplenism.
  14. Slide 65 AN INCREASE IN PORTAL VENOUS INFLOW SUSTAINS PORTAL HYPERTENSION The initial mechanism in the development of portal hypertension in cirrhosis is an increase in vascular resistance to portal flow mostly due to a distorted sinusoidal architecture. However, a subsequent increase in portal venous inflow secondary to splanchnic vasodilatation, maintains the portal hypertensive state.
  15. Slide 82 VARICES INCREASE IN DIAMETER PROGRESSIVELY Both development of varices and growth of small varices occurs at a rate of 7-8% per year. Although there are no identified clinical predictors for the development of varices, factors associated with variceal growth are Child B/C cirrhosis, alcoholic etiology and presence of red wale marks on initial endoscopy. Merli et al., J Hepatol 2003; 38: 266
  16. Slide 97 PROGNOSTIC INDICATORS OF FIRST VARICEAL HEMORRHAGE In a prospective study, the presence of the following clinical features was associated with a high probability of developing variceal hemorrhage: large variceal size, Child B/C and the presence of red wale markings on varices. North Italian Endoscopic Club. N Engl J Med 1988; 319: 983
  17. Slide 138 TREATMENT OF ACUTE VARICEAL HEMORRHAGE Treatment of acute variceal hemorrhage includes general and specific therapies. General management includes establishing intravenous access and fluid resuscitation. Vigorous fluid resuscitation and transfusion to hemoglobin levels &gt;8 g/dL should be avoided as this could precipitate early variceal rebleeding. Prophylactic antibiotic therapy should be instituted promptly in any cirrhotic patient with gastrointestinal hemorrhage. Specific therapy includes pharmacological therapy, endoscopic therapy and shunt therapy.
  18. Slide 144 ENDOSCOPIC VARICEAL BAND LIGATION Endoscopic variceal ligation consists of the placement of rubber rings on variceal columns with the objective of interrupting blood flow and subsequently developing necrosis of mucosa and submucosa and replacement of varices by scar tissue. Endoscopic therapy is a local therapy that has no effect on the pathophysiologic mechanisms that lead to portal hypertension and variceal rupture. Even though it achieves variceal obliteration, varices will eventually recur. Bleeding is controlled in 90% of cases of acute variceal hemorrhage with a rebleeding rate of 30%. Meta-analysis of trials comparing ligation with sclerotherapy has shown that ligation is associated with lower rebleeding rates, lower number of sessions to achieve variceal obliteration and lower mortality. Complications of endoscopic therapy are related mainly to the development of esophageal ulceration and strictures, significantly more frequent after sclerotherapy than after ligation. Laine and Cook. Ann Intern Med 1995; 123:280
  19. Slide 147 THE TRANSJUGULAR INTRAHEPATIC PORTOSYSTEMIC SHUNT Portal hypertension can be corrected by creating a communication between the hypertensive portal system and low-pressure systemic veins, bypassing the liver, i.e., the site of increased resistance. This communication can be created surgically or by the transjugular placement of an intrahepatic stent that connects a branch of the portal vein with a branch of an hepatic vein, a procedure designated transjugular intrahepatic porto-systemic shunt (TIPS). TIPS is performed by advancing a catheter introduced through the jugular vein into a hepatic vein and into a main branch of the portal vein. An expandable stent is then introduced connecting hepatic and portal systems, and blood from the hypertensive portal vein and sinusoidal bed is shunted to the hepatic vein. The procedure is highly effective in correcting portal hypertension but can be associated with complications related to diversion of blood flow away from the liver, namely portal-systemic encephalopathy and liver failure.
  20. Slide 240 MANAGEMENT OF UNCOMPLICATED ASCITES Sodium (salt) restriction is effective in only 10-20% of patients with cirrhotic ascites. Those with mild to moderate ascites and those with adequate natriuresis are more likely to respond to sodium restriction alone. Diuretic therapy is the mainstay of management of uncomplicated ascites. Spironolactone is more effective than loop diuretics such as furosemide and therefore therapy of ascites should be spironolactone-based. A progressive diuretic schedule (spironolactone followed by furosemide) requires adjustment less frequently than a combination schedule (spironolactone + furosemide from the outset) and may be preferable, particularly in the outpatient setting.
  21. Slide 242 MANAGEMENT OF UNCOMPLICATED ASCITES: DIURETIC THERAPY Spironolactone should be started at 100 mg/day (once a day in the morning). The dose should be adjusted every 3-4 days to a maximal effective dose of 400 mg/d. If weight loss is inadequate or if hyperkalemia develops, furosemide can be added at an escalated dose from 40 to 160 mg/day. The weight loss goal is 1 kg in the first week and 2 kg/week subsequently. However, diuretics should be reduced if rate of weight loss is more than 0.5 kg/day (or 1 kg/day in patients with peripheral edema). The common side effects of diuretic therapy include electrolyte abnormalities, renal dysfunction, encephalopathy, and painful gynecomastia (with spironolactone).
  22. Slide 276 EARLY DIAGNOSIS OF SPONTANEOUS BACTERIAL PERITONITIS (SBP) A high index of suspicion and early diagnosis are key in the management of SBP. A diagnostic paracentesis should be performed in any patient that presents with any symptom (abdominal pain) or sign (fever, abdominal tenderness) of SBP. Since encephalopathy and/or renal dysfunction may be the only evidence of bacterial infection in a cirrhotic patients, diagnostic paracentesis (and blood cultures) should also be performed in this setting. Since SBP is often asymptomatic and is often community-acquired, a diagnostic paracentesis should be performed promptly in any cirrhotic patient admitted to the hospital, regardless of cause for admission. The diagnosis of SBP is established with an ascitic fluid polymorphonuclear count (PMN) greater than 250/mm 3 . Rimola A, et al., J Hepatol 2000; 32: 142
  23. Slide 287 TREATMENT OF SPONTANEOUS BACTERIAL PERITONITIS (SBP) Appropriate empiric antibiotic therapy is based on the administration of a safe antibiotic that will cover the most likely causative pathogens and should be initiated as soon as the diagnosis of SBP is established (ascites PMN count &gt;250/mm3). Based on controlled and uncontrolled trials, the recommended antibiotics are third-generation cephalosporins (cefotaxime and ceftriaxone have been the most utilized) or amoxicillin-clavulanic acid, administered intravenously. In patients with uncomplicated SBP, oral ofloxacin has been shown to be as useful as intravenous cefotaxime, however the use of quinolones depends on the local prevalence of quinolone-resistant organisms. Aminoglycosides, however, should be avoided as they are associated with high incidence of renal toxicity in cirrhotic patients. The minimal duration of therapy should be at least 5 days although, in clinical trials, the median duration of therapy needed for a reduction in ascites PMN below 250/mm 3 is 7 days. A repeat diagnostic paracentesis should be performed 2 days after starting antibiotics and at this time ascites PMNs should have decreased by &gt;25% from baseline. Lack of response should prompt further investigations to rule out secondary peritonitis. Rimola A, et al., J Hepatol 2000; 32: 142
  24. Slide 345 HEPATIC ENCEPHALOPATHY Hepatic encephalopathy is defined as the neuropsychiatric manifestations of cirrhosis of the liver.
  25. Slide 348 TYPE C HEPATIC ENCEPHALOPATHY IS THE ENCEPHALOPATHY OF CIRRHOSIS In cirrhosis, hepatic encephalopathy results from a combination of portosystemic shunting and failure to metabolize neurotoxic substances. Astrocytes are the only cells in the brain that can metabolize ammonia and, in hepatic encephalopathy, changes in the astrocytes are seen (Alzheimer’s type II astrocytosis).
  26. Slide 352 STAGES OF HEPATIC ENCEPHALOPATHY These clinical stages of hepatic encephalopathy depend on the mental state and neurological signs.
  27. Slide 353 STAGES OF HEPATIC ENCEPHALOPATHY Mental stages progress from confusion through drowsiness and somnolence to coma.
  28. Slide 351 HEPATIC ENCEPHALOPATHY IS A CLINICAL DIAGNOSIS. The diagnosis of hepatic encephalopathy is based on history and physical exam findings. Ammonia levels are unreliable, and there is a poor correlation between the stage of encephalopathy and blood level of ammonia. Therefore, measurements of ammonia are not necessary. Psychometric tests such as the number connection test and the EEG are typically used in research studies and not for clinical diagnosis.
  29. Slide 362 HEPATIC ENCEPHALOPATHY PRECIPITANTS Precipitating factors for hepatic encephalopathy include a high protein load, gastrointestinal bleeding or constipation, as well as infection and overdiuresis (leading to azotemia and hypokalemia). Narcotics and sedatives by directly depressing brain function further contribute to hepatic encephalopathy. A commonly seen cause of chronic encephalopathy is the placement of the transjugular intrahepatic porto-systemic shunt (TIPS).
  30. Slide 350 PATHOPHYSIOLOGY OF HEPATIC ENCEPHALOPATHY This slide demonstrates how ammonia bypasses the liver, either through porto-systemic collaterals or through a created shunt (transjugular intrahepatic porto-systemic shunt) and ultimately reaches the brain.
  31. Slide 354 ASTERIXIS IS THE HALLMARK IN THE DIAGNOSIS OF HEPATIC ENCEPHALOPATHY This slide shows typical features of asterixis. Asterixis is best noted with the outstretched arm attempting to dorsiflex the hand with the fingers extended. The initial movement is a “scissors” movement of the fingers. Subsequently, there is a downward drift of the hand with incomplete recovery motion, followed by sudden palmar flexion. The hand then returns to the initial position by dorsiflexion.
  32. Slide 357 NUMBER CONNECTION TEST This slide shows a number connection test (left panel). In the NCT, which measures cognitive motor abilities, patients must connect numbers from 1 to 25 printed on paper as quickly as possible. The test score is the time required to complete the test, including the time needed to correct any errors. NCT is influenced by age and educational level. Construction apraxia is noted in the panel on the right, in which a patient with encephalopathy is unable to draw a five-pointed star.
  33. Slide 361 TREATMENT OF HEPATIC ENCEPHALOPATHY Treatment of hepatic encephalopathy involves 1) identifying and treating the precipitating factor, and 2) using lactulose adjusted to produce 2-3 bowel movements per day. Protein restriction is carried out typically when patients have stage 4 hepatic encephalopathy, but may not be necessary. Long-term protein restriction is not required. A vegetable protein diet is better tolerated than an animal protein diet.
  34. Slide 363 ACTIONS OF LACTULOSE Lactulose acts by several mechanisms. The acidic pH decreases urease-producing bacteria which produce ammonia. The proton H+ produced combines with NH 3 to give NH 4 , which is non-absorbable, and results in ammonia excretion in stool. The cathartic effect of lactulose is also helpful. It is important to note that data supporting the benefit of lactulose in hepatic encephalopathy are lacking.
  35. Slide 365 HEPATIC ENCEPHALOPATHY – TREATMENT SUMMARY Hepatic encephalopathy can be treated with agents aimed at decreasing ammonia production in the gut. This strategy includes lactulose or non-absorbable antibiotics such as neomycin, metronidazole, or rifaximin. Change in dietary protein from an animal source to a vegetable source may also be beneficial. L-ornithine L-aspartate and benzoate may increase ammonia fixation in the liver. In patients who have a large portosystemic shunt in the absence of liver disease, occlusion of the shunt may be carried out.