Composite Inelastic Dark Matter
           Jay Wacker
              SLAC
           June 6, 2009

                          arXiv:0903.3945
                          With
                           Philip Schuster
                           Siavosh Behabani
                           Daniele Alves
11 Years of Oscillation




A distinctive recoil spectrum
Inelastic Dark Matter
                                  Tucker-Smith & Weiner (2001)

Dark matter has 2 nearly         Scattering off the SM is
   degenerate states                      Ψ1 → Ψ2
                                 Ψ2                    N
 δm ∼ O(100 keV)
  Ψ2

   Ψ1                            Ψ1                    N

                  3 Consequences:
              Scatters off of heavier nuclei     (CDMS ineffective)

                    Large recoil energy        (Xenon10 didn’t look)

                Large modulation fraction
Inelastic Dark Matter
         A new number to explain:
              δm
               m
                      ∼
                     10  −6


Breaking of an approximate global symmetry
                 Like Yukawas
               Radiatively stable
             Hard to discover origin

        Sign of dark sector dynamics
             First of many splittings
           New interactions to discover
       Changes what questions are interesting
Composite Dark Matter
            A new SU(Nc) gauge sector
                    Confines at ΛDark
                                                mH
                       qL    mL         Λdark
A pair of quarks:
                       qH mH            Λdark   Λdark
                                                mL
Composite Dark Matter
            A new SU(Nc) gauge sector
                    Confines at ΛDark
                                                mH
                       qL    mL         Λdark
A pair of quarks:
                       qH mH            Λdark   Λdark
                                                mL
            A cosmological asymmetry
        (nH − nH ) = −(nL − nL ) = 0
               ¯             ¯

         At T    ΛDark DM is in
               ¯
            qH qL bound states

                Dark Mesons
Degeneracy of the Ground State
 Heavy quark spin preserved in electric interactions
 Dark Chromomagnetic interaction breaks spin symmetry

               ¯
            qH qL                       ρd
      m                                         σ·B
                                        πd δH ∼ mH

           Spin 0                  Spin 1



           Dark Pion               Dark Rho
              πd                     ρd
                mρd − mπd       Λ2
                            ∼    Dark
                                 mH
Doesn’t require adding new symmetry and breaking it
Accidental global symmetry from Lorentz Invariance
Coupling to the SM
  Kinetically Mix U (1)Y with U (1)dark
                       µν
         Lmix =       Fdark FY µν
       U(1)Y              U(1)dark
SM                                   DM
                χGUT

                               µ
At low energy Lint =          Adark   jEM µ

     Higgs U(1)dark near EW scale

LHiggs = |Dµ φd | − V (φd ) −→
                  2                   2 2
                                     md Ad
Charging the Dark Quarks
              Two Choices Anomaly-Free Charges

Vector coupling
      µ
     jdark   = gd (¯H γ qH − qL γ qL )
                   q   µ
                             ¯        µ

         Doesn’t forbid dark quark masses
         Has both elastic and inelastic scattering channels
Charging the Dark Quarks
              Two Choices Anomaly-Free Charges

Vector coupling
      µ
     jdark   = gd (¯H γ qH − qL γ qL )
                   q   µ
                             ¯        µ

         Doesn’t forbid dark quark masses
         Has both elastic and inelastic scattering channels


Axial Vector coupling
      µ
     jdark   = gd (¯H γ γ qH − qL γ γ qL )
                   q   µ 5
                               ¯          µ 5

         Forbids dark quark masses until U(1)dark Higgsing
         Only inelastic scattering channels
Inelastic Axial Transitions
           Must compute couplings to dark mesons

                                 gd    µν    †
             Lint             =       Fdark ρd ν ∂µ πd
                                Λdark

                             Dim 5 πd ↔ ρd                              use µ = 0   ν=i


             πd ↔ πd
    All      ρd ↔ ρd transitionsA forbidden
                  MDM 200 GeV, 125 keV, M 1 GeV
                             0.030


                             0.025
                cpd kg keV




                             0.020


 Recoil                      0.015



Spectrum                     0.010


                             0.005


                             0.000


                             0.005

                                     1
                                     1
                                         2
                                         2
                                             3
                                             3
                                                   4
                                                   4
                                                        5
                                                        5
                                                            6
                                                            6
                                                                7
                                                                7
                                                                    8
                                                                    8

                                                 ER KeVee
Vector Couplings
                 Different low energy interactions

Inelastic transition                          parity!
                    gd                       †
          Lint   =          µνσρ
                                   Fdark µν ρd σ   ∂ρ πd
                   Λdark
                                            velocity suppressed
                                                      10 −6 smaller
Elastic transition
                     gd       µν    †
           Lint    = 2    ∂µ Fdark πd ∂ν πd
                    Λdark
          Dim 6 elastic Charge Radius scattering
Vector Couplings
                    Different low energy interactions

 Inelastic transition                                                                                       parity!
                       gd                                                             †
             Lint   =                                            µνσρ
                                                                            Fdark µν ρd σ                     ∂ρ πd
                      Λdark
                                                                                                     velocity suppressed
                                                                                                               10 −6 smaller
 Elastic transition
                          gd       µν    †
               Lint     = 2    ∂µ Fdark πd ∂ν πd
                         Λdark
             Dim 6 elastic Charge Radius scattering 200 GeV,
                         M 200 GeV, M 1 GeV     MDM0.030
                                                                DM                  A                                                               125 keV, M
                      Count Rate arbitraty units




                                                                                                                            0.030

                                                   0.025
                                                                 Charged Elastic Scattering
                                                                 Charged Radius Elastic Scattering                          0.025




                                                                                                               cpd kg keV
Suppressed at low
                                                   0.020
                                                                                                                            0.020


                                                                                                                            0.015

     Erecoil
                                                   0.015


                                                                                                                            0.010
                                                   0.010

                                                                                                                            0.005

                                                   0.005
                                                                                                                            0.000


                                                   0.000
                                                           20        40        60          80         100   Erecoil         0.005
                                                                                                                                    1   2   3   4      5    6
CP-Violation
              Add θ term to dark QCD sector
                                                   Spin 1 sector
                               ˜
                   LCPV = θGµν Gµν
               Mixes states of opposite CP      Λdark          l = 1, s = 0


                 i.e.   ρd & a1 d mix           l = 0, s = 1


                              gd
         Allows     Lint   =        µν    †
                                   Fdark ρd ν ∂µ πd
                             Λdark

Both inelastic & form-factor suppressed elastic interactions

         Nearly the same Recoil Spectra
                   How to measure?
Directional Detection                                               Finkbeiner, Lin,Weiner (2009)
                                                                                                    w/ Lisanti (in Progress)




                                                                                              γ
                                                 vearth


               Recoil Spectrum                                                  Recoil Direction
eDM w/FF
  0.025                                                               1


                                                                                                      eDM w/FF
       0.020
                                      iDM                          0.1


       0.015
Rate




                                                                  0.01
                                                          Rate
       0.010                                                                            iDM
                                                                 0.001
       0.005

                                                                      4
                                                                 10
       0.000
               0   20     40        60      80     100                    1.0     0.8   0.6           0.4   0.2     0.0


                         ERecoil
                        Recoil Energy keV
                                                                                        cos γ Cos Γ
Outlook

          Composite inelastic DM gives
          explanation to 100 keV scale


     Lots of variants with different scattering
New experiments needed to understand DM dynamics


  Collider signatures of DM could have showering

            Lots of models to explore
              Susy & Dark Flavor

Composite Inelastic Dark Matter

  • 1.
    Composite Inelastic DarkMatter Jay Wacker SLAC June 6, 2009 arXiv:0903.3945 With Philip Schuster Siavosh Behabani Daniele Alves
  • 2.
    11 Years ofOscillation A distinctive recoil spectrum
  • 3.
    Inelastic Dark Matter Tucker-Smith & Weiner (2001) Dark matter has 2 nearly Scattering off the SM is degenerate states Ψ1 → Ψ2 Ψ2 N δm ∼ O(100 keV) Ψ2 Ψ1 Ψ1 N 3 Consequences: Scatters off of heavier nuclei (CDMS ineffective) Large recoil energy (Xenon10 didn’t look) Large modulation fraction
  • 4.
    Inelastic Dark Matter A new number to explain: δm m ∼ 10 −6 Breaking of an approximate global symmetry Like Yukawas Radiatively stable Hard to discover origin Sign of dark sector dynamics First of many splittings New interactions to discover Changes what questions are interesting
  • 5.
    Composite Dark Matter A new SU(Nc) gauge sector Confines at ΛDark mH qL mL Λdark A pair of quarks: qH mH Λdark Λdark mL
  • 6.
    Composite Dark Matter A new SU(Nc) gauge sector Confines at ΛDark mH qL mL Λdark A pair of quarks: qH mH Λdark Λdark mL A cosmological asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ At T ΛDark DM is in ¯ qH qL bound states Dark Mesons
  • 7.
    Degeneracy of theGround State Heavy quark spin preserved in electric interactions Dark Chromomagnetic interaction breaks spin symmetry ¯ qH qL ρd m σ·B πd δH ∼ mH Spin 0 Spin 1 Dark Pion Dark Rho πd ρd mρd − mπd Λ2 ∼ Dark mH Doesn’t require adding new symmetry and breaking it Accidental global symmetry from Lorentz Invariance
  • 8.
    Coupling to theSM Kinetically Mix U (1)Y with U (1)dark µν Lmix = Fdark FY µν U(1)Y U(1)dark SM DM χGUT µ At low energy Lint = Adark jEM µ Higgs U(1)dark near EW scale LHiggs = |Dµ φd | − V (φd ) −→ 2 2 2 md Ad
  • 9.
    Charging the DarkQuarks Two Choices Anomaly-Free Charges Vector coupling µ jdark = gd (¯H γ qH − qL γ qL ) q µ ¯ µ Doesn’t forbid dark quark masses Has both elastic and inelastic scattering channels
  • 10.
    Charging the DarkQuarks Two Choices Anomaly-Free Charges Vector coupling µ jdark = gd (¯H γ qH − qL γ qL ) q µ ¯ µ Doesn’t forbid dark quark masses Has both elastic and inelastic scattering channels Axial Vector coupling µ jdark = gd (¯H γ γ qH − qL γ γ qL ) q µ 5 ¯ µ 5 Forbids dark quark masses until U(1)dark Higgsing Only inelastic scattering channels
  • 11.
    Inelastic Axial Transitions Must compute couplings to dark mesons gd µν † Lint = Fdark ρd ν ∂µ πd Λdark Dim 5 πd ↔ ρd use µ = 0 ν=i πd ↔ πd All ρd ↔ ρd transitionsA forbidden MDM 200 GeV, 125 keV, M 1 GeV 0.030 0.025 cpd kg keV 0.020 Recoil 0.015 Spectrum 0.010 0.005 0.000 0.005 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ER KeVee
  • 12.
    Vector Couplings Different low energy interactions Inelastic transition parity! gd † Lint = µνσρ Fdark µν ρd σ ∂ρ πd Λdark velocity suppressed 10 −6 smaller Elastic transition gd µν † Lint = 2 ∂µ Fdark πd ∂ν πd Λdark Dim 6 elastic Charge Radius scattering
  • 13.
    Vector Couplings Different low energy interactions Inelastic transition parity! gd † Lint = µνσρ Fdark µν ρd σ ∂ρ πd Λdark velocity suppressed 10 −6 smaller Elastic transition gd µν † Lint = 2 ∂µ Fdark πd ∂ν πd Λdark Dim 6 elastic Charge Radius scattering 200 GeV, M 200 GeV, M 1 GeV MDM0.030 DM A 125 keV, M Count Rate arbitraty units 0.030 0.025 Charged Elastic Scattering Charged Radius Elastic Scattering 0.025 cpd kg keV Suppressed at low 0.020 0.020 0.015 Erecoil 0.015 0.010 0.010 0.005 0.005 0.000 0.000 20 40 60 80 100 Erecoil 0.005 1 2 3 4 5 6
  • 14.
    CP-Violation Add θ term to dark QCD sector Spin 1 sector ˜ LCPV = θGµν Gµν Mixes states of opposite CP Λdark l = 1, s = 0 i.e. ρd & a1 d mix l = 0, s = 1 gd Allows Lint = µν † Fdark ρd ν ∂µ πd Λdark Both inelastic & form-factor suppressed elastic interactions Nearly the same Recoil Spectra How to measure?
  • 15.
    Directional Detection Finkbeiner, Lin,Weiner (2009) w/ Lisanti (in Progress) γ vearth Recoil Spectrum Recoil Direction eDM w/FF 0.025 1 eDM w/FF 0.020 iDM 0.1 0.015 Rate 0.01 Rate 0.010 iDM 0.001 0.005 4 10 0.000 0 20 40 60 80 100 1.0 0.8 0.6 0.4 0.2 0.0 ERecoil Recoil Energy keV cos γ Cos Γ
  • 16.
    Outlook Composite inelastic DM gives explanation to 100 keV scale Lots of variants with different scattering New experiments needed to understand DM dynamics Collider signatures of DM could have showering Lots of models to explore Susy & Dark Flavor