SlideShare a Scribd company logo
Non-Abelian Dark Forces

SM                          DM
         Jay Wacker
             SLAC
     Dark Forces Workshop
           Sept. 25, 2009
Plan of Talk

Non-Abelian Dark Sectors & DAMA


      Producing Dark Sector


       Generic Signatures
Non-Abelian Dark Sectors

        SM                     DM

          1
Ldark = − Tr Gµν + q iD q + m¯q
                  2
                        ¯         q
          2
Confines or is Broken at low energies
                                   
                            2π
         Λdark   ∼ exp −
                         b0 αdark

    Large range of possibilities
Non-Abelian Dark Sectors

        SM                     DM

          1
Ldark = − Tr Gµν + q iD q + m¯q
                  2
                        ¯         q
          2
Confines or is Broken at low energies
                                   
                            2π
         Λdark   ∼ exp −
                         b0 αdark

    Large range of possibilities
         SU (Nc ) gauge group
             Light flavors
             Heavy flavors
11 Years of Oscillation




A distinctive recoil spectrum
Inelastic Dark Matter
                                  Tucker-Smith  Weiner (2001)

Dark matter has 2 nearly         Scattering off the SM is
   degenerate states                      Ψ1 → Ψ2
                                 Ψ2                       N
 δm ∼ O(100 keV)
  Ψ2

   Ψ1                            Ψ1                       N

                  3 Consequences:
              Scatters off of heavier nuclei       (CDMS ineffective)

                    Large recoil energy        (Xe10  Zep3 didn’t look)

                Large modulation fraction       (Smaller absolute signal)
Inelastic Dark Matter
 A new number to explain:
      δm
       m     10∼ −6


Sign of dark sector dynamics
      First of many splittings
    New interactions to discover
Changes what questions are interesting
Composite Dark Matter
            A new SU(Nc) gauge sector
                Confines at ΛDark
                                        mH
                    qL    mL  Λdark
A pair of quarks:
                    qH mH  Λdark       Λdark
                                        mL
Composite Dark Matter
            A new SU(Nc) gauge sector
                Confines at ΛDark
                                        mH
                    qL    mL  Λdark
A pair of quarks:
                    qH mH  Λdark       Λdark
                                        mL
            A cosmological asymmetry
        (nH − nH ) = −(nL − nL ) = 0
               ¯             ¯

         At T  ΛDark DM is in
               ¯
            qH qL bound states

                Dark Mesons
Degeneracy of the Ground State
 Heavy quark spin preserved in electric interactions
 Dark Chromomagnetic interaction breaks spin symmetry

               ¯
            qH qL                       ρd      σ 
      m                                          ·B
                                        πd δH ∼ mH

           Spin 0                  Spin 1



           Dark Pion               Dark Rho
              πd                     ρd
                mρd − mπd       Λ2
                            ∼    Dark
                                 mH
Doesn’t require adding new symmetry and breaking it
Accidental global symmetry from Lorentz Invariance
Coupling to the SM
  Kinetically Mix U (1)Y with U (1)dark
                      µν
         Lmix =     Fdark FY µν
       U(1)Y             U(1)dark
SM                                  DM
                     χ
                              µ
At low energy Lint =        Adark   jEM µ

     Higgs U(1)dark near EW scale

LHiggs = |Dµ φd | − V (φd ) −→
                 2                   2 2
                                    md Ad
Inelastic Dark Matter
  Combining all null experiments with DAMA
   140



   120
                           mπd ∼ 70 GeV
                            δm ∼ 95 keV
∆m keV




   100



    80



    60

                       Dark Matter Mass GeV
           100       200      300       400     500   600


              
   Λdark      δm mπd  80 MeV
                 Beneath Hadronic threshold
Plan of Talk

Non-Abelian Dark Sectors  DAMA


      Producing Dark Sector


       Generic Signatures
Collider Signatures

                 +
                         −
                                   +
                                                 Light mesons
                         ωD   ηD        −          √
                                   ωD                  s    ΛD
                                                    23-4/5-))'
                                                  0/-(*5506)'!-7')
     !#$%'()*#
      +*,'#-.                qD
    +!#*/01)0*/
                                                    √
                                                        s    ΛD
−
e                                       +         #*89+5:-;+'#0(5-
                                    e                  ''/)
                 ¯
                 qD
                                                                            γ

                                                   mA         ΛD
ωD
+       ωD           ωD                     Lepton Jets
                                                =**)'!-;#*!8()-
                                                 #'(*05-*-;+*)*/
    −
                          −                                      ηD
        +    −       +                                                 ωD
New Tools
                  New Strong Signal Simulation
                             (J. Wacker w/ S. Schumann, P. Richardson, F. Krauss)




                                                 Dark Showering
                                                    Sherpa  Herwig




Hadron Spectrum
  DarkSpecGen                                     Dark Hadronization
                                                         Sherpa  Herwig


Cascading to SM
   DarkSpecGen
Boosted Physics
        When high pT particles
       cascade to SM final states
    producing collimated final states



          “Lepton Jets”

A Challenging Environment
        Reconstruction is difficult
         Isolation cuts out signal
Cascades produce heterogeneous final states
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                          1−+          2−−
                      2   +−


                      1+−                          0−−
                                      0−+          1− −
Λdark    0++
                      0+−




               J ++            J +−         J −+      J −−
  Only “weak” decays: quasi-stable particles
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0++
                      0+−




               J ++            J +−           J −+        J −−
  Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0++
                      0+−




               J ++            J +−           J −+        J −−
  Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗
1 Light Flavor Spectrum
         No light pions - Only eta prime
               No hadronic decays
         ~1 dozen quasi stable particles
2Λdark
         2++                            1−+          2−−
                      2   +−


                      1+−                            0−−
                                        0−+          1− −
Λdark    0++
                      0+−




               J ++            J +−           J −+        J −−
  Only “weak” decays: quasi-stable particles
                                !#$%''                        +$,#'%-+.)(
                ωD              #()*#!               ηD            $/0$,$1'-


                 A∗                                  A∗

         Some short-lived  Some long lived
              Lots of visible particles
Multiple Light Flavor Spectrum
                                  
             Light pions      mπ = mq Λdark

              I=0                                  I=1




Λdark




        J ++ J +− J −+ J −−          J   ++
                                              J   +−
                                                       J −+ J −−
Multiple Light Flavor Spectrum
                                  
             Light pions      mπ = mq Λdark

              I=0                                   I=1




Λdark
                               Decays to Dark Pions



        J ++ J +− J −+ J −−           J   ++
                                               J   +−
                                                        J −+ J −−
Multiple Light Flavor Spectrum
                                      
              Light pions         mπ = mq Λdark

              I=0                                       I=1




Λdark
                                   Decays to Dark Pions



        J ++ J +− J −+ J −−               J   ++
                                                   J   +−
                                                            J −+ J −−
                             
              ¯
              qq qq¯   
             q q q q
              ¯    ¯          
        π∼                   
                         ..
                            .
Multiple Light Flavor Spectrum
                                      
              Light pions         mπ = mq Λdark

              I=0                                        I=1




Λdark
                                   Decays to Dark Pions



        J ++ J +− J −+ J −−               J   ++
                                                    J   +−
                                                             J −+ J −−
                             
              ¯
              qq qq¯   
                                                                      few
             q q q q
              ¯    ¯               Unstable O(NF )
        π∼                                                         visible
                         ..
                            .         Stable       O(NF )
                                                      2
                                                                    particles
No light flavors
      “Quirks” (Luty et al 2008)


Spectra similar to 1 light flavor
    (Lattice calculations available)


We don’t know how to hadronize
       (how to cut color lines)




  More theory work necessary
Plan of Talk

Non-Abelian Dark Sectors  DAMA


      Producing Dark Sector


       Generic Signatures
Two-Lepton Lepton Jets
            2 oppositely signed leptons in a small cone

                          + −                 + −
  ∆RSignal  0.1
           ∼                      Hadron
                                           Ad
0.1  ∆RIso  0.4
    ∼       ∼




                                      Hadron


    µ+ µ−
                                                    e+ e−
Four-Lepton Lepton Jet
                        Multistep cascade
     Decay Topology                   Relevant Parameters
                                              pT φ1
                                            mφ1 mφ2
        φ2    φ2                            cτφ1   cτφ2

             φ1                             Displaced Vertices



  ∆RSignal  0.1
                                   cτφ1
           ∼
0.1  ∆RIso  0.4
    ∼       ∼

                                                   cτφ2
Outlook
Non-Abelian Dark Sectors dynamics can explain anomalies


           New collider signatures predicted
             How to match signals on to theories?



             Advances in theory are needed
                        Hadronization
                      Hadronic spectrum
                         Showering



               Lots of work in progress...

More Related Content

Viewers also liked

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP Miracle
Jay Wacker
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009
Jay Wacker
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified Models
Jay Wacker
 
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
MLconf
 
Machine Learning at Quora (2/26/2016)
Machine Learning at Quora (2/26/2016)Machine Learning at Quora (2/26/2016)
Machine Learning at Quora (2/26/2016)
Nikhil Dandekar
 
Sexier, smarter, faster Information architecture with topic Maps
Sexier, smarter, faster Information architecture with topic MapsSexier, smarter, faster Information architecture with topic Maps
Sexier, smarter, faster Information architecture with topic MapsAlexander Johannesen
 
Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)Nikhil Garg
 
The Science behind Viral marketing
The Science behind Viral marketingThe Science behind Viral marketing
The Science behind Viral marketing
David Skok
 
Audience Building With Quora
Audience Building With QuoraAudience Building With Quora
Audience Building With Quora
Ian Lurie
 

Viewers also liked (9)

The SIMP Miracle
The SIMP MiracleThe SIMP Miracle
The SIMP Miracle
 
Slac Summer Institute 2009
Slac Summer Institute 2009Slac Summer Institute 2009
Slac Summer Institute 2009
 
Philosophy Of Simplified Models
Philosophy Of Simplified ModelsPhilosophy Of Simplified Models
Philosophy Of Simplified Models
 
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
Xavier Amatriain, VP of Engineering, Quora at MLconf SEA - 5/01/15
 
Machine Learning at Quora (2/26/2016)
Machine Learning at Quora (2/26/2016)Machine Learning at Quora (2/26/2016)
Machine Learning at Quora (2/26/2016)
 
Sexier, smarter, faster Information architecture with topic Maps
Sexier, smarter, faster Information architecture with topic MapsSexier, smarter, faster Information architecture with topic Maps
Sexier, smarter, faster Information architecture with topic Maps
 
Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)Building A Machine Learning Platform At Quora (1)
Building A Machine Learning Platform At Quora (1)
 
The Science behind Viral marketing
The Science behind Viral marketingThe Science behind Viral marketing
The Science behind Viral marketing
 
Audience Building With Quora
Audience Building With QuoraAudience Building With Quora
Audience Building With Quora
 

Similar to Dark Forces

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark Matter
Jay Wacker
 
Caltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark MatterCaltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark Matter
Jay Wacker
 
M. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged SupergravityM. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged Supergravity
SEENET-MTP
 
Atomic Structure-21092023.pdf
Atomic Structure-21092023.pdfAtomic Structure-21092023.pdf
Atomic Structure-21092023.pdf
jayesh320682
 
Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...Jakub Prauzner-Bechcicki
 
Symbol Error Rate of Star QAM
Symbol Error Rate of Star QAMSymbol Error Rate of Star QAM
Symbol Error Rate of Star QAM
Sourjya Dutta
 
PAFT10
PAFT10PAFT10
PAFT10
AleGnecchi
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detectionwtyru1989
 
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field InflationCalculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Ian Huston
 
2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf
ShotosroyRoyTirtho
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
Tapio Salminen
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdG
Yi-Hua Lai
 
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
SEENET-MTP
 
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsWave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Cheng-Hsien Li
 
Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2
Chris Sonntag
 
Oxidised cosmic acceleration
Oxidised cosmic accelerationOxidised cosmic acceleration
Oxidised cosmic acceleration
dhwesley
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
SEENET-MTP
 

Similar to Dark Forces (20)

Composite Inelastic Dark Matter
Composite Inelastic Dark MatterComposite Inelastic Dark Matter
Composite Inelastic Dark Matter
 
Caltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark MatterCaltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark Matter
 
M. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged SupergravityM. Haack - Nernst Branes in Gauged Supergravity
M. Haack - Nernst Branes in Gauged Supergravity
 
Tension in the Void AIMS
Tension in the Void AIMSTension in the Void AIMS
Tension in the Void AIMS
 
Atomic Structure-21092023.pdf
Atomic Structure-21092023.pdfAtomic Structure-21092023.pdf
Atomic Structure-21092023.pdf
 
Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...
 
Symbol Error Rate of Star QAM
Symbol Error Rate of Star QAMSymbol Error Rate of Star QAM
Symbol Error Rate of Star QAM
 
PAFT10
PAFT10PAFT10
PAFT10
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field InflationCalculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
Calculating Non-adiabatic Pressure Perturbations during Multi-field Inflation
 
2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Shiba states from BdG
Shiba states from BdGShiba states from BdG
Shiba states from BdG
 
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
 
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical ImplicationsWave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
Wave-packet Treatment of Neutrinos and Its Quantum-mechanical Implications
 
Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2
 
Oxidised cosmic acceleration
Oxidised cosmic accelerationOxidised cosmic acceleration
Oxidised cosmic acceleration
 
F gensenada
F gensenadaF gensenada
F gensenada
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
 

Dark Forces

  • 1. Non-Abelian Dark Forces SM DM Jay Wacker SLAC Dark Forces Workshop Sept. 25, 2009
  • 2. Plan of Talk Non-Abelian Dark Sectors & DAMA Producing Dark Sector Generic Signatures
  • 3. Non-Abelian Dark Sectors SM DM 1 Ldark = − Tr Gµν + q iD q + m¯q 2 ¯ q 2 Confines or is Broken at low energies 2π Λdark ∼ exp − b0 αdark Large range of possibilities
  • 4. Non-Abelian Dark Sectors SM DM 1 Ldark = − Tr Gµν + q iD q + m¯q 2 ¯ q 2 Confines or is Broken at low energies 2π Λdark ∼ exp − b0 αdark Large range of possibilities SU (Nc ) gauge group Light flavors Heavy flavors
  • 5. 11 Years of Oscillation A distinctive recoil spectrum
  • 6. Inelastic Dark Matter Tucker-Smith Weiner (2001) Dark matter has 2 nearly Scattering off the SM is degenerate states Ψ1 → Ψ2 Ψ2 N δm ∼ O(100 keV) Ψ2 Ψ1 Ψ1 N 3 Consequences: Scatters off of heavier nuclei (CDMS ineffective) Large recoil energy (Xe10 Zep3 didn’t look) Large modulation fraction (Smaller absolute signal)
  • 7. Inelastic Dark Matter A new number to explain: δm m 10∼ −6 Sign of dark sector dynamics First of many splittings New interactions to discover Changes what questions are interesting
  • 8. Composite Dark Matter A new SU(Nc) gauge sector Confines at ΛDark mH qL mL Λdark A pair of quarks: qH mH Λdark Λdark mL
  • 9. Composite Dark Matter A new SU(Nc) gauge sector Confines at ΛDark mH qL mL Λdark A pair of quarks: qH mH Λdark Λdark mL A cosmological asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ At T ΛDark DM is in ¯ qH qL bound states Dark Mesons
  • 10. Degeneracy of the Ground State Heavy quark spin preserved in electric interactions Dark Chromomagnetic interaction breaks spin symmetry ¯ qH qL ρd σ m ·B πd δH ∼ mH Spin 0 Spin 1 Dark Pion Dark Rho πd ρd mρd − mπd Λ2 ∼ Dark mH Doesn’t require adding new symmetry and breaking it Accidental global symmetry from Lorentz Invariance
  • 11. Coupling to the SM Kinetically Mix U (1)Y with U (1)dark µν Lmix = Fdark FY µν U(1)Y U(1)dark SM DM χ µ At low energy Lint = Adark jEM µ Higgs U(1)dark near EW scale LHiggs = |Dµ φd | − V (φd ) −→ 2 2 2 md Ad
  • 12. Inelastic Dark Matter Combining all null experiments with DAMA 140 120 mπd ∼ 70 GeV δm ∼ 95 keV ∆m keV 100 80 60 Dark Matter Mass GeV 100 200 300 400 500 600 Λdark δm mπd 80 MeV Beneath Hadronic threshold
  • 13. Plan of Talk Non-Abelian Dark Sectors DAMA Producing Dark Sector Generic Signatures
  • 14. Collider Signatures + − + Light mesons ωD ηD − √ ωD s ΛD 23-4/5-))' 0/-(*5506)'!-7') !#$%'()*# +*,'#-. qD +!#*/01)0*/ √ s ΛD − e + #*89+5:-;+'#0(5- e ''/) ¯ qD γ mA ΛD ωD + ωD ωD Lepton Jets =**)'!-;#*!8()- #'(*05-*-;+*)*/ − − ηD + − + ωD
  • 15. New Tools New Strong Signal Simulation (J. Wacker w/ S. Schumann, P. Richardson, F. Krauss) Dark Showering Sherpa Herwig Hadron Spectrum DarkSpecGen Dark Hadronization Sherpa Herwig Cascading to SM DarkSpecGen
  • 16. Boosted Physics When high pT particles cascade to SM final states producing collimated final states “Lepton Jets” A Challenging Environment Reconstruction is difficult Isolation cuts out signal Cascades produce heterogeneous final states
  • 17. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles
  • 18. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  • 19. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  • 20. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗ Some short-lived Some long lived Lots of visible particles
  • 21. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  • 22. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  • 23. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯  q q q q ¯ ¯  π∼  .. .
  • 24. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯ few  q q q q ¯ ¯  Unstable O(NF ) π∼  visible .. . Stable O(NF ) 2 particles
  • 25. No light flavors “Quirks” (Luty et al 2008) Spectra similar to 1 light flavor (Lattice calculations available) We don’t know how to hadronize (how to cut color lines) More theory work necessary
  • 26. Plan of Talk Non-Abelian Dark Sectors DAMA Producing Dark Sector Generic Signatures
  • 27. Two-Lepton Lepton Jets 2 oppositely signed leptons in a small cone + − + − ∆RSignal 0.1 ∼ Hadron Ad 0.1 ∆RIso 0.4 ∼ ∼ Hadron µ+ µ− e+ e−
  • 28. Four-Lepton Lepton Jet Multistep cascade Decay Topology Relevant Parameters pT φ1 mφ1 mφ2 φ2 φ2 cτφ1 cτφ2 φ1 Displaced Vertices ∆RSignal 0.1 cτφ1 ∼ 0.1 ∆RIso 0.4 ∼ ∼ cτφ2
  • 29. Outlook Non-Abelian Dark Sectors dynamics can explain anomalies New collider signatures predicted How to match signals on to theories? Advances in theory are needed Hadronization Hadronic spectrum Showering Lots of work in progress...