SlideShare a Scribd company logo
Entropy, Free Energy,
and Equilibrium
Chapter 18
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Spontaneous Physical and Chemical Processes
• A waterfall runs downhill
• A lump of sugar dissolves in a cup of coffee
• At 1 atm, water freezes below 0 0C and ice melts above 0 0C
• Heat flows from a hotter object to a colder object
• A gas expands in an evacuated bulb
• Iron exposed to oxygen and water forms rust
spontaneous
nonspontaneous
18.2
spontaneous
nonspontaneous
18.2
Does a decrease in enthalpy mean a reaction proceeds
spontaneously?
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) DH0 = -890.4 kJ
H+ (aq) + OH- (aq) H2O (l) DH0 = -56.2 kJ
H2O (s) H2O (l) DH0 = 6.01 kJ
NH4NO3 (s) NH4
+(aq) + NO3
- (aq) DH0 = 25 kJ
H2O
Spontaneous reactions
18.2
Exothermicity favors the spontaneity of a
reaction but does not guarantee it. Just as it is
possible for an endothermic reaction to be
spontaneous, it is possible for an exothermic
reaction to be nonspontaneous. In other words,
we cannot decide whether or not a chemical
reaction will occur spontaneously solely on the
basis of energy changes in the system. To make
this kind of prediction we need another
thermodynamic quantity, which turns out to be
entropy.
Entropy (S) is a measure of the randomness or disorder of a
system.
order S
disorder
S
DS = Sf - Si
If the change from initial to final results in an increase in randomness
Sf > Si DS > 0
For any substance, the solid state is more ordered than the
liquid state and the liquid state is more ordered than gas state
Ssolid < Sliquid << Sgas
H2O (s) H2O (l) DS > 0
18.3
W = 1
W = 4
W = 6
W = number of microstates
S = k ln W
DS = Sf - Si
DS = k ln
Wf
Wi
Wf > Wi then DS > 0
Wf < Wi then DS < 0
Entropy
18.3
Processes that
lead to an
increase in
entropy (DS > 0)
18.2
How does the entropy of a system change for each of the
following processes?
(a) Condensing water vapor
Randomness decreases Entropy decreases (DS < 0)
(b) Forming sucrose crystals from a supersaturated solution
Randomness decreases Entropy decreases (DS < 0)
(c) Heating hydrogen gas from 600C to 800C
Randomness increases Entropy increases (DS > 0)
(d) Subliming dry ice
Randomness increases Entropy increases (DS > 0)
18.3
Entropy
State functions are properties that are determined by the state
of the system, regardless of how that condition was achieved.
Potential energy of hiker 1 and hiker 2
is the same even though they took
different paths.
energy, enthalpy, pressure, volume, temperature, entropy
18.3
First Law of Thermodynamics
Energy can be converted from one form to another but
energy cannot be created or destroyed.
Second Law of Thermodynamics
The entropy of the universe increases in a spontaneous
process and remains unchanged in an equilibrium process.
DSuniv = DSsys + DSsurr > 0
Spontaneous process:
DSuniv = DSsys + DSsurr = 0
Equilibrium process:
18.4
Entropy Changes in the System (DSsys)
aA + bB cC + dD
DS0
rxn dS0(D)
cS0(C)
= [ + ] - bS0(B)
aS0(A)
[ + ]
DS0
rxn nS0(products)
= S mS0(reactants)
S
-
The standard entropy of reaction (DS0 ) is the entropy
change for a reaction carried out at 1 atm and 250C.
rxn
18.4
What is the standard entropy change for the following
reaction at 250C? 2CO (g) + O2 (g) 2CO2 (g)
S0(CO) = 197.9 J/K•mol
S0(O2) = 205.0 J/K•mol
S0(CO2) = 213.6 J/K•mol
DS0
rxn = 2 x S0(CO2) – [2 x S0(CO) + S0 (O2)]
DS0
rxn = 427.2 – [395.8 + 205.0] = -173.6 J/K•mol
Entropy Changes in the System (DSsys)
18.4
When gases are produced (or consumed)
• If a reaction produces more gas molecules than it
consumes, DS0 > 0.
• If the total number of gas molecules diminishes,
DS0 < 0.
• If there is no net change in the total number of gas
molecules, then DS0 may be positive or negative
BUT DS0 will be a small number.
What is the sign of the entropy change for the following
reaction? 2Zn (s) + O2 (g) 2ZnO (s)
The total number of gas molecules goes down, DS is negative.
Entropy Changes in the Surroundings (DSsurr)
Exothermic Process
DSsurr > 0
Endothermic Process
DSsurr < 0
18.4
(a) An exothermic process transfers heat from the system to
the surroundings and results in an increase in the entropy of
the surroundings.
(b) An endothermic process absorbs heat from the
surroundings and thereby decreases the entropy of the
surroundings.
Third Law of Thermodynamics
The entropy of a perfect crystalline substance is zero at the
absolute zero of temperature.
18.3
S = k ln W
W = 1
S = 0
DSuniv = DSsys + DSsurr > 0
Spontaneous process:
DSuniv = DSsys + DSsurr = 0
Equilibrium process:
Gibbs Free Energy
For a constant-temperature process:
DG = DHsys -TDSsys
Gibbs free
energy (G)
DG < 0 The reaction is spontaneous in the forward direction.
DG > 0 The reaction is nonspontaneous as written. The
reaction is spontaneous in the reverse direction.
DG = 0 The reaction is at equilibrium.
18.5
18.5
aA + bB cC + dD
DG0
rxn dDG0 (D)
f
cDG0 (C)
f
= [ + ] - bDG0 (B)
f
aDG0 (A)
f
[ + ]
DG0
rxn nDG0 (products)
f
= S mDG0 (reactants)
f
S
-
The standard free-energy of reaction (DG0 ) is the free-
energy change for a reaction when it occurs under standard-
state conditions.
rxn
Standard free energy of
formation (DG0) is the free-energy
change that occurs when 1 mole
of the compound is formed from its
elements in their standard states.
f
DG0 of any element in its stable
form is zero.
f
2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l)
DG0
rxn nDG0 (products)
f
= S mDG0 (reactants)
f
S
-
What is the standard free-energy change for the following
reaction at 25 0C?
DG0
rxn 6DG0 (H2O)
f
12DG0 (CO2)
f
= [ + ] - 2DG0 (C6H6)
f
[ ]
DG0
rxn = [ 12x–394.4 + 6x–237.2 ] – [ 2x124.5 ] = -6405 kJ
Is the reaction spontaneous at 25 0C?
DG0 = -6405 kJ < 0
spontaneous
18.5
DG = DH - TDS
18.5

More Related Content

Similar to Chapter_18_Entropy_Free_Energy_and_Equilibrium.ppt

Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaNafiah RR
 
AP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample ExercisesAP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample ExercisesJane Hamze
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxFathiShokry
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Ahmad Al-Dallal
 
Thermoelectric Generator Presentation
Thermoelectric Generator PresentationThermoelectric Generator Presentation
Thermoelectric Generator PresentationMelissa Nguyen
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxMosaTeffo
 
Seminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergySeminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergyNishant Shah
 
12 types of chemical reactions
12 types of chemical reactions12 types of chemical reactions
12 types of chemical reactionsmrtangextrahelp
 
Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energymrtangextrahelp
 
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3 IN...
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3  IN...CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3  IN...
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3 IN...MeetaYadav5
 
Ch17 thermo review_answers
Ch17 thermo review_answersCh17 thermo review_answers
Ch17 thermo review_answersmcnewbold
 
04 types of chemical reactions
04 types of chemical reactions04 types of chemical reactions
04 types of chemical reactionsmrtangextrahelp
 
SHS STEM General Chemistry MCT 4. Stoichiometry
SHS STEM General Chemistry MCT 4. StoichiometrySHS STEM General Chemistry MCT 4. Stoichiometry
SHS STEM General Chemistry MCT 4. StoichiometryEngineerPH EducatorPH
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptHosamAhmed35
 
8.0 thermochemistry (student's copy)
8.0 thermochemistry   (student's copy)8.0 thermochemistry   (student's copy)
8.0 thermochemistry (student's copy)CtMutiahMazait
 
12 Entropy
12 Entropy12 Entropy
12 Entropyjanetra
 
Introductory physical chemistry lecture note
Introductory physical chemistry lecture noteIntroductory physical chemistry lecture note
Introductory physical chemistry lecture noteBelete Asefa Aragaw
 

Similar to Chapter_18_Entropy_Free_Energy_and_Equilibrium.ppt (20)

Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimia
 
AP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample ExercisesAP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample Exercises
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsx
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
Thermoelectric Generator Presentation
Thermoelectric Generator PresentationThermoelectric Generator Presentation
Thermoelectric Generator Presentation
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptx
 
Chemistry chapter 20
Chemistry chapter 20Chemistry chapter 20
Chemistry chapter 20
 
Seminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergySeminar Topic on Chemical Exergy
Seminar Topic on Chemical Exergy
 
12 types of chemical reactions
12 types of chemical reactions12 types of chemical reactions
12 types of chemical reactions
 
chapt20_lecture.ppt
chapt20_lecture.pptchapt20_lecture.ppt
chapt20_lecture.ppt
 
Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energy
 
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3 IN...
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3  IN...CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3  IN...
CBSE CLASS 10 CHEMISTRY CHAPTER 1 CHEMICAL REACTIONS AND EQUATIONS PART 3 IN...
 
Ch17 thermo review_answers
Ch17 thermo review_answersCh17 thermo review_answers
Ch17 thermo review_answers
 
04 types of chemical reactions
04 types of chemical reactions04 types of chemical reactions
04 types of chemical reactions
 
SHS STEM General Chemistry MCT 4. Stoichiometry
SHS STEM General Chemistry MCT 4. StoichiometrySHS STEM General Chemistry MCT 4. Stoichiometry
SHS STEM General Chemistry MCT 4. Stoichiometry
 
Ch19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.pptCh19_Thermo_2 kotz.ppt
Ch19_Thermo_2 kotz.ppt
 
8.0 thermochemistry (student's copy)
8.0 thermochemistry   (student's copy)8.0 thermochemistry   (student's copy)
8.0 thermochemistry (student's copy)
 
Quart 10 ps
Quart 10 psQuart 10 ps
Quart 10 ps
 
12 Entropy
12 Entropy12 Entropy
12 Entropy
 
Introductory physical chemistry lecture note
Introductory physical chemistry lecture noteIntroductory physical chemistry lecture note
Introductory physical chemistry lecture note
 

Recently uploaded

Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Sérgio Sacani
 
Tissue engineering......................pptx
Tissue engineering......................pptxTissue engineering......................pptx
Tissue engineering......................pptxCherry
 
Phytogeography........................pptx
Phytogeography........................pptxPhytogeography........................pptx
Phytogeography........................pptxCherry
 
Microbial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxMicrobial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxCherry
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyanmuralinath2
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Sérgio Sacani
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Sérgio Sacani
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxmuralinath2
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversitySteffi Friedrichs
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesAreesha Ahmad
 
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanmuralinath2
 
electrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxelectrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxHusna Zaheer
 
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
GBSN -  Microbiology (Lab  1) Microbiology Lab Safety ProceduresGBSN -  Microbiology (Lab  1) Microbiology Lab Safety Procedures
GBSN - Microbiology (Lab 1) Microbiology Lab Safety ProceduresAreesha Ahmad
 
In vitro androgenesis ...............pptx
In vitro androgenesis ...............pptxIn vitro androgenesis ...............pptx
In vitro androgenesis ...............pptxCherry
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surfaceSérgio Sacani
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPirithiRaju
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.Sérgio Sacani
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Sérgio Sacani
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Sérgio Sacani
 
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...frank0071
 

Recently uploaded (20)

Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
Tissue engineering......................pptx
Tissue engineering......................pptxTissue engineering......................pptx
Tissue engineering......................pptx
 
Phytogeography........................pptx
Phytogeography........................pptxPhytogeography........................pptx
Phytogeography........................pptx
 
Microbial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxMicrobial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptx
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyan
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...Climate extremes likely to drive land mammal extinction during next supercont...
Climate extremes likely to drive land mammal extinction during next supercont...
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
 
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
 
electrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptxelectrochemical gas sensors and their uses.pptx
electrochemical gas sensors and their uses.pptx
 
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
GBSN -  Microbiology (Lab  1) Microbiology Lab Safety ProceduresGBSN -  Microbiology (Lab  1) Microbiology Lab Safety Procedures
GBSN - Microbiology (Lab 1) Microbiology Lab Safety Procedures
 
In vitro androgenesis ...............pptx
In vitro androgenesis ...............pptxIn vitro androgenesis ...............pptx
In vitro androgenesis ...............pptx
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
 

Chapter_18_Entropy_Free_Energy_and_Equilibrium.ppt

  • 1. Entropy, Free Energy, and Equilibrium Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. Spontaneous Physical and Chemical Processes • A waterfall runs downhill • A lump of sugar dissolves in a cup of coffee • At 1 atm, water freezes below 0 0C and ice melts above 0 0C • Heat flows from a hotter object to a colder object • A gas expands in an evacuated bulb • Iron exposed to oxygen and water forms rust spontaneous nonspontaneous 18.2
  • 4. Does a decrease in enthalpy mean a reaction proceeds spontaneously? CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) DH0 = -890.4 kJ H+ (aq) + OH- (aq) H2O (l) DH0 = -56.2 kJ H2O (s) H2O (l) DH0 = 6.01 kJ NH4NO3 (s) NH4 +(aq) + NO3 - (aq) DH0 = 25 kJ H2O Spontaneous reactions 18.2
  • 5. Exothermicity favors the spontaneity of a reaction but does not guarantee it. Just as it is possible for an endothermic reaction to be spontaneous, it is possible for an exothermic reaction to be nonspontaneous. In other words, we cannot decide whether or not a chemical reaction will occur spontaneously solely on the basis of energy changes in the system. To make this kind of prediction we need another thermodynamic quantity, which turns out to be entropy.
  • 6. Entropy (S) is a measure of the randomness or disorder of a system. order S disorder S DS = Sf - Si If the change from initial to final results in an increase in randomness Sf > Si DS > 0 For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state Ssolid < Sliquid << Sgas H2O (s) H2O (l) DS > 0 18.3
  • 7. W = 1 W = 4 W = 6 W = number of microstates S = k ln W DS = Sf - Si DS = k ln Wf Wi Wf > Wi then DS > 0 Wf < Wi then DS < 0 Entropy 18.3
  • 8. Processes that lead to an increase in entropy (DS > 0) 18.2
  • 9. How does the entropy of a system change for each of the following processes? (a) Condensing water vapor Randomness decreases Entropy decreases (DS < 0) (b) Forming sucrose crystals from a supersaturated solution Randomness decreases Entropy decreases (DS < 0) (c) Heating hydrogen gas from 600C to 800C Randomness increases Entropy increases (DS > 0) (d) Subliming dry ice Randomness increases Entropy increases (DS > 0) 18.3
  • 10. Entropy State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. Potential energy of hiker 1 and hiker 2 is the same even though they took different paths. energy, enthalpy, pressure, volume, temperature, entropy 18.3
  • 11. First Law of Thermodynamics Energy can be converted from one form to another but energy cannot be created or destroyed. Second Law of Thermodynamics The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process. DSuniv = DSsys + DSsurr > 0 Spontaneous process: DSuniv = DSsys + DSsurr = 0 Equilibrium process: 18.4
  • 12. Entropy Changes in the System (DSsys) aA + bB cC + dD DS0 rxn dS0(D) cS0(C) = [ + ] - bS0(B) aS0(A) [ + ] DS0 rxn nS0(products) = S mS0(reactants) S - The standard entropy of reaction (DS0 ) is the entropy change for a reaction carried out at 1 atm and 250C. rxn 18.4 What is the standard entropy change for the following reaction at 250C? 2CO (g) + O2 (g) 2CO2 (g) S0(CO) = 197.9 J/K•mol S0(O2) = 205.0 J/K•mol S0(CO2) = 213.6 J/K•mol DS0 rxn = 2 x S0(CO2) – [2 x S0(CO) + S0 (O2)] DS0 rxn = 427.2 – [395.8 + 205.0] = -173.6 J/K•mol
  • 13. Entropy Changes in the System (DSsys) 18.4 When gases are produced (or consumed) • If a reaction produces more gas molecules than it consumes, DS0 > 0. • If the total number of gas molecules diminishes, DS0 < 0. • If there is no net change in the total number of gas molecules, then DS0 may be positive or negative BUT DS0 will be a small number. What is the sign of the entropy change for the following reaction? 2Zn (s) + O2 (g) 2ZnO (s) The total number of gas molecules goes down, DS is negative.
  • 14.
  • 15. Entropy Changes in the Surroundings (DSsurr) Exothermic Process DSsurr > 0 Endothermic Process DSsurr < 0 18.4 (a) An exothermic process transfers heat from the system to the surroundings and results in an increase in the entropy of the surroundings. (b) An endothermic process absorbs heat from the surroundings and thereby decreases the entropy of the surroundings.
  • 16. Third Law of Thermodynamics The entropy of a perfect crystalline substance is zero at the absolute zero of temperature. 18.3 S = k ln W W = 1 S = 0
  • 17. DSuniv = DSsys + DSsurr > 0 Spontaneous process: DSuniv = DSsys + DSsurr = 0 Equilibrium process: Gibbs Free Energy For a constant-temperature process: DG = DHsys -TDSsys Gibbs free energy (G) DG < 0 The reaction is spontaneous in the forward direction. DG > 0 The reaction is nonspontaneous as written. The reaction is spontaneous in the reverse direction. DG = 0 The reaction is at equilibrium. 18.5
  • 18. 18.5 aA + bB cC + dD DG0 rxn dDG0 (D) f cDG0 (C) f = [ + ] - bDG0 (B) f aDG0 (A) f [ + ] DG0 rxn nDG0 (products) f = S mDG0 (reactants) f S - The standard free-energy of reaction (DG0 ) is the free- energy change for a reaction when it occurs under standard- state conditions. rxn Standard free energy of formation (DG0) is the free-energy change that occurs when 1 mole of the compound is formed from its elements in their standard states. f DG0 of any element in its stable form is zero. f
  • 19. 2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l) DG0 rxn nDG0 (products) f = S mDG0 (reactants) f S - What is the standard free-energy change for the following reaction at 25 0C? DG0 rxn 6DG0 (H2O) f 12DG0 (CO2) f = [ + ] - 2DG0 (C6H6) f [ ] DG0 rxn = [ 12x–394.4 + 6x–237.2 ] – [ 2x124.5 ] = -6405 kJ Is the reaction spontaneous at 25 0C? DG0 = -6405 kJ < 0 spontaneous 18.5
  • 20. DG = DH - TDS 18.5