SLIDE 3
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
• At the end of this topic, You should be able to
Learning Outcomes
Understand the difference operators and the use
of interpolation.
4.
SLIDE 4
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
• If you have mastered this topic, you should be able to use the
following terms correctly in your assignments and exams:
Key Terms You Must Be Able To Use
Interpolation
First Difference
Second Difference
Forward Difference
Backward Difference
Lagrange
5.
SLIDE 5
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Interpolation
: 𝑥 0 … . 𝑥 1 … .. 𝑥 2 … . 𝑥 𝑛
: 𝑦0 … . 𝑦 1 … .. 𝑦 2 …. 𝑦 𝑛
Arguments
Entries
• The process of finding the values of function f(x) (f(x) is unknown) for
any intermediate value of the argument ‘x’ between and is called
interpolation. The process of finding the value of a function outside the
interval of argument ‘x’ is called extrapolation.
• The process of computing the value of the unknown function, with
given discrete set of points. To find the value of the function, we first
determine an interpolating polynomial and then compute the
approximate function at the given point.
• The resulting polynomial will always be the same!
6.
SLIDE 6
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
The interval difference (h)
is same for all sequence
of values.
7.
SLIDE 7
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Forward Difference
• This formula is particularly useful for interpolating the
values of f(x) when x is near to
• If we have the data from the unknown function f(x):
x …
y …
8.
SLIDE 8
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y)
Newton’s Forward Difference Table
9.
SLIDE 9
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Forward Difference
𝑃=
𝑥 − 𝑥0
h
h = equal interval between x
10.
SLIDE 10
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 1
Compute the value of f(x), when x=3 by applying the appropriate
interpolation formula from the polynomial function, correct to the value of
4 significant figure.
x 0 5 10 15 20
f(x) 1.0 1.6 3.8 8.2 15.4
x=3 is near to , so Newton forward difference
11.
SLIDE 11
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Forward difference table
12.
SLIDE 12
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
𝑃=
𝑥 − 𝑥0
h
=
3 −0
5 −0
=
3
5
The value of f(x), when x=3 is 1.2016
13.
SLIDE 13
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 2
Temperature x °C 140 150 160 170 180
Pressure y 3.685 4.854 6.302 8.076 10.225
Calculate the pressure at temperature using the appropriate interpolation
method.
x=142 is near to , so Newton forward difference
14.
SLIDE 14
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Forward difference table
15.
SLIDE 15
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
𝑃=
𝑥 − 𝑥0
h
=
142 −140
150 −140
=
2
10
=
1
5
The pressure at temperature is 3.8987
16.
SLIDE 16
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Backward Difference
• This formula is particularly useful for interpolating the
values of f(x) when x is near to , i.e. when x is at the end of the
table.
• If we have the data from the unknown function f(x):
x …
y …
17.
SLIDE 17
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Backward Difference Table
Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y)
18.
SLIDE 18
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Backward Difference
𝑃=
𝑥 − 𝑥𝑛
h
h = equal interval between x
19.
SLIDE 19
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 3
Compute the value of f(x), when x=17 by applying the appropriate
interpolation formula from the polynomial function, correct to the value of
4 significant figure.
x 0 5 10 15 20
f(x) 1.0 1.6 3.8 8.2 15.4
x=17 is near to , so Newton backward difference
20.
SLIDE 20
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Backward difference table
21.
SLIDE 21
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
The value of f(x), when x=17 is 10.7104
𝑃=
𝑥 − 𝑥𝑛
h
=
17 −20
20 −15
=
−3
5
22.
SLIDE 22
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 4
Using Newton’s backward interpolation formula, calculate f(7.5) from below
x 1 2 3 4 5 6 7 8
y 1 8 27 64 125 216 343 512
[Answer: 421.875
SLIDE 26
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
The interval difference
(h) is NOT same for all
sequence of values.
27.
SLIDE 27
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Divided Difference
• Newton’s divided difference interpolation formula is an
interpolation technique used when the interval difference is not same
for all sequence of values.
• If we have the data from the unknown function f(x):
x …
y …
28.
SLIDE 28
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Newton’s Divided Difference
Value
s of x
Values
of y
First Divided
Difference
Second Divided
Difference
Third Divided
Difference
SLIDE 30
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 5
Compute f(8) and f(9) for the data
using Newton’s divided difference formula.
x 4 5 7 10 11 13
f(x) 48 100 294 900 1210 2028
SLIDE 36
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Lagrange’s Method
• If the intervals are unequal (hsame)
• Lagrange’s Method will form Lagrange Interpolating
Polynomial (Continuous Polynomial of N – 1 degree that passes
through a given set of N data points).
37.
SLIDE 37
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 5
Using appropriate formula, to determine y corresponding to x = 10
x: 5 6 9 11
y: 12 13 14 16
Since the argument spacing is unequal (6 – 5 ≠ 9 – 6) we use Lagrange’s
interpolation formula to solve for f(10) at x = 10.
38.
SLIDE 38
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Using appropriate formula, to determine y corresponding to x = 10
x: 5 6 9 11
y: 12 13 14 16
39.
SLIDE 39
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Inverse Lagrange’s Method
• If the intervals are unequal (hsame)
• The technique of finding an estimate of a value of an independent
variable x corresponding to a given value of the dependent variable y
within the range of the observed values of y.
40.
SLIDE 40
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Example 7
Using appropriate interpolation formula, find x corresponding to y =
0.3
x: 0.4 0.6 0.8
y: 0.3638 0.3332 0.2897
[Answer: 0.7616]
41.
SLIDE 41
AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
Notes:
Newton divide difference and Lagrange
interpolation can use for BOTH of h equal
and h is not equal.
Newton forward and backward
interpolation only can solve for h equal.