Engineering Mathematics 4
AQ090-3-2 and VE1
Interpolation
SLIDE 2
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Topic & Structure of The Lesson
 Introduction
 Newton’s Forward Difference
 Newton’s Backward Difference
 Newton’s Divided-difference Interpolating polynomials
 Lagrange Interpolation
 Inverse Lagrange Interpolation
SLIDE 3
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
• At the end of this topic, You should be able to
Learning Outcomes
Understand the difference operators and the use
of interpolation.
SLIDE 4
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
• If you have mastered this topic, you should be able to use the
following terms correctly in your assignments and exams:
Key Terms You Must Be Able To Use
 Interpolation
 First Difference
 Second Difference
 Forward Difference
 Backward Difference
 Lagrange
SLIDE 5
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Interpolation
: 𝑥 0 … . 𝑥 1 … .. 𝑥 2 … . 𝑥 𝑛
: 𝑦0 … . 𝑦 1 … .. 𝑦 2 …. 𝑦 𝑛
Arguments
Entries
• The process of finding the values of function f(x) (f(x) is unknown) for
any intermediate value of the argument ‘x’ between and is called
interpolation. The process of finding the value of a function outside the
interval of argument ‘x’ is called extrapolation.
• The process of computing the value of the unknown function, with
given discrete set of points. To find the value of the function, we first
determine an interpolating polynomial and then compute the
approximate function at the given point.
• The resulting polynomial will always be the same!
SLIDE 6
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
The interval difference (h)
is same for all sequence
of values.
SLIDE 7
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Forward Difference
• This formula is particularly useful for interpolating the
values of f(x) when x is near to
• If we have the data from the unknown function f(x):
x …
y …
SLIDE 8
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y)
Newton’s Forward Difference Table
SLIDE 9
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Forward Difference
𝑃=
𝑥 − 𝑥0
h
h = equal interval between x
SLIDE 10
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 1
Compute the value of f(x), when x=3 by applying the appropriate
interpolation formula from the polynomial function, correct to the value of
4 significant figure.
x 0 5 10 15 20
f(x) 1.0 1.6 3.8 8.2 15.4
x=3 is near to , so Newton forward difference
SLIDE 11
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Forward difference table
SLIDE 12
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
𝑃=
𝑥 − 𝑥0
h
=
3 −0
5 −0
=
3
5
The value of f(x), when x=3 is 1.2016
SLIDE 13
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 2
Temperature x °C 140 150 160 170 180
Pressure y 3.685 4.854 6.302 8.076 10.225
Calculate the pressure at temperature using the appropriate interpolation
method.
x=142 is near to , so Newton forward difference
SLIDE 14
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Forward difference table
SLIDE 15
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
𝑃=
𝑥 − 𝑥0
h
=
142 −140
150 −140
=
2
10
=
1
5
The pressure at temperature is 3.8987
SLIDE 16
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Backward Difference
• This formula is particularly useful for interpolating the
values of f(x) when x is near to , i.e. when x is at the end of the
table.
• If we have the data from the unknown function f(x):
x …
y …
SLIDE 17
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Backward Difference Table
Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y)
SLIDE 18
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Backward Difference
𝑃=
𝑥 − 𝑥𝑛
h
h = equal interval between x
SLIDE 19
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 3
Compute the value of f(x), when x=17 by applying the appropriate
interpolation formula from the polynomial function, correct to the value of
4 significant figure.
x 0 5 10 15 20
f(x) 1.0 1.6 3.8 8.2 15.4
x=17 is near to , so Newton backward difference
SLIDE 20
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Values of x Values of y () () () ()
Backward difference table
SLIDE 21
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
The value of f(x), when x=17 is 10.7104
𝑃=
𝑥 − 𝑥𝑛
h
=
17 −20
20 −15
=
−3
5
SLIDE 22
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 4
Using Newton’s backward interpolation formula, calculate f(7.5) from below
x 1 2 3 4 5 6 7 8
y 1 8 27 64 125 216 343 512
[Answer: 421.875
SLIDE 23
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
x y () () () () () () ()
216
343
Backward difference table
SLIDE 24
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
.5)=512+(−0 .5 )(169 )+
(− 0.5) (−0.5 +1)
2 !
( 42)+
(− 0.5) (− 0.5+1) (−0.5+ 2
3 !
The value of f(x), when x=7.5 is 421.875
𝑃=
𝑥 − 𝑥𝑛
h
=
7.5 −8
8 −7
=− 0.5
SLIDE 25
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
SLIDE 26
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
The interval difference
(h) is NOT same for all
sequence of values.
SLIDE 27
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Divided Difference
• Newton’s divided difference interpolation formula is an
interpolation technique used when the interval difference is not same
for all sequence of values.
• If we have the data from the unknown function f(x):
x …
y …
SLIDE 28
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Divided Difference
Value
s of x
Values
of y
First Divided
Difference
Second Divided
Difference
Third Divided
Difference
SLIDE 29
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Newton’s Divided Difference
SLIDE 30
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 5
Compute f(8) and f(9) for the data
using Newton’s divided difference formula.
x 4 5 7 10 11 13
f(x) 48 100 294 900 1210 2028
SLIDE 31
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Divided difference
table
x y
4 48
5 100
7 294 0
0
10 900 0
11 1210
13 2028
SLIDE 32
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Now applying the Newton’s divided difference formula
¿48+(𝑥−4)(52)+(𝑥−4)(𝑥−5)(15)+(𝑥−4)(𝑥−5)(𝑥−7)(1)+(𝑥−4)(𝑥−5)(𝑥−7)(𝑥−10)(0)
Subs. x=8
SLIDE 33
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Subs. x=9
SLIDE 34
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
ANS: v(16)=392.0767 / 392.0737 / m/s
SLIDE 35
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
SLIDE 36
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Lagrange’s Method
• If the intervals are unequal (hsame)
• Lagrange’s Method will form Lagrange Interpolating
Polynomial (Continuous Polynomial of N – 1 degree that passes
through a given set of N data points).
SLIDE 37
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 5
Using appropriate formula, to determine y corresponding to x = 10
x: 5 6 9 11
y: 12 13 14 16
Since the argument spacing is unequal (6 – 5 ≠ 9 – 6) we use Lagrange’s
interpolation formula to solve for f(10) at x = 10.
SLIDE 38
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Using appropriate formula, to determine y corresponding to x = 10
x: 5 6 9 11
y: 12 13 14 16
SLIDE 39
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Inverse Lagrange’s Method
• If the intervals are unequal (hsame)
• The technique of finding an estimate of a value of an independent
variable x corresponding to a given value of the dependent variable y
within the range of the observed values of y.
SLIDE 40
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Example 7
Using appropriate interpolation formula, find x corresponding to y =
0.3
x: 0.4 0.6 0.8
y: 0.3638 0.3332 0.2897
[Answer: 0.7616]
SLIDE 41
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Notes:
Newton divide difference and Lagrange
interpolation can use for BOTH of h equal
and h is not equal.
Newton forward and backward
interpolation only can solve for h equal.
SLIDE 42
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Recall
Summary of Main Teaching
Points
 Interpolation
 Newton’s Forward Difference
 Newton’s Backward Difference
 Newton’s Divided Difference
 Lagrange’s Interpolation
 Inverse Lagrange’s Interpolation
SLIDE 43
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
Question and Answer Session
Q & A
SLIDE 44
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
SLIDE 45
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
SLIDE 46
AQ090-3-2-EMT4 & Engineering Mathematics 4 Interpolation
What we will cover next
 Numerical Differentiation

Chapter 5 - Interpolation(newton's diff)

  • 1.
  • 2.
    SLIDE 2 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Topic & Structure of The Lesson  Introduction  Newton’s Forward Difference  Newton’s Backward Difference  Newton’s Divided-difference Interpolating polynomials  Lagrange Interpolation  Inverse Lagrange Interpolation
  • 3.
    SLIDE 3 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation • At the end of this topic, You should be able to Learning Outcomes Understand the difference operators and the use of interpolation.
  • 4.
    SLIDE 4 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation • If you have mastered this topic, you should be able to use the following terms correctly in your assignments and exams: Key Terms You Must Be Able To Use  Interpolation  First Difference  Second Difference  Forward Difference  Backward Difference  Lagrange
  • 5.
    SLIDE 5 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Interpolation : 𝑥 0 … . 𝑥 1 … .. 𝑥 2 … . 𝑥 𝑛 : 𝑦0 … . 𝑦 1 … .. 𝑦 2 …. 𝑦 𝑛 Arguments Entries • The process of finding the values of function f(x) (f(x) is unknown) for any intermediate value of the argument ‘x’ between and is called interpolation. The process of finding the value of a function outside the interval of argument ‘x’ is called extrapolation. • The process of computing the value of the unknown function, with given discrete set of points. To find the value of the function, we first determine an interpolating polynomial and then compute the approximate function at the given point. • The resulting polynomial will always be the same!
  • 6.
    SLIDE 6 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation The interval difference (h) is same for all sequence of values.
  • 7.
    SLIDE 7 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Forward Difference • This formula is particularly useful for interpolating the values of f(x) when x is near to • If we have the data from the unknown function f(x): x … y …
  • 8.
    SLIDE 8 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y) Newton’s Forward Difference Table
  • 9.
    SLIDE 9 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Forward Difference 𝑃= 𝑥 − 𝑥0 h h = equal interval between x
  • 10.
    SLIDE 10 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 1 Compute the value of f(x), when x=3 by applying the appropriate interpolation formula from the polynomial function, correct to the value of 4 significant figure. x 0 5 10 15 20 f(x) 1.0 1.6 3.8 8.2 15.4 x=3 is near to , so Newton forward difference
  • 11.
    SLIDE 11 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Values of x Values of y () () () () Forward difference table
  • 12.
    SLIDE 12 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation 𝑃= 𝑥 − 𝑥0 h = 3 −0 5 −0 = 3 5 The value of f(x), when x=3 is 1.2016
  • 13.
    SLIDE 13 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 2 Temperature x °C 140 150 160 170 180 Pressure y 3.685 4.854 6.302 8.076 10.225 Calculate the pressure at temperature using the appropriate interpolation method. x=142 is near to , so Newton forward difference
  • 14.
    SLIDE 14 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Values of x Values of y () () () () Forward difference table
  • 15.
    SLIDE 15 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation 𝑃= 𝑥 − 𝑥0 h = 142 −140 150 −140 = 2 10 = 1 5 The pressure at temperature is 3.8987
  • 16.
    SLIDE 16 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Backward Difference • This formula is particularly useful for interpolating the values of f(x) when x is near to , i.e. when x is at the end of the table. • If we have the data from the unknown function f(x): x … y …
  • 17.
    SLIDE 17 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Backward Difference Table Values of x Values of y First Difference (y) Second Difference (y) Third Difference (y)
  • 18.
    SLIDE 18 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Backward Difference 𝑃= 𝑥 − 𝑥𝑛 h h = equal interval between x
  • 19.
    SLIDE 19 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 3 Compute the value of f(x), when x=17 by applying the appropriate interpolation formula from the polynomial function, correct to the value of 4 significant figure. x 0 5 10 15 20 f(x) 1.0 1.6 3.8 8.2 15.4 x=17 is near to , so Newton backward difference
  • 20.
    SLIDE 20 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Values of x Values of y () () () () Backward difference table
  • 21.
    SLIDE 21 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation The value of f(x), when x=17 is 10.7104 𝑃= 𝑥 − 𝑥𝑛 h = 17 −20 20 −15 = −3 5
  • 22.
    SLIDE 22 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 4 Using Newton’s backward interpolation formula, calculate f(7.5) from below x 1 2 3 4 5 6 7 8 y 1 8 27 64 125 216 343 512 [Answer: 421.875
  • 23.
    SLIDE 23 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation x y () () () () () () () 216 343 Backward difference table
  • 24.
    SLIDE 24 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation .5)=512+(−0 .5 )(169 )+ (− 0.5) (−0.5 +1) 2 ! ( 42)+ (− 0.5) (− 0.5+1) (−0.5+ 2 3 ! The value of f(x), when x=7.5 is 421.875 𝑃= 𝑥 − 𝑥𝑛 h = 7.5 −8 8 −7 =− 0.5
  • 25.
    SLIDE 25 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
  • 26.
    SLIDE 26 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation The interval difference (h) is NOT same for all sequence of values.
  • 27.
    SLIDE 27 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Divided Difference • Newton’s divided difference interpolation formula is an interpolation technique used when the interval difference is not same for all sequence of values. • If we have the data from the unknown function f(x): x … y …
  • 28.
    SLIDE 28 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Divided Difference Value s of x Values of y First Divided Difference Second Divided Difference Third Divided Difference
  • 29.
    SLIDE 29 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Newton’s Divided Difference
  • 30.
    SLIDE 30 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 5 Compute f(8) and f(9) for the data using Newton’s divided difference formula. x 4 5 7 10 11 13 f(x) 48 100 294 900 1210 2028
  • 31.
    SLIDE 31 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Divided difference table x y 4 48 5 100 7 294 0 0 10 900 0 11 1210 13 2028
  • 32.
    SLIDE 32 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Now applying the Newton’s divided difference formula ¿48+(𝑥−4)(52)+(𝑥−4)(𝑥−5)(15)+(𝑥−4)(𝑥−5)(𝑥−7)(1)+(𝑥−4)(𝑥−5)(𝑥−7)(𝑥−10)(0) Subs. x=8
  • 33.
    SLIDE 33 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Subs. x=9
  • 34.
    SLIDE 34 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation ANS: v(16)=392.0767 / 392.0737 / m/s
  • 35.
    SLIDE 35 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
  • 36.
    SLIDE 36 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Lagrange’s Method • If the intervals are unequal (hsame) • Lagrange’s Method will form Lagrange Interpolating Polynomial (Continuous Polynomial of N – 1 degree that passes through a given set of N data points).
  • 37.
    SLIDE 37 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 5 Using appropriate formula, to determine y corresponding to x = 10 x: 5 6 9 11 y: 12 13 14 16 Since the argument spacing is unequal (6 – 5 ≠ 9 – 6) we use Lagrange’s interpolation formula to solve for f(10) at x = 10.
  • 38.
    SLIDE 38 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Using appropriate formula, to determine y corresponding to x = 10 x: 5 6 9 11 y: 12 13 14 16
  • 39.
    SLIDE 39 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Inverse Lagrange’s Method • If the intervals are unequal (hsame) • The technique of finding an estimate of a value of an independent variable x corresponding to a given value of the dependent variable y within the range of the observed values of y.
  • 40.
    SLIDE 40 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Example 7 Using appropriate interpolation formula, find x corresponding to y = 0.3 x: 0.4 0.6 0.8 y: 0.3638 0.3332 0.2897 [Answer: 0.7616]
  • 41.
    SLIDE 41 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Notes: Newton divide difference and Lagrange interpolation can use for BOTH of h equal and h is not equal. Newton forward and backward interpolation only can solve for h equal.
  • 42.
    SLIDE 42 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Recall Summary of Main Teaching Points  Interpolation  Newton’s Forward Difference  Newton’s Backward Difference  Newton’s Divided Difference  Lagrange’s Interpolation  Inverse Lagrange’s Interpolation
  • 43.
    SLIDE 43 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation Question and Answer Session Q & A
  • 44.
    SLIDE 44 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
  • 45.
    SLIDE 45 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation
  • 46.
    SLIDE 46 AQ090-3-2-EMT4 &Engineering Mathematics 4 Interpolation What we will cover next  Numerical Differentiation