SlideShare a Scribd company logo
1 of 67
Prof.Dr. Abuzeid Ali
lesson1et438a.pptx
1
Integrated Control and Asset
Management
Part1
lesson1et438a.pptx
2
Goals
lesson1et438a.pptx
3
lesson1et438a.pptx
4
lesson1et438a.pptx
5
lesson1et438a.pptx
6
lesson1et438a.pptx
7
lesson1et438a.pptx
8
lesson1et438a.pptx
9
lesson1et438a.pptx
10
lesson1et438a.pptx
11
lesson1et438a.pptx
12
lesson1et438a.pptx
13
lesson1et438a.pptx
14
lesson1et438a.pptx
15
lesson1et438a.pptx
16
lesson1et438a.pptx
17
lesson1et438a.pptx
18
lesson1et438a.pptx
19
lesson1et438a.pptx
20
lesson1et438a.pptx
21
lesson1et438a.pptx
22
lesson1et438a.pptx
23
lesson1et438a.pptx
24
lesson1et438a.pptx
25
lesson1et438a.pptx
26
lesson1et438a.pptx
27
lesson1et438a.pptx
28
lesson1et438a.pptx
29
lesson1et438a.pptx
30
lesson1et438a.pptx
31
lesson1et438a.pptx
32
lesson1et438a.pptx
33
lesson1et438a.pptx
34
lesson1et438a.pptx
35
lesson1et438a.pptx
36
lesson1et438a.pptx
37
Control Systems Technology
38
Learning Objectives
lesson1et438a.pptx
39
After this presentation you will be able to:
 Explain the function of an automatic
control system.
 Identify a block diagram representation of
a physical system
 Explain the difference between an open
loop and closed loop control system
 Define a transfer function and compute
the gain for sinusoidal input/output cases.
 Reduce block diagram systems using
algebra.
The Control Problem
lesson1et438a.pptx
40
Fundamental Control Concepts
h
Maintain a variable of process at a
desired value while rejecting the
effects of outside disturbances by
manipulating another system variable.
Examples:
Heating and Cooling homes and offices
Automobile cruise control
Hold the position of a mechanical linkage
Maintain level in a tank
Qout depends on h
If Qout = Qin, h constant
Qout > Qin, tank empties
Qout < Qin, tank overflows
Basic Subsystems of Control
lesson1et438a.pptx
41
Feedback Control
Subsystems
Measurement
Control decision
System modification
Process-
Maintain
tank level
Measureme
nt- sight
glass
Final Control
Element
Valve
Control Decision
Human adjusts
Qout to maintain h
=H
Reference
(setpoint)
h = control
variable
Automatic Control Systems
lesson1et438a.pptx
42
Sensor
Controller
Final control
element
Use sensors and analog or digital electronics to monitor and adju
Elements of Automatic
Control
Process – single or multiple
variables
Measurement – sensors
Error Detection – compare H
to h
Controller – generate
corrections
Final Control Element –
modify process
Maintain
level
Level
Measureme
nt
Valve
Position
Block Diagrams
lesson1et438a.pptx
43
Automatic control systems use mathematical
descriptions of subsystems to reduce complex
components to inputs and outputs
Control
System
Component
Input signal Output signal
Signals flow between components in system based on arrow di
Energy
Source
(Optional)
Typical Component Block Diagrams
lesson1et438a.pptx
44
Temperature
Sensor
T (°C)
Vout (mV)
Amplifier
Vin (V)
Vout (V)
Dc Motor
Armature V
Va (V)
n (rpm)
Control
Valve
Valve Position
(% Open)
Liquid Flow
(m3/s)
Level
Transmitter
L (ft)
Current
(mA)
Controller
Error
E (V)
Correction
V (V)
Transfer Functions
lesson1et438a.pptx
45
Transfer function - ratio of the output to the input of a control
system component. Generally a function of frequency and
time.
G
A∙sin(wt+a) B∙sin(wt+b)
Convert to phasors
and divide
a

b


a

b




A
B
A
B
Signal
Input
Signal
Output
A
B
G
Block
Gain
Phase shift related to time
delay
lesson1et438a.pptx
46
Transfer Functions
Examples
Temperature
Sensor
T (°C)
Vout (mV)

mV/C
T
V
Signal
Input
Signal
Output
G out


Example 1-1: Find transfer function of temperature sensor in block diagram
Example 1-2: a current-to-voltage converter takes an input of 17.530° mA an
an output of 8.3537° V Determine the transfer function gain and sketch the b
A
m
V/
7
477
.
0
G
A
m
V/
mA
30
5
.
17
V
37
35
.
8
I
V
Signal
Input
Signal
Output
G
V
37
35
.
8
V
mA
30
5
.
17
I
in
o
o
in

















I-to-V
Converter
G
Iin (mA)
Vout (V)
Open-Loop Control
lesson1et438a.pptx
47
Open loop control modifies output based on
predetermined control values. There is no actual
measurement of controlled quantity.
Controller
Final control
element
Control
Valve
Controlle
r
Valve
setting
Output
flow
Tank
Tank
Level
Disturbances
Tank level may
vary with
outside
disturbances
and
system
changes
Closed Loop Control
lesson1et438a.pptx
48
Closed loop control modifies output based on measured
values of the control variable. Measured value compared
to desired value and used to maintain desired value when
disturbances occur. Closed loop control uses feedback of
output to input.
Controller
Control
Valve
Tank
Level
Measurem
ent
+
-
Desired
Value
Valve
setting
Output
flow
Measured
level
Tank
Level
Closed Loop Control
lesson1et438a.pptx
49
Example: Auto Cruise Control
Set Speed
Error
Fuel
flow
Controlle
r
Fuel
Injectors
Auto
Speed
Sensor
+
-
Engine
Actual
Speed
Mechanic
al
Power
Disturbances: Up hill/ down hill
Head wind/ tail wind
Disturbances
Generalized Closed Loop Control
lesson1et438a.pptx
50
Block Diagram of Servo Control-Example Positioning Systems
Reference = R
Error = E
Controlled Variable = C
+
-
Controller
G=C/E
Measurement
H=Cm/C
R
Cm
C
E=R-Cm
Measured Variable = Cm
Generalized Closed Loop Control
lesson1et438a.pptx
51
Find overall transfer function using signal flow algebra
(Input)(Gain)=(Output)
For servo control
m
C
R
E 

C
G
E
E
C
G 



m
m
C
H
C
C
C
H 



1
2
3
R
C
Find
1 3 m
C
R
E 
 H
C E
C
G
H)
C
R
( 



Overall Transfer Function-Servo
Control
lesson1et438a.pptx
52
C
G
H
C
-
G
R
C
G
H)
C
R
(
R
C
Find








R
C
)
H
G
1
(
G
C
)
H
G
1
(
G
R
)
H
G
1
(
C
G
R
G
H
C
C
G
R

















1 2 3
Multiply through by G
Add CHG to both sides
Factor C out of right hand side
Divide both sides by (1+GH)
Divide both sides by R
Generalized Closed Loop Control
lesson1et438a.pptx
53
Block Diagram of Process Control-Example Chemical Reactors
Measurement
H=Cm/C
Manipulate
d Variable
Gm=M/V
+
-
Control
Modes
Gc=V/E
Process
Gp=C/M
Setpoint = SP
Error = E
Controlled Variable = C
SP
Cm
C
E=R-
Cm
Measured Variable = Cm
M
Manipulated Variable = M
Controller Output = V
V
D=Disturbances
Overall Transfer Function- Process
Control
lesson1et438a.pptx
54
Find overall transfer function of process control using signal flow
Series blocks multiple
M
C
G
V
M
G
E
V
G p
m
c 


























M
C
V
M
E
V
G
G
G
G p
m
c







E
C
G
Find overall transfer function Cm/SP C not directly
measurable in process control
lesson1et438a.pptx
55
Overall Transfer Function- Process
Control
As before m
C
SP
E 
 C
H
C
C
H
C m
m 



m
m
m
m
m
m
m
m
m
C
H
G
C
SP
H
G
C
C
H
G
SP
H
G
C
)
C
SP
(
H
G
H
C
)
C
SP
(
G
C
)
C
SP
(
G
C
E
G
























SP
C
H
G
1
H
G
C
H
G
1
SP
H
G
)
H
G
1
(
C
SP
H
G
m
m
m















Substitute in for E
Substitute in for C eliminate it
Multiple both sides by H
Multiple L.H. side by GH
Add GHCm to both sides
Factor Cm from right side
Divide both sides by (1+GH)
Divide both sides by SP
Control System Drawings
lesson1et438a.pptx 56
Industrial system standard ANSI/ISA-S5.1-1984 Uniform design
Instruments, instrument systems and control.
Functional
Identifier
General
Instrument
Symbol
Loop
Identifier
Instrument Line Symbols
3-15 psi
pneumatic
line
4-20 mA
electric
current
Filled
System
Capillary
First ID Letter Following ID Letter
A = Analysis C= Controller
L = Level I=Indicator
T = Temperature R=Recorder
T= Transmitter
V = Valve
Y = Relay/Converter
Control System Drawings
lesson1et438a.pptx
57
Heated Product
Heating Fluid
Return
Heating Fluid
Supply
Water
Supply
Syrup
Supply
TIC
102 102
TT
102
TV
LT
LIC
101 101
LY
101
101
LV
103
AT
103
ARC
103
AV
Syrup
Concentration
Current to
Pneumatic
Converter
I/P
101 =level control
102 = temperature
control
103 = concentration
control
Temperature
Transmitter
Concentration
Valve
Temperature
Indicator/Control
Concentration
Recorder/Contr
ol
4-20 mA
current
Concentration
Transmitter
Linear and Non-linear Response
lesson1et438a.pptx
58
1 0.5 0 0.5 1
2
0
2
Linear Response
Input
Output
15 10 5 0 5 10 15
2
0
2
Input
Output
Time
Output
Linear transfer functions give proportional
outputs. In this case the factor is 2
Non-linear Response
lesson1et438a.pptx
59
3 2 1 0 1 2 3
10
0
10
Saturation Non-Linearity
Input
Output
15 10 5 0 5 10 15
1
0
1
Input Signal
Saturation Non-Linearity
Time
Input
Signal
15 10 5 0 5 10 15
1
0
1
Output Signal
Saturation Non-Linearity
Time
Output
Signal
Saturation non-linearity typical of practical systems
that have physical limits. Amplifiers, control valves
Other Non-Linearities
lesson1et438a.pptx
60
4 2 0 2 4
2
1
0
1
2
Hystersis Non-Linearity
Input
Output
3 2 1 0 1 2 3
40
20
0
20
40
General Non-Linearity
Input
Output
Typical in magnetic circuit and in
instrumentation transducers
Non-linearities cause distortion in sine waves
response that is not proportional to inputs va
for all signal values.
Block Diagram Simplifications
lesson1et438a.pptx
61
G
H
-
+
R C R C
H
G
1
G
R
C



Block diagram at left simplifies to the above
Can use this to reduce multiple loops into o
Block.
Also remember that blocks in series multiply
G1 G2 G3 G1G2G3
3
2
1 G
G
G
G 


Equivalent Block
Block Diagram Simplification
Example
lesson1et438a.pptx
62
G2
H1
-
+
+
R
-
G1 G3
H3 H2
C
R1
C1
1
2
2
1
1
H
G
1
G
R
C



H
3
2 H
H
H 

Reduce the inner loop
Combine outer feedback block
Combine reduced inner loop with remaining forward gain blocks
Block Diagram Simplification Example (1)
lesson1et438a.pptx
63
+
R
-
G1 G3
H=H2H3
C
1
2
2
H
G
1
G
























1
2
3
2
1
3
1
2
2
1
H
G
1
G
G
G
G
H
G
1
G
G
G Compute the value of G
3
2
1
2
3
2
1
1
2
3
2
1
H
H
H
G
1
G
G
G
1
H
G
1
G
G
G
H
G
1
G
R
C



























Substitute the values of G and H into formu
and simplify
Block Diagram Simplification Example (2)
lesson1et438a.pptx
64
3
2
1
2
3
2
1
1
2
3
2
1
H
H
H
G
1
G
G
G
1
H
G
1
G
G
G
H
G
1
G
R
C



























 
      


























































1
2
3
2
3
2
1
1
2
1
2
3
2
1
1
2
3
2
1
2
3
2
1
1
2
1
2
3
2
1
H
G
1
H
H
G
G
G
H
G
1
H
G
1
G
G
G
H
G
1
H
H
H
G
1
G
G
G
1
H
G
1
H
G
1
G
G
G
R
C
3
2
3
2
1
1
2
3
2
1
H
H
G
G
G
H
G
1
G
G
G
R
C









 Answer
Multiply top and bottom of ratio by (1+G2H1) and simplify
3
2
3
2
1
1
2
3
2
1
H
H
G
G
G
H
G
1
G
G
G









R C
Reduced
block
End Lesson 1: Introduction to
Control Systems Technology
ET 438a
Automatic Control Systems Technology
lesson1et438a.pptx
65
lesson1et438a.pptx
66
lesson1et438a.pptx
67

More Related Content

Similar to chapter 1 integrated control system.pptx

INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROLINSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
no suhaila
 
15_feedforward_and_ratio_cntrol
15_feedforward_and_ratio_cntrol15_feedforward_and_ratio_cntrol
15_feedforward_and_ratio_cntrol
Mircea Tomescu
 
Water Temperature
Water TemperatureWater Temperature
Water Temperature
Theju Paul
 
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
IAEME Publication
 

Similar to chapter 1 integrated control system.pptx (20)

Effect of Different Defuzzification methods in a Fuzzy Based Liquid Flow cont...
Effect of Different Defuzzification methods in a Fuzzy Based Liquid Flow cont...Effect of Different Defuzzification methods in a Fuzzy Based Liquid Flow cont...
Effect of Different Defuzzification methods in a Fuzzy Based Liquid Flow cont...
 
Process control handout new1
Process control handout new1Process control handout new1
Process control handout new1
 
INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROLINSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
INSTRUMENTATION AND PROCESS CONTROL - BOILER CONTROL
 
Inst. & process control gtp
Inst. & process control gtpInst. & process control gtp
Inst. & process control gtp
 
Control
ControlControl
Control
 
PID CONTROL EMERSON EDUARDO RODRIGUES
PID CONTROL EMERSON EDUARDO RODRIGUESPID CONTROL EMERSON EDUARDO RODRIGUES
PID CONTROL EMERSON EDUARDO RODRIGUES
 
PID controller
PID controllerPID controller
PID controller
 
Fulltext 1005224
Fulltext 1005224 Fulltext 1005224
Fulltext 1005224
 
Instrumentation and process control fundamentals
Instrumentation and  process control fundamentalsInstrumentation and  process control fundamentals
Instrumentation and process control fundamentals
 
Process control lab manual
Process control lab manualProcess control lab manual
Process control lab manual
 
Eee3420 lecture01 rev2011
Eee3420 lecture01 rev2011Eee3420 lecture01 rev2011
Eee3420 lecture01 rev2011
 
15_feedforward_and_ratio_cntrol
15_feedforward_and_ratio_cntrol15_feedforward_and_ratio_cntrol
15_feedforward_and_ratio_cntrol
 
Water Temperature
Water TemperatureWater Temperature
Water Temperature
 
Presentation
PresentationPresentation
Presentation
 
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
Preclusion of High and Low Pressure In Boiler by Using LABVIEWPreclusion of High and Low Pressure In Boiler by Using LABVIEW
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
 
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
Preclusion of High and Low Pressure In Boiler by Using LABVIEWPreclusion of High and Low Pressure In Boiler by Using LABVIEW
Preclusion of High and Low Pressure In Boiler by Using LABVIEW
 
Control system
Control systemControl system
Control system
 
Simulation analysis of Series Cascade control Structure and anti-reset windup...
Simulation analysis of Series Cascade control Structure and anti-reset windup...Simulation analysis of Series Cascade control Structure and anti-reset windup...
Simulation analysis of Series Cascade control Structure and anti-reset windup...
 
Comparative Analysis of Different Controllers in Two–Area Hydrothermal Power ...
Comparative Analysis of Different Controllers in Two–Area Hydrothermal Power ...Comparative Analysis of Different Controllers in Two–Area Hydrothermal Power ...
Comparative Analysis of Different Controllers in Two–Area Hydrothermal Power ...
 
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
Arm7 microcontroller based fuzzy logic controller for liquid level control sy...
 

More from zeidali3

Chapter 1 - Drilling Fluid Functions GR.ppt
Chapter 1 - Drilling Fluid Functions GR.pptChapter 1 - Drilling Fluid Functions GR.ppt
Chapter 1 - Drilling Fluid Functions GR.ppt
zeidali3
 
1 General Overview for Seperating and Treating Well Fluids-short.pptx
1  General Overview for  Seperating and Treating Well  Fluids-short.pptx1  General Overview for  Seperating and Treating Well  Fluids-short.pptx
1 General Overview for Seperating and Treating Well Fluids-short.pptx
zeidali3
 
fire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptxfire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptx
zeidali3
 
implementation_of_a_risk-based_process_safety_management_system_framework.pptx
implementation_of_a_risk-based_process_safety_management_system_framework.pptximplementation_of_a_risk-based_process_safety_management_system_framework.pptx
implementation_of_a_risk-based_process_safety_management_system_framework.pptx
zeidali3
 
energies-13-01758-v2 (1).pdf
energies-13-01758-v2 (1).pdfenergies-13-01758-v2 (1).pdf
energies-13-01758-v2 (1).pdf
zeidali3
 
LO3-Part2-Natural-gas-Dehydration-Process-2.ppt
LO3-Part2-Natural-gas-Dehydration-Process-2.pptLO3-Part2-Natural-gas-Dehydration-Process-2.ppt
LO3-Part2-Natural-gas-Dehydration-Process-2.ppt
zeidali3
 
fire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptxfire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptx
zeidali3
 

More from zeidali3 (12)

Chapter 1 - Drilling Fluid Functions GR.ppt
Chapter 1 - Drilling Fluid Functions GR.pptChapter 1 - Drilling Fluid Functions GR.ppt
Chapter 1 - Drilling Fluid Functions GR.ppt
 
1 General Overview for Seperating and Treating Well Fluids-short.pptx
1  General Overview for  Seperating and Treating Well  Fluids-short.pptx1  General Overview for  Seperating and Treating Well  Fluids-short.pptx
1 General Overview for Seperating and Treating Well Fluids-short.pptx
 
11 Slickline Operations.pptx
11 Slickline Operations.pptx11 Slickline Operations.pptx
11 Slickline Operations.pptx
 
fire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptxfire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptx
 
implementation_of_a_risk-based_process_safety_management_system_framework.pptx
implementation_of_a_risk-based_process_safety_management_system_framework.pptximplementation_of_a_risk-based_process_safety_management_system_framework.pptx
implementation_of_a_risk-based_process_safety_management_system_framework.pptx
 
energies-13-01758-v2 (1).pdf
energies-13-01758-v2 (1).pdfenergies-13-01758-v2 (1).pdf
energies-13-01758-v2 (1).pdf
 
geophysical_logs4.ppt
geophysical_logs4.pptgeophysical_logs4.ppt
geophysical_logs4.ppt
 
LO3-Part2-Natural-gas-Dehydration-Process-2.ppt
LO3-Part2-Natural-gas-Dehydration-Process-2.pptLO3-Part2-Natural-gas-Dehydration-Process-2.ppt
LO3-Part2-Natural-gas-Dehydration-Process-2.ppt
 
fire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptxfire Safety and Hazard Analysis.pptx
fire Safety and Hazard Analysis.pptx
 
75b466e0cde747249c297578d18993f6.pptx
75b466e0cde747249c297578d18993f6.pptx75b466e0cde747249c297578d18993f6.pptx
75b466e0cde747249c297578d18993f6.pptx
 
Choi.ppt
Choi.pptChoi.ppt
Choi.ppt
 
liquid pipeline.ppt
liquid pipeline.pptliquid pipeline.ppt
liquid pipeline.ppt
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Recently uploaded (20)

Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 

chapter 1 integrated control system.pptx

  • 39. Learning Objectives lesson1et438a.pptx 39 After this presentation you will be able to:  Explain the function of an automatic control system.  Identify a block diagram representation of a physical system  Explain the difference between an open loop and closed loop control system  Define a transfer function and compute the gain for sinusoidal input/output cases.  Reduce block diagram systems using algebra.
  • 40. The Control Problem lesson1et438a.pptx 40 Fundamental Control Concepts h Maintain a variable of process at a desired value while rejecting the effects of outside disturbances by manipulating another system variable. Examples: Heating and Cooling homes and offices Automobile cruise control Hold the position of a mechanical linkage Maintain level in a tank Qout depends on h If Qout = Qin, h constant Qout > Qin, tank empties Qout < Qin, tank overflows
  • 41. Basic Subsystems of Control lesson1et438a.pptx 41 Feedback Control Subsystems Measurement Control decision System modification Process- Maintain tank level Measureme nt- sight glass Final Control Element Valve Control Decision Human adjusts Qout to maintain h =H Reference (setpoint) h = control variable
  • 42. Automatic Control Systems lesson1et438a.pptx 42 Sensor Controller Final control element Use sensors and analog or digital electronics to monitor and adju Elements of Automatic Control Process – single or multiple variables Measurement – sensors Error Detection – compare H to h Controller – generate corrections Final Control Element – modify process Maintain level Level Measureme nt Valve Position
  • 43. Block Diagrams lesson1et438a.pptx 43 Automatic control systems use mathematical descriptions of subsystems to reduce complex components to inputs and outputs Control System Component Input signal Output signal Signals flow between components in system based on arrow di Energy Source (Optional)
  • 44. Typical Component Block Diagrams lesson1et438a.pptx 44 Temperature Sensor T (°C) Vout (mV) Amplifier Vin (V) Vout (V) Dc Motor Armature V Va (V) n (rpm) Control Valve Valve Position (% Open) Liquid Flow (m3/s) Level Transmitter L (ft) Current (mA) Controller Error E (V) Correction V (V)
  • 45. Transfer Functions lesson1et438a.pptx 45 Transfer function - ratio of the output to the input of a control system component. Generally a function of frequency and time. G A∙sin(wt+a) B∙sin(wt+b) Convert to phasors and divide a  b   a  b     A B A B Signal Input Signal Output A B G Block Gain Phase shift related to time delay
  • 46. lesson1et438a.pptx 46 Transfer Functions Examples Temperature Sensor T (°C) Vout (mV)  mV/C T V Signal Input Signal Output G out   Example 1-1: Find transfer function of temperature sensor in block diagram Example 1-2: a current-to-voltage converter takes an input of 17.530° mA an an output of 8.3537° V Determine the transfer function gain and sketch the b A m V/ 7 477 . 0 G A m V/ mA 30 5 . 17 V 37 35 . 8 I V Signal Input Signal Output G V 37 35 . 8 V mA 30 5 . 17 I in o o in                  I-to-V Converter G Iin (mA) Vout (V)
  • 47. Open-Loop Control lesson1et438a.pptx 47 Open loop control modifies output based on predetermined control values. There is no actual measurement of controlled quantity. Controller Final control element Control Valve Controlle r Valve setting Output flow Tank Tank Level Disturbances Tank level may vary with outside disturbances and system changes
  • 48. Closed Loop Control lesson1et438a.pptx 48 Closed loop control modifies output based on measured values of the control variable. Measured value compared to desired value and used to maintain desired value when disturbances occur. Closed loop control uses feedback of output to input. Controller Control Valve Tank Level Measurem ent + - Desired Value Valve setting Output flow Measured level Tank Level
  • 49. Closed Loop Control lesson1et438a.pptx 49 Example: Auto Cruise Control Set Speed Error Fuel flow Controlle r Fuel Injectors Auto Speed Sensor + - Engine Actual Speed Mechanic al Power Disturbances: Up hill/ down hill Head wind/ tail wind Disturbances
  • 50. Generalized Closed Loop Control lesson1et438a.pptx 50 Block Diagram of Servo Control-Example Positioning Systems Reference = R Error = E Controlled Variable = C + - Controller G=C/E Measurement H=Cm/C R Cm C E=R-Cm Measured Variable = Cm
  • 51. Generalized Closed Loop Control lesson1et438a.pptx 51 Find overall transfer function using signal flow algebra (Input)(Gain)=(Output) For servo control m C R E   C G E E C G     m m C H C C C H     1 2 3 R C Find 1 3 m C R E   H C E C G H) C R (    
  • 53. Generalized Closed Loop Control lesson1et438a.pptx 53 Block Diagram of Process Control-Example Chemical Reactors Measurement H=Cm/C Manipulate d Variable Gm=M/V + - Control Modes Gc=V/E Process Gp=C/M Setpoint = SP Error = E Controlled Variable = C SP Cm C E=R- Cm Measured Variable = Cm M Manipulated Variable = M Controller Output = V V D=Disturbances
  • 54. Overall Transfer Function- Process Control lesson1et438a.pptx 54 Find overall transfer function of process control using signal flow Series blocks multiple M C G V M G E V G p m c                            M C V M E V G G G G p m c        E C G Find overall transfer function Cm/SP C not directly measurable in process control
  • 55. lesson1et438a.pptx 55 Overall Transfer Function- Process Control As before m C SP E   C H C C H C m m     m m m m m m m m m C H G C SP H G C C H G SP H G C ) C SP ( H G H C ) C SP ( G C ) C SP ( G C E G                         SP C H G 1 H G C H G 1 SP H G ) H G 1 ( C SP H G m m m                Substitute in for E Substitute in for C eliminate it Multiple both sides by H Multiple L.H. side by GH Add GHCm to both sides Factor Cm from right side Divide both sides by (1+GH) Divide both sides by SP
  • 56. Control System Drawings lesson1et438a.pptx 56 Industrial system standard ANSI/ISA-S5.1-1984 Uniform design Instruments, instrument systems and control. Functional Identifier General Instrument Symbol Loop Identifier Instrument Line Symbols 3-15 psi pneumatic line 4-20 mA electric current Filled System Capillary First ID Letter Following ID Letter A = Analysis C= Controller L = Level I=Indicator T = Temperature R=Recorder T= Transmitter V = Valve Y = Relay/Converter
  • 57. Control System Drawings lesson1et438a.pptx 57 Heated Product Heating Fluid Return Heating Fluid Supply Water Supply Syrup Supply TIC 102 102 TT 102 TV LT LIC 101 101 LY 101 101 LV 103 AT 103 ARC 103 AV Syrup Concentration Current to Pneumatic Converter I/P 101 =level control 102 = temperature control 103 = concentration control Temperature Transmitter Concentration Valve Temperature Indicator/Control Concentration Recorder/Contr ol 4-20 mA current Concentration Transmitter
  • 58. Linear and Non-linear Response lesson1et438a.pptx 58 1 0.5 0 0.5 1 2 0 2 Linear Response Input Output 15 10 5 0 5 10 15 2 0 2 Input Output Time Output Linear transfer functions give proportional outputs. In this case the factor is 2
  • 59. Non-linear Response lesson1et438a.pptx 59 3 2 1 0 1 2 3 10 0 10 Saturation Non-Linearity Input Output 15 10 5 0 5 10 15 1 0 1 Input Signal Saturation Non-Linearity Time Input Signal 15 10 5 0 5 10 15 1 0 1 Output Signal Saturation Non-Linearity Time Output Signal Saturation non-linearity typical of practical systems that have physical limits. Amplifiers, control valves
  • 60. Other Non-Linearities lesson1et438a.pptx 60 4 2 0 2 4 2 1 0 1 2 Hystersis Non-Linearity Input Output 3 2 1 0 1 2 3 40 20 0 20 40 General Non-Linearity Input Output Typical in magnetic circuit and in instrumentation transducers Non-linearities cause distortion in sine waves response that is not proportional to inputs va for all signal values.
  • 61. Block Diagram Simplifications lesson1et438a.pptx 61 G H - + R C R C H G 1 G R C    Block diagram at left simplifies to the above Can use this to reduce multiple loops into o Block. Also remember that blocks in series multiply G1 G2 G3 G1G2G3 3 2 1 G G G G    Equivalent Block
  • 62. Block Diagram Simplification Example lesson1et438a.pptx 62 G2 H1 - + + R - G1 G3 H3 H2 C R1 C1 1 2 2 1 1 H G 1 G R C    H 3 2 H H H   Reduce the inner loop Combine outer feedback block Combine reduced inner loop with remaining forward gain blocks
  • 63. Block Diagram Simplification Example (1) lesson1et438a.pptx 63 + R - G1 G3 H=H2H3 C 1 2 2 H G 1 G                         1 2 3 2 1 3 1 2 2 1 H G 1 G G G G H G 1 G G G Compute the value of G 3 2 1 2 3 2 1 1 2 3 2 1 H H H G 1 G G G 1 H G 1 G G G H G 1 G R C                            Substitute the values of G and H into formu and simplify
  • 64. Block Diagram Simplification Example (2) lesson1et438a.pptx 64 3 2 1 2 3 2 1 1 2 3 2 1 H H H G 1 G G G 1 H G 1 G G G H G 1 G R C                                                                                               1 2 3 2 3 2 1 1 2 1 2 3 2 1 1 2 3 2 1 2 3 2 1 1 2 1 2 3 2 1 H G 1 H H G G G H G 1 H G 1 G G G H G 1 H H H G 1 G G G 1 H G 1 H G 1 G G G R C 3 2 3 2 1 1 2 3 2 1 H H G G G H G 1 G G G R C           Answer Multiply top and bottom of ratio by (1+G2H1) and simplify 3 2 3 2 1 1 2 3 2 1 H H G G G H G 1 G G G          R C Reduced block
  • 65. End Lesson 1: Introduction to Control Systems Technology ET 438a Automatic Control Systems Technology lesson1et438a.pptx 65