SlideShare a Scribd company logo
Heterogeneous Van der Pol oscillators
under strong coupling
synchronous and oscillatory behavior of the network
Jin Gyu Lee and Hyungbo Shim
Control & Dynamic Systems Lab. Seoul National University
December 18, 2018
Biological systems
Characteristics:
Non-identical cells
Collective behavior, e.g., synchronization and oscillation
Robustness: Many good oscillators with few bad agents
Single channel communication
2 / 22
Heterogeneous Van der Pol oscillators
Internal model principle (Wieland, Wu, and Allgöwer, IEEE TAC, 2013):
Heterogeneous Van der Pol oscillators cannot achieve
synchronization unless they have a common internal model.
Previous works
Homogeneous Van der Pol oscillators
Rand and Holmes, Int. J. Nonlinear Mechanics, 1980
Low, Reinhall, Storti, and Goldman, Struct. Control Health Monit., 2006
Omelchenko, Zakharova, Hövel, Siebert, and Schöll, Chaos, 2015
Heterogeneous frequency, but a common internal model exists
Banning, Ph.D. dissertation, San Diego State University, 2011
3 / 22
Problem setting
Parameters
Van der Pol oscillator:
¨x − µω(1 − rx2
) ˙x + ω2
x = κu
µ determines the shape of the limit cycle
ω determines the period of the limit cycle
r determines the size of the limit cycle
Let ¯x:=
√
rx and ¯κ:=
√
rκ, then we get
¨¯x − µω(1 − ¯x2
) ˙¯x + ω2
¯x = ¯κu.
4 / 22
Problem setting
Parameters
Van der Pol oscillator:
¨x − µω(1 − rx2
) ˙x + ω2
x = κu
µ determines the shape of the limit cycle
ω determines the period of the limit cycle
r determines the size of the limit cycle
Let ¯x:=
√
rx and ¯κ:=
√
rκ, then we get
¨¯x − µω(1 − ¯x2
) ˙¯x + ω2
¯x = ¯κu.
4 / 22
Problem setting
Parameters
Van der Pol oscillator:
¨x − µω(1 − rx2
) ˙x + ω2
x = κu
µ determines the shape of the limit cycle
ω determines the period of the limit cycle
r determines the size of the limit cycle
Let ¯x:=
√
rx and ¯κ:=
√
rκ, then we get
¨¯x − µω(1 − ¯x2
) ˙¯x + ω2
¯x = ¯κu.
4 / 22
Problem setting
Parameters
Van der Pol oscillator:
¨x − µω(1 − rx2
) ˙x + ω2
x = κu
µ determines the shape of the limit cycle
ω determines the period of the limit cycle
r determines the size of the limit cycle
Let ¯x:=
√
rx and ¯κ:=
√
rκ, then we get
¨¯x − µω(1 − ¯x2
) ˙¯x + ω2
¯x = ¯κu.
4 / 22
Problem setting
Heterogeneity and Diffusive coupling
Network of heterogeneous Van der Pol oscillators:
¨xi − µiωi(1 − rixi
2
) ˙xi + ωi
2
xi = κiui, i ∈ N := {1, . . . , N},
with diffusive coupling:
ui = k
j∈Ni
αij(δjyj − δiyi), yi = axi + b ˙xi,
where the underlying graph is directed (Ni := {j ∈ N : αij > 0}).
5 / 22
State space representation
Individual dynamics:
˙xi = vi
˙vi = µiωi(1 − rix2
i )vi − ω2
i xi + κiui, i ∈ N
Diffusive coupling:
ui = k
j∈Ni
αij(δjyj − δiyi), yi = axi + bvi
Approximate synchronization:
lim sup
t→∞
xi(t)
vi(t)
−
xj(t)
vj(t)
≤ , ∀i, j ∈ N
6 / 22
State space representation
Individual dynamics:
˙xi = vi
˙vi = µiωi(1 − rix2
i )vi − ω2
i xi + κiui, i ∈ N
Diffusive coupling:
ui = k
j∈Ni
αij(δjyj − δiyi), yi = axi + bvi
Approximate synchronization:
lim sup
t→∞
xi(t)
vi(t)
−
xj(t)
vj(t)
≤ , ∀i, j ∈ N
6 / 22
Simulation results
Homogeneous Van der Pol oscillators
7 / 22
Simulation results
Heterogeneous Van der Pol oscillators
8 / 22
Summary of the contents
Q) When does the network approximately synchronize?
A)
Q) What would be the synchronized behavior?
A)
9 / 22
State space representation
Individual dynamics:
˙xi = vi
˙vi = µiωi(1 − rix2
i )vi − ω2
i xi + κiui
Diffusive coupling:
ui = k
j∈Ni
αij(δjyj − δiyi), yi = axi + bvi,
where the underlying graph is directed.
10 / 22
State space representation
Individual dynamics:
˙xi = vi
˙vi = µiωi(1 − rix2
i )vi − ω2
i xi + κiui
Diffusive coupling:
ui = k
j∈Ni
αij(δjyj − δiyi), yi = axi + bvi,
where the underlying graph is undirected.
10 / 22
Blended dynamics
Brief introduction
Analysis and synthesis of a multi-agent system,
˙xi = fi(t, xi) + kBi
j∈Ni
αij(xj − xi) ∈ Rn
, i ∈ N,
or
˙xi = fi(t, xi) + k
j∈Ni
αij(Cjxj − Cixi) ∈ Rn
, i ∈ N,
by the reduced dimensional system called blended dynamics.
The behavior of the original network is characterized by the
behavior of the blended dynamics.
J. G. Lee and H. Shim, “A tool for analysis and synthesis of heterogeneous multi-agent systems under
rank-deficient coupling,” under review for Automatica, available at arXiv:1804.00638.
11 / 22
Blended dynamics
A special case
Original network, 2N dimension:
˙yi = gi(t, yi, zi) ∈ R, i ∈ N,
˙zi = hi(t, yi, zi) + kb
j∈Ni
αij(zj − zi) ∈ R, i ∈ N,
where b is a positive constant.
Blended dynamics, N + 1 dimension:
˙ˆyi = gi(t, ˆyi, ˆz) ∈ R, i ∈ N,
˙ˆz =
1
N
N
i=1
hi(t, ˆyi, ˆz) ∈ R.
J. G. Lee and H. Shim, “A tool for analysis and synthesis of heterogeneous multi-agent systems under
rank-deficient coupling,” under review for Automatica, available at arXiv:1804.00638.
12 / 22
Blended dynamics
Network of heterogeneous Van der Pol oscillators
Consider ¯xi := xi and ¯vi := (a/b)xi + vi. Then, we obtain
˙¯xi = −
a
b
¯xi + ¯vi, i ∈ N,
˙¯vi = a
b + µiωi(1 − ri¯x2
i ) −a
b ¯xi + ¯vi − ω2
i ¯xi
+ kb
j∈Ni
αij(¯vj − ¯vi), i ∈ N.
13 / 22
Blended dynamics
Network of heterogeneous Van der Pol oscillators
Blended dynamics, N + 1 dimension:
˙ˆxi = −
a
b
ˆxi + ˆv, i ∈ N,
˙ˆv =
1
N
N
i=1
a
b + µiωi(1 − riˆx2
i ) −a
b ˆxi + ˆv − ω2
i ˆxi
13 / 22
Blended dynamics
Asymptotic behavior
Blended dynamics, N + 1 dimension:
˙ˆxi = −
a
b
ˆxi + ˆv, ⇒ lim
t→∞
|ˆxi − ˆxj| = 0, ∀i, j ∈ N,
˙ˆv =
1
N
N
i=1
a
b + µiωi(1 − riˆx2
i ) −a
b ˆxi + ˆv − ω2
i ˆxi
14 / 22
Blended dynamics
Asymptotic behavior
Blended dynamics, ˆxi → ˆx, 2 dimension:
˙ˆx = −
a
b
ˆx + ˆv,
˙ˆv =
1
N
N
i=1
a
b + µiωi(1 − riˆx2) −a
b ˆx + ˆv − ω2
i ˆx
= a
b + 1
N
N
i=1 µiωi(1 − riˆx2) −a
b ˆx + ˆv − 1
N
N
i=1 ω2
i ˆx
14 / 22
Blended dynamics
Asymptotic behavior
Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain
˙x = v,
˙v = 1
N
N
i=1 µiωi v − 1
N
N
i=1 µiωiri x2
v − 1
N
N
i=1 ω2
i x.
=: ˆµˆωv − ˆµˆωˆrx2
v − ˆω2
x.
Assume
1
N
N
i=1 µiωi > 0, 1
N
N
i=1 ω2
i > 0, 1
N
N
i=1 µiωiri > 0.
=: ˆµˆω =: ˆω2
=: ˆµˆωˆr
15 / 22
Blended dynamics
Asymptotic behavior
Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain
˙x = v,
˙v = 1
N
N
i=1 µiωi v − 1
N
N
i=1 µiωiri x2
v − 1
N
N
i=1 ω2
i x,
=: ˆµˆωv − ˆµˆωˆrx2
v − ˆω2
x.
Assume
1
N
N
i=1 µiωi > 0, 1
N
N
i=1 ω2
i > 0, 1
N
N
i=1 µiωiri > 0.
=: ˆµˆω =: ˆω2
=: ˆµˆωˆr
15 / 22
Blended dynamics
Asymptotic behavior
Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain
˙x = v,
˙v = 1
N
N
i=1 µiωi v − 1
N
N
i=1 µiωiri x2
v − 1
N
N
i=1 ω2
i x,
=: ˆµˆω(1 − ˆrx2
)v − ˆω2
x.
Assume
1
N
N
i=1 µiωi > 0, 1
N
N
i=1 ω2
i > 0, 1
N
N
i=1 µiωiri > 0.
=: ˆµˆω =: ˆω2
=: ˆµˆωˆr
15 / 22
Emergent Van der Pol oscillator
Now, we obtain
˙x = v,
˙v = ˆµˆω(1 − ˆrx2
)v − ˆω2
x,
which we call the emergent Van der Pol oscillator.
Limit cycle of the blended dynamics:
¯Γ :=








x
...
x
(a/b)x + v





∈ RN+1
:
x
v
∈ γ ⊂ R2



γ: Limit cycle of the emergent Van der Pol oscillator
16 / 22
Blended dynamics has a limit cycle
Theorem (Blended dynamics)
Blended dynamics has a stable limit cycle if and only if the
emergent Van der Pol oscillator has a stable limit cycle, i.e.,
1
N
N
i=1
µiωi > 0,
1
N
N
i=1
µiωiri > 0.
Moreover, the limit cycle is unique and is explicitly given as
¯Γ :=








x
...
x
(a/b)x + v





∈ RN+1
:
x
v
∈ γ ⊂ R2



.
17 / 22
Network of Van der Pol oscillators approximately synchronize
Theorem (Network of Van der Pol oscillators)
If the emergent Van der Pol oscillator has a stable limit cycle,
i.e.,
1
N
N
i=1
µiωi > 0,
1
N
N
i=1
µiωiri > 0,
then for sufficiently large k, we have
lim sup
t→∞







x1
v1
...
xN
vN







Γ
≤ , where Γ:=










x
v
...
x
v







∈ R2N
:
x
v
∈γ ⊂R2



,
from which we obtain approximate synchronization.
18 / 22
Oscillation near the limit cycle
In fact, ¯Γ :=








x
...
x
(a/b)x + v





∈ RN+1 :
x
v
∈ γ ⊂ R2



is a
periodic orbit of the blended dynamics.
There is a periodic orbit near Γ:=










x
v
...
x
v







∈ R2N :
x
v
∈γ ⊂R2



.
Each individual
xi
vi
oscillates near the limit cycle γ.
19 / 22
Oscillation near the limit cycle
In fact, ¯Γ :=








x
...
x
(a/b)x + v





∈ RN+1 :
x
v
∈ γ ⊂ R2



is a
periodic orbit of the blended dynamics.
There is a periodic orbit near Γ:=










x
v
...
x
v







∈ R2N :
x
v
∈γ ⊂R2



.
Each individual
xi
vi
oscillates near the limit cycle γ.
19 / 22
Oscillation near the limit cycle
In fact, ¯Γ :=








x
...
x
(a/b)x + v





∈ RN+1 :
x
v
∈ γ ⊂ R2



is a
periodic orbit of the blended dynamics.
There is a periodic orbit near Γ:=










x
v
...
x
v







∈ R2N :
x
v
∈γ ⊂R2



.
Each individual
xi
vi
oscillates near the limit cycle γ.
19 / 22
Conclusions
Answering the questions
Q) When does the network approximately synchronize?
A) When the emergent Van der Pol oscillator has a stable limit
cycle.
Q) What would be the synchronized behavior?
A) Oscillation near the limit cycle of the emergent Van der Pol
oscillator.
20 / 22
Conclusions
Answering the questions
Q) When does the network approximately synchronize?
A) When the emergent Van der Pol oscillator has a stable limit
cycle.
Q) What would be the synchronized behavior?
A) Oscillation near the limit cycle of the emergent Van der Pol
oscillator.
20 / 22
Conclusions
Summary
Non-identical agents
˙xi = vi, ˙vi = µiωivi − µiωirix2
i vi − ω2
i xi + ui
Single channel communication
ui = k
j∈Ni
αij(yj − yi), yi = axi + bvi
Collective behavior: Emergent Van der Pol oscillator
˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2
v − ˆw2
x
Robustness: Many good oscillators with few bad agents
ˆµˆω = 1
N
N
i=1 µiωi > 0, ˆµˆωˆr = 1
N
N
i=1 µiωiri > 0.
21 / 22
Conclusions
Summary
Non-identical agents
˙xi = vi, ˙vi = µiωivi − µiωirix2
i vi − ω2
i xi + ui
Single channel communication
ui = k
j∈Ni
αij(yj − yi), yi = axi + bvi
Collective behavior: Emergent Van der Pol oscillator
˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2
v − ˆw2
x
Robustness: Many good oscillators with few bad agents
ˆµˆω = 1
N
N
i=1 µiωi > 0, ˆµˆωˆr = 1
N
N
i=1 µiωiri > 0.
21 / 22
Conclusions
Summary
Non-identical agents
˙xi = vi, ˙vi = µiωivi − µiωirix2
i vi − ω2
i xi + ui
Single channel communication
ui = k
j∈Ni
αij(yj − yi), yi = axi + bvi
Collective behavior: Emergent Van der Pol oscillator
˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2
v − ˆw2
x
Robustness: Many good oscillators with few bad agents
ˆµˆω = 1
N
N
i=1 µiωi > 0, ˆµˆωˆr = 1
N
N
i=1 µiωiri > 0.
21 / 22
Conclusions
Summary
Non-identical agents
˙xi = vi, ˙vi = µiωivi − µiωirix2
i vi − ω2
i xi + ui
Single channel communication
ui = k
j∈Ni
αij(yj − yi), yi = axi + bvi
Collective behavior: Emergent Van der Pol oscillator
˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2
v − ˆw2
x
Robustness: Many good oscillators with few bad agents
ˆµˆω = 1
N
N
i=1 µiωi > 0, ˆµˆωˆr = 1
N
N
i=1 µiωiri > 0.
21 / 22
Conclusions
Summary
Non-identical agents
˙xi = vi, ˙vi = µiωivi − µiωirix2
i vi − ω2
i xi + ui
Single channel communication
ui = k
j∈Ni
αij(yj − yi), yi = axi + bvi
Collective behavior: Emergent Van der Pol oscillator
˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2
v − ˆw2
x
Robustness: Many good oscillators with few bad agents
ˆµˆω = 1
N
N
i=1 µiωi > 0, ˆµˆωˆr = 1
N
N
i=1 µiωiri > 0.
21 / 22
Conclusions
22 / 22

More Related Content

What's hot

B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
Edhole.com
 
Sturm liouville problems6
Sturm liouville problems6Sturm liouville problems6
Sturm liouville problems6
Nagu Vanamala
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
Amro Elfeki
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Amro Elfeki
 
Momentum sudut total
Momentum sudut totalMomentum sudut total
Momentum sudut total
Zulaeha Izoel Pamungkas
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Project
danielrobb
 
Universal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or ContinuousUniversal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or Continuous
Joe Suzuki
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
Krzysztof Pomorski
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Komal Goyal
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivativesmath265
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
Amro Elfeki
 
Classification Theory
Classification TheoryClassification Theory
Classification Theory
SSA KPI
 
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
inventionjournals
 

What's hot (14)

B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
 
Sturm liouville problems6
Sturm liouville problems6Sturm liouville problems6
Sturm liouville problems6
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
 
Ch[1].2
Ch[1].2Ch[1].2
Ch[1].2
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Momentum sudut total
Momentum sudut totalMomentum sudut total
Momentum sudut total
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Project
 
Universal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or ContinuousUniversal Prediction without assuming either Discrete or Continuous
Universal Prediction without assuming either Discrete or Continuous
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Classification Theory
Classification TheoryClassification Theory
Classification Theory
 
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...Analytic Solutions of an Iterative Functional Differential Equation with Dela...
Analytic Solutions of an Iterative Functional Differential Equation with Dela...
 

Similar to CDC18 Jin Gyu Lee

QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
The Statistical and Applied Mathematical Sciences Institute
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector Machine
Sumit Singh
 
Generating Chebychev Chaotic Sequence
Generating Chebychev Chaotic SequenceGenerating Chebychev Chaotic Sequence
Generating Chebychev Chaotic Sequence
Cheng-An Yang
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
slides
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
Chandan Singh
 
Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)
Osame Kinouchi
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
parth98796
 
Pydata Katya Vasilaky
Pydata Katya VasilakyPydata Katya Vasilaky
Pydata Katya Vasilaky
knv4
 
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Beniamino Murgante
 
Pres110811
Pres110811Pres110811
Pres110811shotlub
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure PredictionSumin Byeon
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
tuxette
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
Claudio Attaccalite
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkHiroshi Kuwajima
 
Unit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdfUnit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdf
Swapnil947063
 
NN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdfNN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdf
chiron1988
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
Osame Kinouchi
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
Amro Elfeki
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
The Statistical and Applied Mathematical Sciences Institute
 

Similar to CDC18 Jin Gyu Lee (20)

QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector Machine
 
Generating Chebychev Chaotic Sequence
Generating Chebychev Chaotic SequenceGenerating Chebychev Chaotic Sequence
Generating Chebychev Chaotic Sequence
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)Neuronal self-organized criticality (II)
Neuronal self-organized criticality (II)
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
Pydata Katya Vasilaky
Pydata Katya VasilakyPydata Katya Vasilaky
Pydata Katya Vasilaky
 
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
 
Pres110811
Pres110811Pres110811
Pres110811
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure Prediction
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
 
Unit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdfUnit 1 Quantum Mechanics_230924_162445.pdf
Unit 1 Quantum Mechanics_230924_162445.pdf
 
NN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdfNN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdf
 
Neuronal self-organized criticality
Neuronal self-organized criticalityNeuronal self-organized criticality
Neuronal self-organized criticality
 
G e hay's
G e hay'sG e hay's
G e hay's
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 

Recently uploaded

Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 

Recently uploaded (20)

Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 

CDC18 Jin Gyu Lee

  • 1. Heterogeneous Van der Pol oscillators under strong coupling synchronous and oscillatory behavior of the network Jin Gyu Lee and Hyungbo Shim Control & Dynamic Systems Lab. Seoul National University December 18, 2018
  • 2. Biological systems Characteristics: Non-identical cells Collective behavior, e.g., synchronization and oscillation Robustness: Many good oscillators with few bad agents Single channel communication 2 / 22
  • 3. Heterogeneous Van der Pol oscillators Internal model principle (Wieland, Wu, and Allgöwer, IEEE TAC, 2013): Heterogeneous Van der Pol oscillators cannot achieve synchronization unless they have a common internal model. Previous works Homogeneous Van der Pol oscillators Rand and Holmes, Int. J. Nonlinear Mechanics, 1980 Low, Reinhall, Storti, and Goldman, Struct. Control Health Monit., 2006 Omelchenko, Zakharova, Hövel, Siebert, and Schöll, Chaos, 2015 Heterogeneous frequency, but a common internal model exists Banning, Ph.D. dissertation, San Diego State University, 2011 3 / 22
  • 4. Problem setting Parameters Van der Pol oscillator: ¨x − µω(1 − rx2 ) ˙x + ω2 x = κu µ determines the shape of the limit cycle ω determines the period of the limit cycle r determines the size of the limit cycle Let ¯x:= √ rx and ¯κ:= √ rκ, then we get ¨¯x − µω(1 − ¯x2 ) ˙¯x + ω2 ¯x = ¯κu. 4 / 22
  • 5. Problem setting Parameters Van der Pol oscillator: ¨x − µω(1 − rx2 ) ˙x + ω2 x = κu µ determines the shape of the limit cycle ω determines the period of the limit cycle r determines the size of the limit cycle Let ¯x:= √ rx and ¯κ:= √ rκ, then we get ¨¯x − µω(1 − ¯x2 ) ˙¯x + ω2 ¯x = ¯κu. 4 / 22
  • 6. Problem setting Parameters Van der Pol oscillator: ¨x − µω(1 − rx2 ) ˙x + ω2 x = κu µ determines the shape of the limit cycle ω determines the period of the limit cycle r determines the size of the limit cycle Let ¯x:= √ rx and ¯κ:= √ rκ, then we get ¨¯x − µω(1 − ¯x2 ) ˙¯x + ω2 ¯x = ¯κu. 4 / 22
  • 7. Problem setting Parameters Van der Pol oscillator: ¨x − µω(1 − rx2 ) ˙x + ω2 x = κu µ determines the shape of the limit cycle ω determines the period of the limit cycle r determines the size of the limit cycle Let ¯x:= √ rx and ¯κ:= √ rκ, then we get ¨¯x − µω(1 − ¯x2 ) ˙¯x + ω2 ¯x = ¯κu. 4 / 22
  • 8. Problem setting Heterogeneity and Diffusive coupling Network of heterogeneous Van der Pol oscillators: ¨xi − µiωi(1 − rixi 2 ) ˙xi + ωi 2 xi = κiui, i ∈ N := {1, . . . , N}, with diffusive coupling: ui = k j∈Ni αij(δjyj − δiyi), yi = axi + b ˙xi, where the underlying graph is directed (Ni := {j ∈ N : αij > 0}). 5 / 22
  • 9. State space representation Individual dynamics: ˙xi = vi ˙vi = µiωi(1 − rix2 i )vi − ω2 i xi + κiui, i ∈ N Diffusive coupling: ui = k j∈Ni αij(δjyj − δiyi), yi = axi + bvi Approximate synchronization: lim sup t→∞ xi(t) vi(t) − xj(t) vj(t) ≤ , ∀i, j ∈ N 6 / 22
  • 10. State space representation Individual dynamics: ˙xi = vi ˙vi = µiωi(1 − rix2 i )vi − ω2 i xi + κiui, i ∈ N Diffusive coupling: ui = k j∈Ni αij(δjyj − δiyi), yi = axi + bvi Approximate synchronization: lim sup t→∞ xi(t) vi(t) − xj(t) vj(t) ≤ , ∀i, j ∈ N 6 / 22
  • 11. Simulation results Homogeneous Van der Pol oscillators 7 / 22
  • 12. Simulation results Heterogeneous Van der Pol oscillators 8 / 22
  • 13. Summary of the contents Q) When does the network approximately synchronize? A) Q) What would be the synchronized behavior? A) 9 / 22
  • 14. State space representation Individual dynamics: ˙xi = vi ˙vi = µiωi(1 − rix2 i )vi − ω2 i xi + κiui Diffusive coupling: ui = k j∈Ni αij(δjyj − δiyi), yi = axi + bvi, where the underlying graph is directed. 10 / 22
  • 15. State space representation Individual dynamics: ˙xi = vi ˙vi = µiωi(1 − rix2 i )vi − ω2 i xi + κiui Diffusive coupling: ui = k j∈Ni αij(δjyj − δiyi), yi = axi + bvi, where the underlying graph is undirected. 10 / 22
  • 16. Blended dynamics Brief introduction Analysis and synthesis of a multi-agent system, ˙xi = fi(t, xi) + kBi j∈Ni αij(xj − xi) ∈ Rn , i ∈ N, or ˙xi = fi(t, xi) + k j∈Ni αij(Cjxj − Cixi) ∈ Rn , i ∈ N, by the reduced dimensional system called blended dynamics. The behavior of the original network is characterized by the behavior of the blended dynamics. J. G. Lee and H. Shim, “A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling,” under review for Automatica, available at arXiv:1804.00638. 11 / 22
  • 17. Blended dynamics A special case Original network, 2N dimension: ˙yi = gi(t, yi, zi) ∈ R, i ∈ N, ˙zi = hi(t, yi, zi) + kb j∈Ni αij(zj − zi) ∈ R, i ∈ N, where b is a positive constant. Blended dynamics, N + 1 dimension: ˙ˆyi = gi(t, ˆyi, ˆz) ∈ R, i ∈ N, ˙ˆz = 1 N N i=1 hi(t, ˆyi, ˆz) ∈ R. J. G. Lee and H. Shim, “A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling,” under review for Automatica, available at arXiv:1804.00638. 12 / 22
  • 18. Blended dynamics Network of heterogeneous Van der Pol oscillators Consider ¯xi := xi and ¯vi := (a/b)xi + vi. Then, we obtain ˙¯xi = − a b ¯xi + ¯vi, i ∈ N, ˙¯vi = a b + µiωi(1 − ri¯x2 i ) −a b ¯xi + ¯vi − ω2 i ¯xi + kb j∈Ni αij(¯vj − ¯vi), i ∈ N. 13 / 22
  • 19. Blended dynamics Network of heterogeneous Van der Pol oscillators Blended dynamics, N + 1 dimension: ˙ˆxi = − a b ˆxi + ˆv, i ∈ N, ˙ˆv = 1 N N i=1 a b + µiωi(1 − riˆx2 i ) −a b ˆxi + ˆv − ω2 i ˆxi 13 / 22
  • 20. Blended dynamics Asymptotic behavior Blended dynamics, N + 1 dimension: ˙ˆxi = − a b ˆxi + ˆv, ⇒ lim t→∞ |ˆxi − ˆxj| = 0, ∀i, j ∈ N, ˙ˆv = 1 N N i=1 a b + µiωi(1 − riˆx2 i ) −a b ˆxi + ˆv − ω2 i ˆxi 14 / 22
  • 21. Blended dynamics Asymptotic behavior Blended dynamics, ˆxi → ˆx, 2 dimension: ˙ˆx = − a b ˆx + ˆv, ˙ˆv = 1 N N i=1 a b + µiωi(1 − riˆx2) −a b ˆx + ˆv − ω2 i ˆx = a b + 1 N N i=1 µiωi(1 − riˆx2) −a b ˆx + ˆv − 1 N N i=1 ω2 i ˆx 14 / 22
  • 22. Blended dynamics Asymptotic behavior Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain ˙x = v, ˙v = 1 N N i=1 µiωi v − 1 N N i=1 µiωiri x2 v − 1 N N i=1 ω2 i x. =: ˆµˆωv − ˆµˆωˆrx2 v − ˆω2 x. Assume 1 N N i=1 µiωi > 0, 1 N N i=1 ω2 i > 0, 1 N N i=1 µiωiri > 0. =: ˆµˆω =: ˆω2 =: ˆµˆωˆr 15 / 22
  • 23. Blended dynamics Asymptotic behavior Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain ˙x = v, ˙v = 1 N N i=1 µiωi v − 1 N N i=1 µiωiri x2 v − 1 N N i=1 ω2 i x, =: ˆµˆωv − ˆµˆωˆrx2 v − ˆω2 x. Assume 1 N N i=1 µiωi > 0, 1 N N i=1 ω2 i > 0, 1 N N i=1 µiωiri > 0. =: ˆµˆω =: ˆω2 =: ˆµˆωˆr 15 / 22
  • 24. Blended dynamics Asymptotic behavior Let x := ˆx and v := −(a/b)ˆx + ˆv. Then, we obtain ˙x = v, ˙v = 1 N N i=1 µiωi v − 1 N N i=1 µiωiri x2 v − 1 N N i=1 ω2 i x, =: ˆµˆω(1 − ˆrx2 )v − ˆω2 x. Assume 1 N N i=1 µiωi > 0, 1 N N i=1 ω2 i > 0, 1 N N i=1 µiωiri > 0. =: ˆµˆω =: ˆω2 =: ˆµˆωˆr 15 / 22
  • 25. Emergent Van der Pol oscillator Now, we obtain ˙x = v, ˙v = ˆµˆω(1 − ˆrx2 )v − ˆω2 x, which we call the emergent Van der Pol oscillator. Limit cycle of the blended dynamics: ¯Γ :=         x ... x (a/b)x + v      ∈ RN+1 : x v ∈ γ ⊂ R2    γ: Limit cycle of the emergent Van der Pol oscillator 16 / 22
  • 26. Blended dynamics has a limit cycle Theorem (Blended dynamics) Blended dynamics has a stable limit cycle if and only if the emergent Van der Pol oscillator has a stable limit cycle, i.e., 1 N N i=1 µiωi > 0, 1 N N i=1 µiωiri > 0. Moreover, the limit cycle is unique and is explicitly given as ¯Γ :=         x ... x (a/b)x + v      ∈ RN+1 : x v ∈ γ ⊂ R2    . 17 / 22
  • 27. Network of Van der Pol oscillators approximately synchronize Theorem (Network of Van der Pol oscillators) If the emergent Van der Pol oscillator has a stable limit cycle, i.e., 1 N N i=1 µiωi > 0, 1 N N i=1 µiωiri > 0, then for sufficiently large k, we have lim sup t→∞        x1 v1 ... xN vN        Γ ≤ , where Γ:=           x v ... x v        ∈ R2N : x v ∈γ ⊂R2    , from which we obtain approximate synchronization. 18 / 22
  • 28. Oscillation near the limit cycle In fact, ¯Γ :=         x ... x (a/b)x + v      ∈ RN+1 : x v ∈ γ ⊂ R2    is a periodic orbit of the blended dynamics. There is a periodic orbit near Γ:=           x v ... x v        ∈ R2N : x v ∈γ ⊂R2    . Each individual xi vi oscillates near the limit cycle γ. 19 / 22
  • 29. Oscillation near the limit cycle In fact, ¯Γ :=         x ... x (a/b)x + v      ∈ RN+1 : x v ∈ γ ⊂ R2    is a periodic orbit of the blended dynamics. There is a periodic orbit near Γ:=           x v ... x v        ∈ R2N : x v ∈γ ⊂R2    . Each individual xi vi oscillates near the limit cycle γ. 19 / 22
  • 30. Oscillation near the limit cycle In fact, ¯Γ :=         x ... x (a/b)x + v      ∈ RN+1 : x v ∈ γ ⊂ R2    is a periodic orbit of the blended dynamics. There is a periodic orbit near Γ:=           x v ... x v        ∈ R2N : x v ∈γ ⊂R2    . Each individual xi vi oscillates near the limit cycle γ. 19 / 22
  • 31. Conclusions Answering the questions Q) When does the network approximately synchronize? A) When the emergent Van der Pol oscillator has a stable limit cycle. Q) What would be the synchronized behavior? A) Oscillation near the limit cycle of the emergent Van der Pol oscillator. 20 / 22
  • 32. Conclusions Answering the questions Q) When does the network approximately synchronize? A) When the emergent Van der Pol oscillator has a stable limit cycle. Q) What would be the synchronized behavior? A) Oscillation near the limit cycle of the emergent Van der Pol oscillator. 20 / 22
  • 33. Conclusions Summary Non-identical agents ˙xi = vi, ˙vi = µiωivi − µiωirix2 i vi − ω2 i xi + ui Single channel communication ui = k j∈Ni αij(yj − yi), yi = axi + bvi Collective behavior: Emergent Van der Pol oscillator ˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2 v − ˆw2 x Robustness: Many good oscillators with few bad agents ˆµˆω = 1 N N i=1 µiωi > 0, ˆµˆωˆr = 1 N N i=1 µiωiri > 0. 21 / 22
  • 34. Conclusions Summary Non-identical agents ˙xi = vi, ˙vi = µiωivi − µiωirix2 i vi − ω2 i xi + ui Single channel communication ui = k j∈Ni αij(yj − yi), yi = axi + bvi Collective behavior: Emergent Van der Pol oscillator ˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2 v − ˆw2 x Robustness: Many good oscillators with few bad agents ˆµˆω = 1 N N i=1 µiωi > 0, ˆµˆωˆr = 1 N N i=1 µiωiri > 0. 21 / 22
  • 35. Conclusions Summary Non-identical agents ˙xi = vi, ˙vi = µiωivi − µiωirix2 i vi − ω2 i xi + ui Single channel communication ui = k j∈Ni αij(yj − yi), yi = axi + bvi Collective behavior: Emergent Van der Pol oscillator ˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2 v − ˆw2 x Robustness: Many good oscillators with few bad agents ˆµˆω = 1 N N i=1 µiωi > 0, ˆµˆωˆr = 1 N N i=1 µiωiri > 0. 21 / 22
  • 36. Conclusions Summary Non-identical agents ˙xi = vi, ˙vi = µiωivi − µiωirix2 i vi − ω2 i xi + ui Single channel communication ui = k j∈Ni αij(yj − yi), yi = axi + bvi Collective behavior: Emergent Van der Pol oscillator ˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2 v − ˆw2 x Robustness: Many good oscillators with few bad agents ˆµˆω = 1 N N i=1 µiωi > 0, ˆµˆωˆr = 1 N N i=1 µiωiri > 0. 21 / 22
  • 37. Conclusions Summary Non-identical agents ˙xi = vi, ˙vi = µiωivi − µiωirix2 i vi − ω2 i xi + ui Single channel communication ui = k j∈Ni αij(yj − yi), yi = axi + bvi Collective behavior: Emergent Van der Pol oscillator ˙x = v, ˙v = ˆµˆωv − ˆµˆωˆrx2 v − ˆw2 x Robustness: Many good oscillators with few bad agents ˆµˆω = 1 N N i=1 µiωi > 0, ˆµˆωˆr = 1 N N i=1 µiωiri > 0. 21 / 22