SlideShare a Scribd company logo
1 of 82
Download to read offline
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Regularized Estimation of Spatial Patterns
Wen-Ting Wang
June 23, 2017
Joint work with Hsin-Cheng Huang @ Academia Sinica
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Outline
1 Background: Spatial Pattern Estimation
2 Proposed Method: Spatial MCA
3 Real Data Analysis
4 Summary
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Climate Change
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Climate Change
increases the odds of extreme weather events occurring,
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Flood
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Drought
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Climate Change
affects human health and quality of life
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Drought in the East Africa
2011
10,000
People have been killed
by the worst drought in 60 years.
7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Climate Change
are associated with atmospheric dynamics
8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Atmospheric dynamics
can be studied through spatial patterns
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Rainfall
in East Africa
⇕?
Sea Surface Temperature
in the Indian Ocean
11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Coupled Spatial Patterns
12
. . . . . . . . . . . . . . . . . . . .
Outline
1 Background: Spatial Pattern Estimation
2 Proposed Method: Spatial MCA
3 Real Data Analysis
4 Summary
. . . . . . . . . . . . . . . . . . . .
Background
• Bivariate spatial processes:
{(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n
• D1, D2 ⊂ Rd
. . . . . . . . . . . . . . . . . . . .
Background
• Bivariate spatial processes:
{(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n
• D1, D2 ⊂ Rd
• Example:
• η1(s1): sea surface temperature; D1: Indian Ocean
• η2(s2): rainfall; D2: East Africa
. . . . . . . . . . . . . . . . . . . .
Background
• Bivariate spatial processes:
{(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n
• D1, D2 ⊂ Rd
• Assumption:
• η11(s1), . . . , η1n(s1): uncorrelated and mean zero
• η21(s2), . . . , η2n(s2): uncorrelated and mean zero
• common spatial covariance function:
• C11(s1, s∗
1) = cov(η1i(s1), η1i(s∗
1))
• C22(s2, s∗
2) = cov(η2i(s2), η2i(s∗
2))
• C12(s1, s2) = cov(η1i(s1), η2i(s2))
. . . . . . . . . . . . . . . . . . . .
Background
• Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2
•
Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1
•
Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2
• ϵℓij ∼ (0, σ2
ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2
• i = 1, . . . , n
. . . . . . . . . . . . . . . . . . . .
Background
• Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2
•
Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1
•
Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2
• ϵℓij ∼ (0, σ2
ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2
• i = 1, . . . , n
• Example:
. . . . . . . . . . . . . . . . . . . .
Background
• Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2
•
Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1
•
Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2
• ϵℓij ∼ (0, σ2
ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2
• i = 1, . . . , n
• Example:
• Y1(s1): observed sea surface temperature (red dot)
• Y2(s2): observed rainfall (blue dot)
. . . . . . . . . . . . . . . . . . . .
Aim
• Find dominant coupled patterns between η1i(·) and η2i(·)
• to study how variations of η1i(·) affect η2i(·)
. . . . . . . . . . . . . . . . . . . .
Rank-K Cross-Covariance Model
• D1, D2 ⊂ Rd: continuous domain
• Azaïez and Belgacem (2015),
C12(s1, s2) = cov(η1i(s1), η2i(s2)) =
∞∑
k=1
dkuk(s1)vk(s2)
• nonnegative singular values: d1 ≥ d2 ≥ · · ·
• {uk(·)} and {vk(·)}: sets of orthonormal basis functions
• similar to the Karhunen-Loéve expansion
. . . . . . . . . . . . . . . . . . . .
Rank-K Cross-Covariance Model
• D1, D2 ⊂ Rd: continuous domain
• Azaïez and Belgacem (2015),
C12(s1, s2) = cov(η1i(s1), η2i(s2)) =
∞∑
k=1
dkuk(s1)vk(s2)
• nonnegative singular values: d1 ≥ d2 ≥ · · ·
• {uk(·)} and {vk(·)}: sets of orthonormal basis functions
• similar to the Karhunen-Loéve expansion
• Assume dK+1 = 0.
• (u1(·), v1(·)), . . . , (uK(·), vK(·)): K dominant coupled patterns
. . . . . . . . . . . . . . . . . . . .
Goal
• Find (u1(·), v1(·)), . . . , (uK(·), vK(·)) as K coupled patterns
. . . . . . . . . . . . . . . . . . . .
Goal
• Find (u1(·), v1(·)), . . . , (uK(·), vK(·)) as K coupled patterns
• Common approach: maximum covariance analysis (MCA)
. . . . . . . . . . . . . . . . . . . .
Bivariate Data Vector
•
(
Y1i
Y2i
)
=
(
η1i
η2i
)
+
(
ϵ1i
ϵ2i
)
; i = 1, . . . , n
•
(
Y1i
Y2i
)
=
(
(Y1i(s11), . . . , Y1i(s1p1 ))′
(Y2i(s21), . . . , Y2i(s2p2 ))′
)
•
(
η1i
η2i
)
=
(
(η1i(s11), . . . , η1i(s1p1 ))′
(η2i(s21), . . . , η2i(s2p2 ))′
)
•
(
ϵ1i
ϵ2i
)
=
(
(ϵ1i1, . . . , ϵ1ip1 )′
(ϵ2i1, . . . , ϵ2ip2 )′
)
• Assume p1 ≥ p2
. . . . . . . . . . . . . . . . . . . .
Maximum Covariance Analysis (MCA)
• Bivariate data vector
(
Y1i
Y2i
)
i.i.d.
∼
((
0
0
)
,
(
Σ11 Σ12
Σ21 Σ22
))
• Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i)
• Idea: find u ∈ Rp1 and v ∈ Rp2 , with ∥u∥2 = ∥v∥2 = 1, which
maximize
d = cov(u′
Y1i, v′
Y2i) = u′
Σ12v
. . . . . . . . . . . . . . . . . . . .
Maximum Covariance Analysis (MCA)
• Bivariate data vector
(
Y1i
Y2i
)
i.i.d.
∼
((
0
0
)
,
(
Σ11 Σ12
Σ21 Σ22
))
• Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i)
• Singular value decomposition (SVD):
Σ12 = UDV ′
• Singular values: DK×K = diag(d1, . . . , dK ); d1 ≥ · · · ≥ dK > 0
• Left singular vectors: Up1×K = {u1, . . . , uK }
• Right singular vectors:Vp2×K = {v1, . . . , vK }
. . . . . . . . . . . . . . . . . . . .
Maximum Covariance Analysis (MCA)
• Bivariate data vector
(
Y1i
Y2i
)
i.i.d.
∼
((
0
0
)
,
(
Σ11 Σ12
Σ21 Σ22
))
• Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i)
• Singular value decomposition (SVD):
Σ12 = UDV ′
• Singular values: DK×K = diag(d1, . . . , dK ); d1 ≥ · · · ≥ dK > 0
• Left singular vectors: Up1×K = {u1, . . . , uK }
• Right singular vectors:Vp2×K = {v1, . . . , vK }
• Coupled pattern: (u1, v1), . . . , (uK, vK)
. . . . . . . . . . . . . . . . . . . .
Sample Maximum Covariance Analysis
• Bivariate data matrix: (Y1, Y2)
• Y1 = (Y11, . . . , Y1n)′
; Y2 = (Y21, . . . , Y2n)′
• Sample cross-covariance matrix: S12 = Y ′
1 Y2/n
• Singular value decomposition (SVD):
S12 = ˜U ˜D ˜V ′
• ˜Dp1×p1 = diag( ˜d1 . . . ˜dp2 ); ˜d1 ≥ · · · ≥ ˜dp1 ≥ 0
• ˜Up1×p2 = {˜u1, . . . , ˜up2 }
• ˜Vp1×p1 = {˜v1, . . . , ˜vp1 }
• (˜u1, ˜v1), . . . , (˜uK, ˜vK): estimates of (u1, v1), . . . , (uK, vK)
. . . . . . . . . . . . . . . . . . . .
Sample Maximum Covariance Analysis
• Bivariate data matrix: (Y1, Y2)
• Y1 = (Y11, . . . , Y1n)′
; Y2 = (Y21, . . . , Y2n)′
• Sample cross-covariance matrix: S12 = Y ′
1 Y2/n
• Singular value decomposition (SVD):
S12 = ˜U ˜D ˜V ′
• ˜Dp1×p1 = diag( ˜d1 . . . ˜dp2 ); ˜d1 ≥ · · · ≥ ˜dp1 ≥ 0
• ˜Up1×p2 = {˜u1, . . . , ˜up2 }
• ˜Vp1×p1 = {˜v1, . . . , ˜vp1 }
• (˜u1, ˜v1), . . . , (˜uK, ˜vK): estimates of (u1, v1), . . . , (uK, vK)
• Problem:
• high estimation variability: n small, p1 or p2 large
• noisy patterns → low interpretation
• without a spatial structure of (u, v)
. . . . . . . . . . . . . . . . . . . .
Example:
u~(s1) v~(s2)
MCA
−1.0 −0.5 0.0 0.5 1.0
. . . . . . . . . . . . . . . . . . . .
Example:
u(s1) v(s2)
TRUE
u~(s1) v~(s2)
MCA
−1.0 −0.5 0.0 0.5 1.0
. . . . . . . . . . . . . . . . . . . .
Motivation
To enhance the interpretability, we implement MCA by incorporating
. . . . . . . . . . . . . . . . . . . .
Motivation
To enhance the interpretability, we implement MCA by incorporating
1 spatial structure of (uk(·), vk(·))
. . . . . . . . . . . . . . . . . . . .
Motivation
To enhance the interpretability, we implement MCA by incorporating
1 spatial structure of (uk(·), vk(·))
2 spatial localized patterns of (uk(·), vk(·))
. . . . . . . . . . . . . . . . . . . .
Motivation
To enhance the interpretability, we implement MCA by incorporating
1 spatial structure of (uk(·), vk(·))
2 spatial localized patterns of (uk(·), vk(·))
retain that orthogonal constraints for (u, v).
. . . . . . . . . . . . . . . . . . . .
Outline
1 Background: Spatial Pattern Estimation
2 Proposed Method: Spatial MCA
3 Real Data Analysis
4 Summary
. . . . . . . . . . . . . . . . . . . .
Quick Recap
• Data: Yℓi = (Yℓi(sℓ1), . . . , Yℓi(sℓpℓ
))′, i = 1, . . . , n
•
Yℓi(sℓj) = ηℓi(sℓj) + ϵℓij; j = 1, . . . , pℓ
• ϵℓij ∼ (0, σ2
ℓ )
• ϵℓij: uncorrelated with ηℓ(·)
• ℓ = 1, 2
. . . . . . . . . . . . . . . . . . . .
Quick Recap
• Data: Yℓi = (Yℓi(sℓ1), . . . , Yℓi(sℓpℓ
))′, i = 1, . . . , n
•
Yℓi(sℓj) = ηℓi(sℓj) + ϵℓij; j = 1, . . . , pℓ
• ϵℓij ∼ (0, σ2
ℓ )
• ϵℓij: uncorrelated with ηℓ(·)
• ℓ = 1, 2
• Spatial cross-covariance function:
C12(s1, s2) = cov(η1i(s1), η2i(s2)) =
K∑
k=1
dkuk(s1)vk(s2)
• d1 ≥ · · · ≥ dK ≥ 0
• u1(·), . . . , uK (·): K unknown orthonormal functions
• v1(·), . . . , vK (·): K unknown orthonormal functions
. . . . . . . . . . . . . . . . . . . .
MCA (alternative version)
• Sample cross-covariance matrix: S12 = Y ′
1 Y2/n
• MCA: perform SVD of S12
. . . . . . . . . . . . . . . . . . . .
MCA (alternative version)
• Sample cross-covariance matrix: S12 = Y ′
1 Y2/n
• MCA: perform SVD of S12
• Alternative method:
( ˜U, ˜V ) = arg max
U,V
tr(U′
S12V ),
subject to U′U = V ′V = IK
• Up1×K = (u1, . . . , uK ) with ujk = uk(s1j)
• Vp2×K = (v1, . . . , vK ) with vjk = vk(s2j)
. . . . . . . . . . . . . . . . . . . .
Regularized MCA
• Sample cross-covariance matrix: S12 = X′Y /n
• Up1×K = (u1, . . . , uK) with ujk = uk(s1j)
• Vp2×K = (v1, . . . , vK) with vjk = vk(s2j)
• Objective function:
tr(U′
S12V )
subject to U′U = V ′V = IK
. . . . . . . . . . . . . . . . . . . .
Regularized MCA
• Sample cross-covariance matrix: S12 = X′Y /n
• Up1×K = (u1, . . . , uK) with ujk = uk(s1j)
• Vp2×K = (v1, . . . , vK) with vjk = vk(s2j)
• Objective function:
tr(U′
S12V ) −
K∑
k=1
{
τ1uJ(uk)+τ2u
p1∑
j=1
|uk(s1j)| + τ1vJ(vk)+τ2v
p2∑
j=1
|vk(s2j)|
}
subject to U′U = V ′V = IK
. . . . . . . . . . . . . . . . . . . .
Regularized MCA
• Sample cross-covariance matrix: S12 = X′Y /n
• Up1×K = (u1, . . . , uK) with ujk = uk(s1j)
• Vp2×K = (v1, . . . , vK) with vjk = vk(s2j)
• Objective function:
tr(U′
S12V ) −
K∑
k=1
{
τ1uJ(uk)+τ2u
p1∑
j=1
|uk(s1j)| + τ1vJ(vk)+τ2v
p2∑
j=1
|vk(s2j)|
}
subject to U′U = V ′V = IK
• J(uk(·)) =
∑
z1+···+zd=2
∫
Rd
(
∂2
uk(s)
∂xz1
1 . . . ∂x
zd
d
)2
ds
• s = (x1, . . . , xd)′
• τ1u, τ1v: smoothness parameter
• τ2u, τ2v: sparseness parameter
. . . . . . . . . . . . . . . . . . . .
Spatial MCA (SpatMCA)
• J(uk(·)) = u′
kΩ1uk, J(vk(·)) = v′
kΩ2vk
• Ω1 ≻ 0: determined only by s11, . . . , s1p1
• Ω2 ≻ 0: determined only by s21, . . . , s2p2
• Green and Silverman (1994)
. . . . . . . . . . . . . . . . . . . .
Spatial MCA (SpatMCA)
• J(uk(·)) = u′
kΩ1uk, J(vk(·)) = v′
kΩ2vk
• Ω1 ≻ 0: determined only by s11, . . . , s1p1
• Ω2 ≻ 0: determined only by s21, . . . , s2p2
• Green and Silverman (1994)
• SpatMCA: ( ˆU, ˆV ) maximizes:
tr(U′S12V )−
K∑
k=1
{
τ1uu′
kΩ1uk+τ2u
p1∑
j=1
|ujk| + τ1vv′
kΩ2vk+τ2v
p2∑
j=1
|vjk|
}
subject to U′U = V ′V = IK
. . . . . . . . . . . . . . . . . . . .
Spatial MCA (SpatMCA)
• J(uk(·)) = u′
kΩ1uk, J(vk(·)) = v′
kΩ2vk
• Ω1 ≻ 0: determined only by s11, . . . , s1p1
• Ω2 ≻ 0: determined only by s21, . . . , s2p2
• Green and Silverman (1994)
• SpatMCA: ( ˆU, ˆV ) maximizes:
tr(U′S12V )−
K∑
k=1
{
τ1uu′
kΩ1uk+τ2u
p1∑
j=1
|ujk| + τ1vv′
kΩ2vk+τ2v
p2∑
j=1
|vjk|
}
subject to U′U = V ′V = IK
• As τ1u = τ1v = τ2u = τ2v = 0, ( ˆU, ˆV ) = ( ˜U, ˜V ) (sample MCA )
. . . . . . . . . . . . . . . . . . . .
SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·))
• (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)) maximize
tr(U′
S12V ) −
K∑
k=1
{
τ1uJ(uk)+τ2u
p1∑
j=1
|uk(s1j)| + τ1vJ(vk)+τ2v
p2∑
j=1
|vk(s2j)|
}
,
subject to U′
U = V ′
V = IK
. . . . . . . . . . . . . . . . . . . .
SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·))
• (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)): smoothing spline
. . . . . . . . . . . . . . . . . . . .
SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·))
• (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)): smoothing spline
•
ˆuk(s1) =
p1∑
i=1
a1ig(∥s1 − s1i∥) + b10 +
d∑
j=1
b1jx1j
ˆvk(s2) =
p2∑
i=1
a2ig(∥s2 − s2i∥) + b20 +
d∑
j=1
b2jx2j
• s1 = (x11, . . . , x1d)′
; s2 = (x21, . . . , x2d)′
• g(r) =



1
16π
r2
log r; if d = 2,
Γ(d/2 − 2)
16πd/2
r4−d
; if d = 1, 3,
• a1 = (a11, . . . , a1p1 )′
and b1 = (b10, b11, . . . , b1d)′
based on ˆuk
• a2 = (a21, . . . , a2p2 )′
and b2 = (b20, b21, . . . , b2d)′
based on ˆvk
. . . . . . . . . . . . . . . . . . . .
Why roughness and Lasso penalties?
. . . . . . . . . . . . . . . . . . . .
2D Example
u(s1) v(s2)
TRUE
u~(s1) v~(s2)
MCA
−1.0 −0.5 0.0 0.5 1.0
. . . . . . . . . . . . . . . . . . . .
Case 1: Fix τ2u = τ2v = 0 (only smoothness)
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= 0τ1 u = τ1 v =
. . . . . . . . . . . . . . . . . . . .
Case 1:Fix τ2u = τ2v = 0 (only smoothness)
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= 0τ1 u = τ1 v =
. . . . . . . . . . . . . . . . . . . .
Case 2: Fix τ1u = τ1v = 0 (only sparseness)
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= 0τ2 u = τ2 v =
. . . . . . . . . . . . . . . . . . . .
Case 2: Fix τ1u = τ1v = 0 (only sparseness)
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= 0τ2 u = τ2 v =
. . . . . . . . . . . . . . . . . . . .
Case 3: Fix τ1u = τ1v = τ2u = τ2v
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= = 0τ1 u = τ1 v = τ2 u = τ2 v =
. . . . . . . . . . . . . . . . . . . .
Case 3: Fix τ1u = τ1v = τ2u = τ2v
u(s1) v(s2)
TRUE
−1.0 −0.5 0.0 0.5 1.0
u^(s1) v^(s2)
= = 0τ1 u = τ1 v = τ2 u = τ2 v =
. . . . . . . . . . . . . . . . . . . .
Estimation of D
Given the SpatMCA estimate ( ˆU, ˆV ),
ˆD = arg min
d1,...,dK ≥0
∥S12 − ˆUD ˆV ′
∥2
F = diag( ˆd1, . . . , ˆdK)
• ˆdk = min(ˆu′
kS12ˆvk, 0)
. . . . . . . . . . . . . . . . . . . .
Selection of (τ1u, τ2u, τ1v, τ2v)
• The proposed CV criterion is
CV(τ1u, τ2u, τ1v, τ2v)
=
1
M
M∑
m=1
∥S
(m)
12 − ˆU(−m)
τ1u,τ2u
ˆD(−m)
τ1u,τ2u,τ1v,τ2v
( ˆV (−m)
τ1v,τ2v
)′
∥2
F
• Partition {(Y11, Y21), . . . , (Y1n, Y2n)} into M parts with equal size nM
• S
(m)
12 = (Y
(m)
1 )′
Y
(m)
2 /nM based on the m-th part data (Y
(m)
1 , Y
(m)
2 )
• ˆU
(−m)
τ1,τ2 , ˆV
(−m)
τ1,τ2 , ˆD
(−m)
τ1u,τ2u,τ1v,τ2v : based on (Y
(−m)
1 , Y
(−m)
2 )
• (Y
(−m)
1 , Y
(−m)
2 ): remaining data, i.e., Y1, Y2 excluding (Y
(m)
1 , Y
(m)
2 )
. . . . . . . . . . . . . . . . . . . .
Selection of (τ1u, τ2u, τ1v, τ2v)
• The proposed CV criterion is
CV(τ1u, τ2u, τ1v, τ2v)
=
1
M
M∑
m=1
∥S
(m)
12 − ˆU(−m)
τ1u,τ2u
ˆD(−m)
τ1u,τ2u,τ1v,τ2v
( ˆV (−m)
τ1v,τ2v
)′
∥2
F
• Partition {(Y11, Y21), . . . , (Y1n, Y2n)} into M parts with equal size nM
• S
(m)
12 = (Y
(m)
1 )′
Y
(m)
2 /nM based on the m-th part data (Y
(m)
1 , Y
(m)
2 )
• ˆU
(−m)
τ1,τ2 , ˆV
(−m)
τ1,τ2 , ˆD
(−m)
τ1u,τ2u,τ1v,τ2v : based on (Y
(−m)
1 , Y
(−m)
2 )
• (Y
(−m)
1 , Y
(−m)
2 ): remaining data, i.e., Y1, Y2 excluding (Y
(m)
1 , Y
(m)
2 )
• (τ1u, τ2u, τ1v, τ2v): selected by minimizing CV(τ1u, τ2u, τ1v, τ2v)
. . . . . . . . . . . . . . . . . . . .
Selection of (τ1u, τ2u, τ1v, τ2v)
• High computation cost to select {τ1u, τ2u, τ1v, τ2v} simultaneously
. . . . . . . . . . . . . . . . . . . .
Selection of (τ1u, τ2u, τ1v, τ2v)
• High computation cost to select {τ1u, τ2u, τ1v, τ2v} simultaneously
• Two-step procedure:
1 Select smoothness parameters τ1u and τ1v:
(ˆτ1u, ˆτ1v) = arg min
{τ1u,τ1v}⊂[0,∞)2
CV(τ1u, 0, τ1v, 0),
2 Select sparseness parameters τ2u and τ2v:
(ˆτ2u, ˆτ2v) = arg min
{τ2u,τ2v}⊂[0,∞)2
CV(ˆτ1u, τ2u, ˆτ1v, τ2v).
. . . . . . . . . . . . . . . . . . . .
Example (1D): 5-fold CV
u(·)
−0.40.00.4
MCA SpatMCA Smooth (only) Sparse (only)
v(·)
−0.40.00.4
MCA SpatMCA Smooth (only) Sparse (only)
. . . . . . . . . . . . . . . . . . . .
Outline
1 Background: Spatial Pattern Estimation
2 Proposed Method: Spatial MCA
3 Real Data Analysis
4 Summary
. . . . . . . . . . . . . . . . . . . .
Sea Surface Temperature vs. Rainfall
• Bivariate data:
• Sea surface temperature (SST):
• Region: Indian Ocean
• Number of grids: p1 = 3, 591 (resolution: 1◦
× 1◦
)
– Rainfall:
• Region: East African
• Number of grids: p2 = 255 (resolution: 5◦
× 5◦
)
• Time period (monthly average): Jan. 2011- Dec. 2015 → n = 60
• Remove monthly mean for each grid
. . . . . . . . . . . . . . . . . . . .
Sea Surface Temperature vs. Rainfall
• Bivariate data:
• Sea surface temperature (SST):
• Region: Indian Ocean
• Number of grids: p1 = 3, 591 (resolution: 1◦
× 1◦
)
– Rainfall:
• Region: East African
• Number of grids: p2 = 255 (resolution: 5◦
× 5◦
)
• Time period (monthly average): Jan. 2011- Dec. 2015 → n = 60
• Remove monthly mean for each grid
• Goal: find coupled patterns of the SST and rainfall data
• Reference: Omondi et al. (2013)
. . . . . . . . . . . . . . . . . . . .
Real Data Analysis
• Randomly decompose the data into two parts with 30 time points
• Training data
• Validation data
• SpatMCA: based on 5-fold CV
. . . . . . . . . . . . . . . . . . . .
Result: CV vs. K
2 4 6 8 10
107108109110111112
K
CV
MCA SpatMCA
• ˆK = 1 for MCA and SpatMCA
. . . . . . . . . . . . . . . . . . . .
Result: 1st Coupled Pattern of SpatMCA
. . . . . . . . . . . . . . . . . . . .
Result: 1st Coupled Pattern of SpatMCA
. . . . . . . . . . . . . . . . . . . .
Result: 1st Coupled Pattern of SpatMCA
. . . . . . . . . . . . . . . . . . . .
Result: 1st Coupled Pattern of MCA
. . . . . . . . . . . . . . . . . . . .
Result: 1st Maximum Covariance Variables
• 1st maximum covariance variables: {ˆu′
1Y1i} ; {ˆv′
1Y2i}
. . . . . . . . . . . . . . . . . . . .
Result: 1st Maximum Covariance Variables
• 1st maximum covariance variables: {ˆu′
1Y1i} ; {ˆv′
1Y2i}
MCA SpatMCA
• Pearson’s correlation: 0.6 for MCA and SpatMCA
. . . . . . . . . . . . . . . . . . . .
Result: Average Squared Error (ASE)
• ASE = 1
p1p2
∥Sv
12 − ˆUK
ˆDK
ˆV ′
K∥2
F
• Sv
12: sample cross-covariance matrix based on validation data
• Result:
2 4 6 8 10
0.00220.00260.00300.0034
K
ASE
MCA SpatMCA
. . . . . . . . . . . . . . . . . . . .
Outline
1 Background: Spatial Pattern Estimation
2 Proposed Method: Spatial MCA
3 Real Data Analysis
4 Summary
. . . . . . . . . . . . . . . . . . . .
Summary
SpatMCA:
• high-dimensional structure → low-dimensional structure
• with the roughness and Lasso penalties
• enhance physical interpretation, e.g., spatial localized patterns
. . . . . . . . . . . . . . . . . . . .
Summary
SpatMCA:
• high-dimensional structure → low-dimensional structure
• with the roughness and Lasso penalties
• enhance physical interpretation, e.g., spatial localized patterns
• can cope with irregular spaced locations
. . . . . . . . . . . . . . . . . . . .
GitHub: egpivo/SpatMCA
. . . . . . . . . . . . . . . . . . . .
Thanks for your attention!

More Related Content

What's hot

数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解くYoshihiro Mizoguchi
 
Introduction to neural networks
Introduction to neural networks Introduction to neural networks
Introduction to neural networks Ahmad Hammoudeh
 
Generarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsGenerarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsAlexander Decker
 
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...Patrick Diehl
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Framesandreslahe
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsLeo Asselborn
 
Top School in delhi
Top School in delhiTop School in delhi
Top School in delhiEdhole.com
 
Different kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceDifferent kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceKhulna University
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersNigel Simmons
 
Finite Element Formulation for Dynamics of a Moving Plate
Finite Element Formulation for Dynamics of a Moving PlateFinite Element Formulation for Dynamics of a Moving Plate
Finite Element Formulation for Dynamics of a Moving PlateKrishnanChathadi
 
Solutions manual for fundamentals of business math canadian 3rd edition by je...
Solutions manual for fundamentals of business math canadian 3rd edition by je...Solutions manual for fundamentals of business math canadian 3rd edition by je...
Solutions manual for fundamentals of business math canadian 3rd edition by je...Pollockker
 
Menghitung Bilangan Binner
Menghitung Bilangan BinnerMenghitung Bilangan Binner
Menghitung Bilangan BinnerFahrul Ilhami
 
Datamining 6th svm
Datamining 6th svmDatamining 6th svm
Datamining 6th svmsesejun
 
NeuralArt 電腦作畫
NeuralArt 電腦作畫NeuralArt 電腦作畫
NeuralArt 電腦作畫Mark Chang
 
Neural Art (English Version)
Neural Art (English Version)Neural Art (English Version)
Neural Art (English Version)Mark Chang
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svmsesejun
 
Top school in India
Top school in IndiaTop school in India
Top school in IndiaEdhole.com
 

What's hot (20)

数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
 
Introduction to neural networks
Introduction to neural networks Introduction to neural networks
Introduction to neural networks
 
Generarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsGenerarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphs
 
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic T...
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance Constraints
 
Ch02s
Ch02sCh02s
Ch02s
 
Top School in delhi
Top School in delhiTop School in delhi
Top School in delhi
 
Different kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceDifferent kind of distance and Statistical Distance
Different kind of distance and Statistical Distance
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & Washers
 
Finite Element Formulation for Dynamics of a Moving Plate
Finite Element Formulation for Dynamics of a Moving PlateFinite Element Formulation for Dynamics of a Moving Plate
Finite Element Formulation for Dynamics of a Moving Plate
 
Solutions manual for fundamentals of business math canadian 3rd edition by je...
Solutions manual for fundamentals of business math canadian 3rd edition by je...Solutions manual for fundamentals of business math canadian 3rd edition by je...
Solutions manual for fundamentals of business math canadian 3rd edition by je...
 
Menghitung Bilangan Binner
Menghitung Bilangan BinnerMenghitung Bilangan Binner
Menghitung Bilangan Binner
 
Datamining 6th svm
Datamining 6th svmDatamining 6th svm
Datamining 6th svm
 
NeuralArt 電腦作畫
NeuralArt 電腦作畫NeuralArt 電腦作畫
NeuralArt 電腦作畫
 
Neural Art (English Version)
Neural Art (English Version)Neural Art (English Version)
Neural Art (English Version)
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svm
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
Interpolasi
InterpolasiInterpolasi
Interpolasi
 
Top school in India
Top school in IndiaTop school in India
Top school in India
 

Similar to Regularized Estimation of Spatial Patterns

Slides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsSlides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsFrank Nielsen
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) Charles Deledalle
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Amro Elfeki
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Quantum factorization.pdf
Quantum factorization.pdfQuantum factorization.pdf
Quantum factorization.pdfssuser8b461f
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Leo Asselborn
 
Introduction to complex networks
Introduction to complex networksIntroduction to complex networks
Introduction to complex networksVincent Traag
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise solNielsy Quiroga
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applicationsFrank Nielsen
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motionJa-Keoung Koo
 
Student manual
Student manualStudent manual
Student manualec931657
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure PredictionSumin Byeon
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 

Similar to Regularized Estimation of Spatial Patterns (20)

Slides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histogramsSlides: Jeffreys centroids for a set of weighted histograms
Slides: Jeffreys centroids for a set of weighted histograms
 
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
cheb_conf_aksenov.pdf
cheb_conf_aksenov.pdfcheb_conf_aksenov.pdf
cheb_conf_aksenov.pdf
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Quantum factorization.pdf
Quantum factorization.pdfQuantum factorization.pdf
Quantum factorization.pdf
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Teknik Simulasi
Teknik SimulasiTeknik Simulasi
Teknik Simulasi
 
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
Robust Control of Uncertain Switched Linear Systems based on Stochastic Reach...
 
Introduction to complex networks
Introduction to complex networksIntroduction to complex networks
Introduction to complex networks
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
 
Information-theoretic clustering with applications
Information-theoretic clustering  with applicationsInformation-theoretic clustering  with applications
Information-theoretic clustering with applications
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
Student manual
Student manualStudent manual
Student manual
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
RNA Secondary Structure Prediction
RNA Secondary Structure PredictionRNA Secondary Structure Prediction
RNA Secondary Structure Prediction
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 

Recently uploaded

{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...Pooja Nehwal
 
Digi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxDigi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxTanveerAhmed817946
 
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...Suhani Kapoor
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxJohnnyPlasten
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSAishani27
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubaihf8803863
 
Aminabad Call Girl Agent 9548273370 , Call Girls Service Lucknow
Aminabad Call Girl Agent 9548273370 , Call Girls Service LucknowAminabad Call Girl Agent 9548273370 , Call Girls Service Lucknow
Aminabad Call Girl Agent 9548273370 , Call Girls Service Lucknowmakika9823
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Callshivangimorya083
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...shivangimorya083
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptSonatrach
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Delhi Call girls
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改atducpo
 

Recently uploaded (20)

{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
 
Digi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxDigi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptx
 
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptx
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICS
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
 
Aminabad Call Girl Agent 9548273370 , Call Girls Service Lucknow
Aminabad Call Girl Agent 9548273370 , Call Girls Service LucknowAminabad Call Girl Agent 9548273370 , Call Girls Service Lucknow
Aminabad Call Girl Agent 9548273370 , Call Girls Service Lucknow
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
Full night 🥵 Call Girls Delhi New Friends Colony {9711199171} Sanya Reddy ✌️o...
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
 

Regularized Estimation of Spatial Patterns

  • 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regularized Estimation of Spatial Patterns Wen-Ting Wang June 23, 2017 Joint work with Hsin-Cheng Huang @ Academia Sinica 1
  • 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outline 1 Background: Spatial Pattern Estimation 2 Proposed Method: Spatial MCA 3 Real Data Analysis 4 Summary 2
  • 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drought in the East Africa 2011 10,000 People have been killed by the worst drought in 60 years. 7
  • 14. . . . . . . . . . . . . . . . . . . . . Outline 1 Background: Spatial Pattern Estimation 2 Proposed Method: Spatial MCA 3 Real Data Analysis 4 Summary
  • 15. . . . . . . . . . . . . . . . . . . . . Background • Bivariate spatial processes: {(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n • D1, D2 ⊂ Rd
  • 16. . . . . . . . . . . . . . . . . . . . . Background • Bivariate spatial processes: {(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n • D1, D2 ⊂ Rd • Example: • η1(s1): sea surface temperature; D1: Indian Ocean • η2(s2): rainfall; D2: East Africa
  • 17. . . . . . . . . . . . . . . . . . . . . Background • Bivariate spatial processes: {(η1i(s1), η2i(s2)) : s1 ∈ D1, s2 ∈ D2}; i = 1, . . . , n • D1, D2 ⊂ Rd • Assumption: • η11(s1), . . . , η1n(s1): uncorrelated and mean zero • η21(s2), . . . , η2n(s2): uncorrelated and mean zero • common spatial covariance function: • C11(s1, s∗ 1) = cov(η1i(s1), η1i(s∗ 1)) • C22(s2, s∗ 2) = cov(η2i(s2), η2i(s∗ 2)) • C12(s1, s2) = cov(η1i(s1), η2i(s2))
  • 18. . . . . . . . . . . . . . . . . . . . . Background • Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2 • Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1 • Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2 • ϵℓij ∼ (0, σ2 ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2 • i = 1, . . . , n
  • 19. . . . . . . . . . . . . . . . . . . . . Background • Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2 • Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1 • Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2 • ϵℓij ∼ (0, σ2 ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2 • i = 1, . . . , n • Example:
  • 20. . . . . . . . . . . . . . . . . . . . . Background • Data at locations s11, . . . , s1p1 ∈ D1 and s21, . . . , s2p2 ∈ D2 • Y1i(s1j) = η1i(s1j) + ϵ1ij; j = 1, . . . , p1 • Y2i(s2j) = η2i(s2j) + ϵ2ij; j = 1, . . . , p2 • ϵℓij ∼ (0, σ2 ℓ ), uncorrelated with ηℓ(·), ℓ = 1, 2 • i = 1, . . . , n • Example: • Y1(s1): observed sea surface temperature (red dot) • Y2(s2): observed rainfall (blue dot)
  • 21. . . . . . . . . . . . . . . . . . . . . Aim • Find dominant coupled patterns between η1i(·) and η2i(·) • to study how variations of η1i(·) affect η2i(·)
  • 22. . . . . . . . . . . . . . . . . . . . . Rank-K Cross-Covariance Model • D1, D2 ⊂ Rd: continuous domain • Azaïez and Belgacem (2015), C12(s1, s2) = cov(η1i(s1), η2i(s2)) = ∞∑ k=1 dkuk(s1)vk(s2) • nonnegative singular values: d1 ≥ d2 ≥ · · · • {uk(·)} and {vk(·)}: sets of orthonormal basis functions • similar to the Karhunen-Loéve expansion
  • 23. . . . . . . . . . . . . . . . . . . . . Rank-K Cross-Covariance Model • D1, D2 ⊂ Rd: continuous domain • Azaïez and Belgacem (2015), C12(s1, s2) = cov(η1i(s1), η2i(s2)) = ∞∑ k=1 dkuk(s1)vk(s2) • nonnegative singular values: d1 ≥ d2 ≥ · · · • {uk(·)} and {vk(·)}: sets of orthonormal basis functions • similar to the Karhunen-Loéve expansion • Assume dK+1 = 0. • (u1(·), v1(·)), . . . , (uK(·), vK(·)): K dominant coupled patterns
  • 24. . . . . . . . . . . . . . . . . . . . . Goal • Find (u1(·), v1(·)), . . . , (uK(·), vK(·)) as K coupled patterns
  • 25. . . . . . . . . . . . . . . . . . . . . Goal • Find (u1(·), v1(·)), . . . , (uK(·), vK(·)) as K coupled patterns • Common approach: maximum covariance analysis (MCA)
  • 26. . . . . . . . . . . . . . . . . . . . . Bivariate Data Vector • ( Y1i Y2i ) = ( η1i η2i ) + ( ϵ1i ϵ2i ) ; i = 1, . . . , n • ( Y1i Y2i ) = ( (Y1i(s11), . . . , Y1i(s1p1 ))′ (Y2i(s21), . . . , Y2i(s2p2 ))′ ) • ( η1i η2i ) = ( (η1i(s11), . . . , η1i(s1p1 ))′ (η2i(s21), . . . , η2i(s2p2 ))′ ) • ( ϵ1i ϵ2i ) = ( (ϵ1i1, . . . , ϵ1ip1 )′ (ϵ2i1, . . . , ϵ2ip2 )′ ) • Assume p1 ≥ p2
  • 27. . . . . . . . . . . . . . . . . . . . . Maximum Covariance Analysis (MCA) • Bivariate data vector ( Y1i Y2i ) i.i.d. ∼ (( 0 0 ) , ( Σ11 Σ12 Σ21 Σ22 )) • Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i) • Idea: find u ∈ Rp1 and v ∈ Rp2 , with ∥u∥2 = ∥v∥2 = 1, which maximize d = cov(u′ Y1i, v′ Y2i) = u′ Σ12v
  • 28. . . . . . . . . . . . . . . . . . . . . Maximum Covariance Analysis (MCA) • Bivariate data vector ( Y1i Y2i ) i.i.d. ∼ (( 0 0 ) , ( Σ11 Σ12 Σ21 Σ22 )) • Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i) • Singular value decomposition (SVD): Σ12 = UDV ′ • Singular values: DK×K = diag(d1, . . . , dK ); d1 ≥ · · · ≥ dK > 0 • Left singular vectors: Up1×K = {u1, . . . , uK } • Right singular vectors:Vp2×K = {v1, . . . , vK }
  • 29. . . . . . . . . . . . . . . . . . . . . Maximum Covariance Analysis (MCA) • Bivariate data vector ( Y1i Y2i ) i.i.d. ∼ (( 0 0 ) , ( Σ11 Σ12 Σ21 Σ22 )) • Σ12 = cov(Y1i, Y2i) = cov(η1i, η2i) • Singular value decomposition (SVD): Σ12 = UDV ′ • Singular values: DK×K = diag(d1, . . . , dK ); d1 ≥ · · · ≥ dK > 0 • Left singular vectors: Up1×K = {u1, . . . , uK } • Right singular vectors:Vp2×K = {v1, . . . , vK } • Coupled pattern: (u1, v1), . . . , (uK, vK)
  • 30. . . . . . . . . . . . . . . . . . . . . Sample Maximum Covariance Analysis • Bivariate data matrix: (Y1, Y2) • Y1 = (Y11, . . . , Y1n)′ ; Y2 = (Y21, . . . , Y2n)′ • Sample cross-covariance matrix: S12 = Y ′ 1 Y2/n • Singular value decomposition (SVD): S12 = ˜U ˜D ˜V ′ • ˜Dp1×p1 = diag( ˜d1 . . . ˜dp2 ); ˜d1 ≥ · · · ≥ ˜dp1 ≥ 0 • ˜Up1×p2 = {˜u1, . . . , ˜up2 } • ˜Vp1×p1 = {˜v1, . . . , ˜vp1 } • (˜u1, ˜v1), . . . , (˜uK, ˜vK): estimates of (u1, v1), . . . , (uK, vK)
  • 31. . . . . . . . . . . . . . . . . . . . . Sample Maximum Covariance Analysis • Bivariate data matrix: (Y1, Y2) • Y1 = (Y11, . . . , Y1n)′ ; Y2 = (Y21, . . . , Y2n)′ • Sample cross-covariance matrix: S12 = Y ′ 1 Y2/n • Singular value decomposition (SVD): S12 = ˜U ˜D ˜V ′ • ˜Dp1×p1 = diag( ˜d1 . . . ˜dp2 ); ˜d1 ≥ · · · ≥ ˜dp1 ≥ 0 • ˜Up1×p2 = {˜u1, . . . , ˜up2 } • ˜Vp1×p1 = {˜v1, . . . , ˜vp1 } • (˜u1, ˜v1), . . . , (˜uK, ˜vK): estimates of (u1, v1), . . . , (uK, vK) • Problem: • high estimation variability: n small, p1 or p2 large • noisy patterns → low interpretation • without a spatial structure of (u, v)
  • 32. . . . . . . . . . . . . . . . . . . . . Example: u~(s1) v~(s2) MCA −1.0 −0.5 0.0 0.5 1.0
  • 33. . . . . . . . . . . . . . . . . . . . . Example: u(s1) v(s2) TRUE u~(s1) v~(s2) MCA −1.0 −0.5 0.0 0.5 1.0
  • 34. . . . . . . . . . . . . . . . . . . . . Motivation To enhance the interpretability, we implement MCA by incorporating
  • 35. . . . . . . . . . . . . . . . . . . . . Motivation To enhance the interpretability, we implement MCA by incorporating 1 spatial structure of (uk(·), vk(·))
  • 36. . . . . . . . . . . . . . . . . . . . . Motivation To enhance the interpretability, we implement MCA by incorporating 1 spatial structure of (uk(·), vk(·)) 2 spatial localized patterns of (uk(·), vk(·))
  • 37. . . . . . . . . . . . . . . . . . . . . Motivation To enhance the interpretability, we implement MCA by incorporating 1 spatial structure of (uk(·), vk(·)) 2 spatial localized patterns of (uk(·), vk(·)) retain that orthogonal constraints for (u, v).
  • 38. . . . . . . . . . . . . . . . . . . . . Outline 1 Background: Spatial Pattern Estimation 2 Proposed Method: Spatial MCA 3 Real Data Analysis 4 Summary
  • 39. . . . . . . . . . . . . . . . . . . . . Quick Recap • Data: Yℓi = (Yℓi(sℓ1), . . . , Yℓi(sℓpℓ ))′, i = 1, . . . , n • Yℓi(sℓj) = ηℓi(sℓj) + ϵℓij; j = 1, . . . , pℓ • ϵℓij ∼ (0, σ2 ℓ ) • ϵℓij: uncorrelated with ηℓ(·) • ℓ = 1, 2
  • 40. . . . . . . . . . . . . . . . . . . . . Quick Recap • Data: Yℓi = (Yℓi(sℓ1), . . . , Yℓi(sℓpℓ ))′, i = 1, . . . , n • Yℓi(sℓj) = ηℓi(sℓj) + ϵℓij; j = 1, . . . , pℓ • ϵℓij ∼ (0, σ2 ℓ ) • ϵℓij: uncorrelated with ηℓ(·) • ℓ = 1, 2 • Spatial cross-covariance function: C12(s1, s2) = cov(η1i(s1), η2i(s2)) = K∑ k=1 dkuk(s1)vk(s2) • d1 ≥ · · · ≥ dK ≥ 0 • u1(·), . . . , uK (·): K unknown orthonormal functions • v1(·), . . . , vK (·): K unknown orthonormal functions
  • 41. . . . . . . . . . . . . . . . . . . . . MCA (alternative version) • Sample cross-covariance matrix: S12 = Y ′ 1 Y2/n • MCA: perform SVD of S12
  • 42. . . . . . . . . . . . . . . . . . . . . MCA (alternative version) • Sample cross-covariance matrix: S12 = Y ′ 1 Y2/n • MCA: perform SVD of S12 • Alternative method: ( ˜U, ˜V ) = arg max U,V tr(U′ S12V ), subject to U′U = V ′V = IK • Up1×K = (u1, . . . , uK ) with ujk = uk(s1j) • Vp2×K = (v1, . . . , vK ) with vjk = vk(s2j)
  • 43. . . . . . . . . . . . . . . . . . . . . Regularized MCA • Sample cross-covariance matrix: S12 = X′Y /n • Up1×K = (u1, . . . , uK) with ujk = uk(s1j) • Vp2×K = (v1, . . . , vK) with vjk = vk(s2j) • Objective function: tr(U′ S12V ) subject to U′U = V ′V = IK
  • 44. . . . . . . . . . . . . . . . . . . . . Regularized MCA • Sample cross-covariance matrix: S12 = X′Y /n • Up1×K = (u1, . . . , uK) with ujk = uk(s1j) • Vp2×K = (v1, . . . , vK) with vjk = vk(s2j) • Objective function: tr(U′ S12V ) − K∑ k=1 { τ1uJ(uk)+τ2u p1∑ j=1 |uk(s1j)| + τ1vJ(vk)+τ2v p2∑ j=1 |vk(s2j)| } subject to U′U = V ′V = IK
  • 45. . . . . . . . . . . . . . . . . . . . . Regularized MCA • Sample cross-covariance matrix: S12 = X′Y /n • Up1×K = (u1, . . . , uK) with ujk = uk(s1j) • Vp2×K = (v1, . . . , vK) with vjk = vk(s2j) • Objective function: tr(U′ S12V ) − K∑ k=1 { τ1uJ(uk)+τ2u p1∑ j=1 |uk(s1j)| + τ1vJ(vk)+τ2v p2∑ j=1 |vk(s2j)| } subject to U′U = V ′V = IK • J(uk(·)) = ∑ z1+···+zd=2 ∫ Rd ( ∂2 uk(s) ∂xz1 1 . . . ∂x zd d )2 ds • s = (x1, . . . , xd)′ • τ1u, τ1v: smoothness parameter • τ2u, τ2v: sparseness parameter
  • 46. . . . . . . . . . . . . . . . . . . . . Spatial MCA (SpatMCA) • J(uk(·)) = u′ kΩ1uk, J(vk(·)) = v′ kΩ2vk • Ω1 ≻ 0: determined only by s11, . . . , s1p1 • Ω2 ≻ 0: determined only by s21, . . . , s2p2 • Green and Silverman (1994)
  • 47. . . . . . . . . . . . . . . . . . . . . Spatial MCA (SpatMCA) • J(uk(·)) = u′ kΩ1uk, J(vk(·)) = v′ kΩ2vk • Ω1 ≻ 0: determined only by s11, . . . , s1p1 • Ω2 ≻ 0: determined only by s21, . . . , s2p2 • Green and Silverman (1994) • SpatMCA: ( ˆU, ˆV ) maximizes: tr(U′S12V )− K∑ k=1 { τ1uu′ kΩ1uk+τ2u p1∑ j=1 |ujk| + τ1vv′ kΩ2vk+τ2v p2∑ j=1 |vjk| } subject to U′U = V ′V = IK
  • 48. . . . . . . . . . . . . . . . . . . . . Spatial MCA (SpatMCA) • J(uk(·)) = u′ kΩ1uk, J(vk(·)) = v′ kΩ2vk • Ω1 ≻ 0: determined only by s11, . . . , s1p1 • Ω2 ≻ 0: determined only by s21, . . . , s2p2 • Green and Silverman (1994) • SpatMCA: ( ˆU, ˆV ) maximizes: tr(U′S12V )− K∑ k=1 { τ1uu′ kΩ1uk+τ2u p1∑ j=1 |ujk| + τ1vv′ kΩ2vk+τ2v p2∑ j=1 |vjk| } subject to U′U = V ′V = IK • As τ1u = τ1v = τ2u = τ2v = 0, ( ˆU, ˆV ) = ( ˜U, ˜V ) (sample MCA )
  • 49. . . . . . . . . . . . . . . . . . . . . SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)) • (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)) maximize tr(U′ S12V ) − K∑ k=1 { τ1uJ(uk)+τ2u p1∑ j=1 |uk(s1j)| + τ1vJ(vk)+τ2v p2∑ j=1 |vk(s2j)| } , subject to U′ U = V ′ V = IK
  • 50. . . . . . . . . . . . . . . . . . . . . SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)) • (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)): smoothing spline
  • 51. . . . . . . . . . . . . . . . . . . . . SpatMCA: (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)) • (ˆu1(·), ˆv1(·)), . . . , (ˆuK(·), ˆvK(·)): smoothing spline • ˆuk(s1) = p1∑ i=1 a1ig(∥s1 − s1i∥) + b10 + d∑ j=1 b1jx1j ˆvk(s2) = p2∑ i=1 a2ig(∥s2 − s2i∥) + b20 + d∑ j=1 b2jx2j • s1 = (x11, . . . , x1d)′ ; s2 = (x21, . . . , x2d)′ • g(r) =    1 16π r2 log r; if d = 2, Γ(d/2 − 2) 16πd/2 r4−d ; if d = 1, 3, • a1 = (a11, . . . , a1p1 )′ and b1 = (b10, b11, . . . , b1d)′ based on ˆuk • a2 = (a21, . . . , a2p2 )′ and b2 = (b20, b21, . . . , b2d)′ based on ˆvk
  • 52. . . . . . . . . . . . . . . . . . . . . Why roughness and Lasso penalties?
  • 53. . . . . . . . . . . . . . . . . . . . . 2D Example u(s1) v(s2) TRUE u~(s1) v~(s2) MCA −1.0 −0.5 0.0 0.5 1.0
  • 54. . . . . . . . . . . . . . . . . . . . . Case 1: Fix τ2u = τ2v = 0 (only smoothness) u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = 0τ1 u = τ1 v =
  • 55. . . . . . . . . . . . . . . . . . . . . Case 1:Fix τ2u = τ2v = 0 (only smoothness) u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = 0τ1 u = τ1 v =
  • 56. . . . . . . . . . . . . . . . . . . . . Case 2: Fix τ1u = τ1v = 0 (only sparseness) u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = 0τ2 u = τ2 v =
  • 57. . . . . . . . . . . . . . . . . . . . . Case 2: Fix τ1u = τ1v = 0 (only sparseness) u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = 0τ2 u = τ2 v =
  • 58. . . . . . . . . . . . . . . . . . . . . Case 3: Fix τ1u = τ1v = τ2u = τ2v u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = = 0τ1 u = τ1 v = τ2 u = τ2 v =
  • 59. . . . . . . . . . . . . . . . . . . . . Case 3: Fix τ1u = τ1v = τ2u = τ2v u(s1) v(s2) TRUE −1.0 −0.5 0.0 0.5 1.0 u^(s1) v^(s2) = = 0τ1 u = τ1 v = τ2 u = τ2 v =
  • 60. . . . . . . . . . . . . . . . . . . . . Estimation of D Given the SpatMCA estimate ( ˆU, ˆV ), ˆD = arg min d1,...,dK ≥0 ∥S12 − ˆUD ˆV ′ ∥2 F = diag( ˆd1, . . . , ˆdK) • ˆdk = min(ˆu′ kS12ˆvk, 0)
  • 61. . . . . . . . . . . . . . . . . . . . . Selection of (τ1u, τ2u, τ1v, τ2v) • The proposed CV criterion is CV(τ1u, τ2u, τ1v, τ2v) = 1 M M∑ m=1 ∥S (m) 12 − ˆU(−m) τ1u,τ2u ˆD(−m) τ1u,τ2u,τ1v,τ2v ( ˆV (−m) τ1v,τ2v )′ ∥2 F • Partition {(Y11, Y21), . . . , (Y1n, Y2n)} into M parts with equal size nM • S (m) 12 = (Y (m) 1 )′ Y (m) 2 /nM based on the m-th part data (Y (m) 1 , Y (m) 2 ) • ˆU (−m) τ1,τ2 , ˆV (−m) τ1,τ2 , ˆD (−m) τ1u,τ2u,τ1v,τ2v : based on (Y (−m) 1 , Y (−m) 2 ) • (Y (−m) 1 , Y (−m) 2 ): remaining data, i.e., Y1, Y2 excluding (Y (m) 1 , Y (m) 2 )
  • 62. . . . . . . . . . . . . . . . . . . . . Selection of (τ1u, τ2u, τ1v, τ2v) • The proposed CV criterion is CV(τ1u, τ2u, τ1v, τ2v) = 1 M M∑ m=1 ∥S (m) 12 − ˆU(−m) τ1u,τ2u ˆD(−m) τ1u,τ2u,τ1v,τ2v ( ˆV (−m) τ1v,τ2v )′ ∥2 F • Partition {(Y11, Y21), . . . , (Y1n, Y2n)} into M parts with equal size nM • S (m) 12 = (Y (m) 1 )′ Y (m) 2 /nM based on the m-th part data (Y (m) 1 , Y (m) 2 ) • ˆU (−m) τ1,τ2 , ˆV (−m) τ1,τ2 , ˆD (−m) τ1u,τ2u,τ1v,τ2v : based on (Y (−m) 1 , Y (−m) 2 ) • (Y (−m) 1 , Y (−m) 2 ): remaining data, i.e., Y1, Y2 excluding (Y (m) 1 , Y (m) 2 ) • (τ1u, τ2u, τ1v, τ2v): selected by minimizing CV(τ1u, τ2u, τ1v, τ2v)
  • 63. . . . . . . . . . . . . . . . . . . . . Selection of (τ1u, τ2u, τ1v, τ2v) • High computation cost to select {τ1u, τ2u, τ1v, τ2v} simultaneously
  • 64. . . . . . . . . . . . . . . . . . . . . Selection of (τ1u, τ2u, τ1v, τ2v) • High computation cost to select {τ1u, τ2u, τ1v, τ2v} simultaneously • Two-step procedure: 1 Select smoothness parameters τ1u and τ1v: (ˆτ1u, ˆτ1v) = arg min {τ1u,τ1v}⊂[0,∞)2 CV(τ1u, 0, τ1v, 0), 2 Select sparseness parameters τ2u and τ2v: (ˆτ2u, ˆτ2v) = arg min {τ2u,τ2v}⊂[0,∞)2 CV(ˆτ1u, τ2u, ˆτ1v, τ2v).
  • 65. . . . . . . . . . . . . . . . . . . . . Example (1D): 5-fold CV u(·) −0.40.00.4 MCA SpatMCA Smooth (only) Sparse (only) v(·) −0.40.00.4 MCA SpatMCA Smooth (only) Sparse (only)
  • 66. . . . . . . . . . . . . . . . . . . . . Outline 1 Background: Spatial Pattern Estimation 2 Proposed Method: Spatial MCA 3 Real Data Analysis 4 Summary
  • 67. . . . . . . . . . . . . . . . . . . . . Sea Surface Temperature vs. Rainfall • Bivariate data: • Sea surface temperature (SST): • Region: Indian Ocean • Number of grids: p1 = 3, 591 (resolution: 1◦ × 1◦ ) – Rainfall: • Region: East African • Number of grids: p2 = 255 (resolution: 5◦ × 5◦ ) • Time period (monthly average): Jan. 2011- Dec. 2015 → n = 60 • Remove monthly mean for each grid
  • 68. . . . . . . . . . . . . . . . . . . . . Sea Surface Temperature vs. Rainfall • Bivariate data: • Sea surface temperature (SST): • Region: Indian Ocean • Number of grids: p1 = 3, 591 (resolution: 1◦ × 1◦ ) – Rainfall: • Region: East African • Number of grids: p2 = 255 (resolution: 5◦ × 5◦ ) • Time period (monthly average): Jan. 2011- Dec. 2015 → n = 60 • Remove monthly mean for each grid • Goal: find coupled patterns of the SST and rainfall data • Reference: Omondi et al. (2013)
  • 69. . . . . . . . . . . . . . . . . . . . . Real Data Analysis • Randomly decompose the data into two parts with 30 time points • Training data • Validation data • SpatMCA: based on 5-fold CV
  • 70. . . . . . . . . . . . . . . . . . . . . Result: CV vs. K 2 4 6 8 10 107108109110111112 K CV MCA SpatMCA • ˆK = 1 for MCA and SpatMCA
  • 71. . . . . . . . . . . . . . . . . . . . . Result: 1st Coupled Pattern of SpatMCA
  • 72. . . . . . . . . . . . . . . . . . . . . Result: 1st Coupled Pattern of SpatMCA
  • 73. . . . . . . . . . . . . . . . . . . . . Result: 1st Coupled Pattern of SpatMCA
  • 74. . . . . . . . . . . . . . . . . . . . . Result: 1st Coupled Pattern of MCA
  • 75. . . . . . . . . . . . . . . . . . . . . Result: 1st Maximum Covariance Variables • 1st maximum covariance variables: {ˆu′ 1Y1i} ; {ˆv′ 1Y2i}
  • 76. . . . . . . . . . . . . . . . . . . . . Result: 1st Maximum Covariance Variables • 1st maximum covariance variables: {ˆu′ 1Y1i} ; {ˆv′ 1Y2i} MCA SpatMCA • Pearson’s correlation: 0.6 for MCA and SpatMCA
  • 77. . . . . . . . . . . . . . . . . . . . . Result: Average Squared Error (ASE) • ASE = 1 p1p2 ∥Sv 12 − ˆUK ˆDK ˆV ′ K∥2 F • Sv 12: sample cross-covariance matrix based on validation data • Result: 2 4 6 8 10 0.00220.00260.00300.0034 K ASE MCA SpatMCA
  • 78. . . . . . . . . . . . . . . . . . . . . Outline 1 Background: Spatial Pattern Estimation 2 Proposed Method: Spatial MCA 3 Real Data Analysis 4 Summary
  • 79. . . . . . . . . . . . . . . . . . . . . Summary SpatMCA: • high-dimensional structure → low-dimensional structure • with the roughness and Lasso penalties • enhance physical interpretation, e.g., spatial localized patterns
  • 80. . . . . . . . . . . . . . . . . . . . . Summary SpatMCA: • high-dimensional structure → low-dimensional structure • with the roughness and Lasso penalties • enhance physical interpretation, e.g., spatial localized patterns • can cope with irregular spaced locations
  • 81. . . . . . . . . . . . . . . . . . . . . GitHub: egpivo/SpatMCA
  • 82. . . . . . . . . . . . . . . . . . . . . Thanks for your attention!