SlideShare a Scribd company logo
1 of 196
EL CARBONO,
COMPONENTE ESENCIAL
DE LAS CÉLULAS
Mauricio moreno
bogota
2016
Importancia del carbono
El Carbono permea todo el mundo viviente
— desde la organización estructural de
las células, pasando por los
requerimientos energéticos, hasta la
conservación de la información genética.
El carbono es un condicionamiento para
la existencia de la biosfera.
Compuestos orgánicos
El Hidrógeno y otros elementos se unen
covalentemente al carbono para formar
en los seres vivos:
Carbohidratos
Lipidos
Proteínas
Acidos nucleicos
El átomo de carbono
En su último nivel
posee cuatro
electrones;
pudiendo tener 8.
Cada átomo de
carbono puede
unirse máximo con
cuatro elementos
compartiendo un par
de electrones.
Los átomos de carbono se
pueden unir formando
cadenas lineales, ramificadas
o anillos.
La principal característica es
su capacidad de unirse
con otros átomos de
carbono y de otros
elementos y formar
millones de compuestos.
Glucosa
DIFERENTES MODELOS DE
LAMOLECULA DE HEMOGLONINA
Ball-and-stick model Space-filling model
Ribbon model
•Configuración electrónica del carbono
7
ORBITALES “S”
ORBITALES “P”
•Clasificación de orbitales híbridos:
•Orbitales hibridos sp
•Orbitales hibridos sp2
•Orbitales híbridos sp3
ORBITAL HÍBRIDO sp3
•Cuando se mezcla un orbital “s” con tres
orbitales “p”, de la misma subcapa se
forman 4 orbitales híbridos “sp3
“ (ese pe
tres(.
ORBITALES HIBRIDOS
13
El átomo de carbono
METANO: LA SUSTANCIA
ORGÁNICA MÁS SIMPLE.
Structural formula
Ball-and-stick
model
Space-filling
model
HH
H
H
C
ORBITAL HÍBRIDO sp2
Siempre que se mezcla cierto número de
orbitales atómicos se obtiene el mismo
número de orbitales híbridos. Cada uno de
éstos es equivalente a los demás pero
apuntan en dirección distinta. Cuando se
mezclan un orbital “s” con dos orbitales “p,
se forman 3 orbitales híbridos “sp2
“.
ORBITALES HIBRIDOS
19
Orbital Híbrido “ sp“
•Esta hibridación ocurre cuando se
mezcla el orbital “s” y uno de los
orbitales “p”, para generar dos nuevos
orbitales: Ejemplo BeF2
ORBITALES HIBRIDOS
23
GRUPOS FUNCIONALES
Son átomos o grupos de átomos que se unen
covalentemente a una cadena carbonada dandole
diferentes propiedades.
-CH3 Grupo metilo
Grupo Hidroxilo- OH
Grupo Amino- NH3
+
Grupo Carboxilo- COOH
Grupo Fosfato- PO3
-
Grupo Sulfhidrilo- SH
25
26
HIDROCARBUROS
HIDROCARBUROS
ALIFATICOS
ALCANOS
ETENO
ACETILENO
AROMATICOS
AROMATICOS
ALCOHOLES
ALCOHOLES
ALDEHIDOS Y CETONAS
ACIDOS CARBOXILICOS
ACIDOS CARBOXILICOS
ACILOS
ESTERES
ETERES
AMINAS
AMIDAS
FENOLES
NITRILOS
POLIFUNCIONALES
CARBOHIDRATOS
LIPIDOS
NUCLEOTIDOS
74
Hidrocarburos
• Compuestos de carbono e hidrogeno.
• Saturados (alcanos) los elementos
unidos al carbono lo hacen a través de
un enlace simple.
• Formula general
[CnH2n+2]
H C
H
H
C
H
H
H
75
• Insaturados: Contienen enlaces
carbono-carbono de tipo multiple
(doble o triple)
H C
H
H
C
H
C
H
H
76
Alcanos: hidrocarburos saturados
• Hidrocarburos saturados, CnH2n+2
– “Saturados” porque ellos no pueden unir
más átomos de hidrogeno.
77
Alcanos: hidrocarburos saturados
• Hidrocarburos son moleculas compuestas de carbono
e hidrogeno.
– Cada carbono forma cuatro enlaces químicos.
– Un hidrocarburo saturado solo contiene enlaces sencillos
C – C y sus moléculas contienen el máximo número de átomos
de H.
– Los hidrocarburos saturados son llamados ALCANOS
78
Metano es una molécula tetraedrica
79
Estructura de Lewis para el etano.
80
81
Propano
82
Butano
83
Los 10 “Normales” Alcanos
NameName FormulaFormula M.P.M.P. B.P.B.P. # Structural Isomers# Structural Isomers
• Methane CH4 -183 -162 1
• Ethane C2H6 -172 -89 1
• Propane C3H8 -187 -42 1
• Butane C4H10 -138 0 2
• Pentane C5H12 -130 36 3
• Hexane C6H14 -95 68 5
• Heptane C7H16 -91 98 9
• Octane C8H18 -57 126 18
• Nonane C9H20 -54 151 35
• Decane C10H22 -30 174 75
C1 - C4 are GasesC1 - C4 are Gases
at Room Temperatureat Room Temperature
C5 - C16 are LiquidsC5 - C16 are Liquids
at Room Temperatureat Room Temperature
84
Reglas de la IUPAC para nombrar alcanos
• Nombrar la cadena principalNombrar la cadena principal
• Numerar los átomos de carbono de la cadenaNumerar los átomos de carbono de la cadena
principal empezando por el más cercano a lasprincipal empezando por el más cercano a las
ramificacionesramificaciones
• Nombrar las ramificaciones con la teminación ilo,Nombrar las ramificaciones con la teminación ilo,
ejemplo metilo, etilo, propilo etc.ejemplo metilo, etilo, propilo etc.
• Cuando hay más de una ramificación nombrarlas en
orden alfabetico
• Finalmente usar prefijosprefijos para indicar multiples
ramificaciones.
85
Reglas de la IUPAC para nombrar
alcanos
1. Para alcanos después del butano,
agregar-ano a la raíz griega del
número de átomos de carbonos de la
cadena más larga .
C-C-C-C-C-C : hexano
2. Sustituyentes alquilo: cambiar-ano
por -ilo.
-C2H5 es el etilo.
86
87
Reglas de la IUPAC para nombrar alcanos
3.La posición de los sutituyentes se
especifica con la numeración.
C
|
C-C-C-C-C-C
3-metil-hexano
Empezar desde el extremo más cercano
a la numeración.
4. Nombrar los sutituyentes en orden
alfabetico y usando los prefijos di-, tri-
etc.
88
89
Isomeros estructurales
• Isomeros: moléculas que
tienen la misma formula
molecular, pero diferente
formula estructural CH3
CH2
CH2
CH2
CH3
CH3
CH2
CH
CH3
CH3
n-pentano, C5H12
2-metilbutano, C5H12
90
Ejemplo : 2,2-dimetilpentano2,2-dimetilpentano
heptanoheptano
CH3
1
C
CH23
CH2
4
CH35
CH3
CH3
91
Ejemplo:
3-etil-2,4-dimetilheptano3-etil-2,4-dimetilheptano
3-etil-5-metiloctano
CH3
CH
CH
CH
CH2
CH2
CH3
CH2
CH3
CH3
CH3
92
Reacciones de los alcanos
• Reacciones de combustion
2C4H10 + 13 O2 8CO2 + 10 H2O
Reacciones de sustituciónReacciones de sustitución
CHCl Cl CCl HCl
h
3 2 4+ +
ν
CH4 + Cl2 CH3Cl + HCl
CH3Cl + Cl2 CH2Cl2 + HCl
CH2Cl2 + Cl2 CH Cl3 + HCl
93
Reacciones de deshidrogenaciónReacciones de deshidrogenación
CH3CH3 CH2 CH2 + H2
Etileno
94
Ciclo alcanosCiclo alcanos
• Formación de anillos, CnH2n
CH3
CH2
CH3 CH2
C
H2
CH2
n-propane
C3H8
cyclopropane
C3H6
60° bond angle
unstable!!
109.5° bond angle
95
Ciclohexano –conformaciones de silla y
bote
• El Ciclohexano no es una molécula plana.
• El bote y la silla (99%) son dos conformaciones
96
Alquenos y alquinos
Alquenos: hidrocarburos que contienen
dobles enlaces carbono-carbono. [CnH2n]
C=C Eteno
C−C=C propeno
Alquinos: hidrocarburos que contienen u
triple enlace carbono-carbono. [CnH2n-2]
C ≡C Etino
C−C−C≡C−C 2-pentino
97
Nomenclatura para los Alquenos
1.La cadena principal debe contener el
doble enlace, al nombarla debe
terminar en -eno
C2H4; CH2=CH2 eteno
2. Cuando hay más de tres carbonos, el
doble enlace se indica con el númerocon el número
más bajo del carbono del enlacemás bajo del carbono del enlace
C=C−C−C 1-buteno
98
Isomeros de los Alquenos:
Cis y Trans
El doble enlace no permite los giros
alrededor del mismo.
CH3 CH3 CH3
CH = CH CH = CH
cis trans CH3
99
Reacciones de adición
100
Hidrogenación
H H H H
Ni
H–C=C–H + H2 H–C–C–H
H H
eteno etano
CHCH33-CH-CH33
101
Halogenacion
H H H H
Ni
H–C=C–H + Cl2 H–C–C–H
Cl Cl
eteno dicloroetano
102
Reacciones de Halogenación
CH2 CHCH2CH2CH2 + Br2
CH2Br CHBrCH2CH2CH2
1,2-dibromopentano
1-penteno
103
Alquinos, CnH2n–2
Triple enlace Carbono-carbono
Nombres terminados en -ino
HC≡CH etino(acetileno)
HC≡C-CH3 propino
104
105
1 2 3 4
CH2=CHCH2CH3 1-buteno
CH3CH=CHCH3 2-buteno
CH3CH≡CHCH3 2-butino
106
Preguntas
Cuál es el nombre de los siguientes compuestos:
A. CH3CH2C≡CCH3
CH3
B. CH3C=CHCH3
2-pentino
2-metil-2-buteno
107
Preguntas
c.
CH3CH2C CCHCH2CH3
CH2
CH3
1 2 3 4 5 6 7
5-etil-3-heptino
108
Hidrocarburos aromaticos
• Ciclos que contienen enlaces
sencillos y dobles alternados.
– Se llaman “aromaticos” (por el aroma
que generan).
– La presencia de la alternacia de
enlaces sencilos y dobles le confiere
propiedades particulares como
participar en reacciones de sustitución
y no de adición.
109
Estructuras de Lewis para el benceno
110
Benzene C6H6
sp2
sp2sp2
111
Shorthand notation for benzene rings
112
The bonding in the benzene ring is a
combination of different Lewis structures.
113
REACCIONES DE
SUSTITUCION DEL BENCENO
114
115
116
Nomenclatura de los derivados del benceno
117
Sistemas Aromaticos más complejos
118
Halogenuros de alquilo
Son alcanos en los cuales un hidrogeno ha
sido reemplazado por un halogeno(F, Cl, Br,
or I)
CH3Br bromometano
Br
CH3CH2CHCH3 2-bromobutano
Cl
clorociclobutano
119
Nomenclatura
bromociclopentano
1,3-diclorociclohexano
Br
Cl
Cl
1 2
3
120
Nomenclatura
El nombre del siguiente compuesto es:
Cl CH3
CH3CH2CHCH2CHCH3
1) 2,4-dimetilhexano
2) 4-cloro-5-metilhexano
3) 4-cloro-2-metilhexano
121
Alcoholes: R–OH
• El grupo hidroxilo –OH hace al alcohol polar
y puede formar puentes de hidrogenopuentes de hidrogeno. LoLo
hace soluble en aguahace soluble en agua
• El Etanol es producto de la fermentacion
yeastC6H12O6
Glucosa
2CH3CH2OH
Etanol + 2 CO2
CO + 2H2O CH3OH
Metanol
• El metanol es producto de la hidrogenacion
industrial del monoxido de carbono
122
Usos de los alcoholes
• Metanol es usado para la síntesis de
adhesivos, fibras, plasticos y combustble
para motor.
• El metanol es toxico para los humanos y
puede causar ceguera y muerte.
• El Etanol se le adiciona a la gasolina para
formar gasohol. Es usado como solvente.
• Producción comercial del etanol:
CH2=CH2 + H2O CH3CH2OH
123
Clases de alcoholes
R CH2OH Primary alchol
CHOH
R'
R
Secondary alcohol
CR'
R
R"
OH
Tertiary alcohol
Los alcoholes se pueden clasificar de acuerdo al
numero de carbonos unidos al carbono dondenumero de carbonos unidos al carbono donde esta
el grupo –OH.
124
Nombrando los Alcoholes
En la IUPAC la terminación ano del alcano
es reemplazada por -ol.
CH4 metano
CH3OH metanol (alcohol metilico)
CH3CH3 etano
CH3CH2OH etanol (alcohol etilico)
125
OH
Phenol
(Aromatic alcohol)
126
CH3CH2CH2OH 1-propanol
OH
CH3CHCH3 2-propanol
CH3 OH
CH3CHCH2CH2CHCH3 5-metil-2-hexanol5 2
127
OH
CH3CHCH3
2-propanol (alcohol isopropilico)
HO-CH2-CH2-OH
1,2-etanodiol1,2-etanodiol (etilenglicol)
OH
glicerol HO-CH2-CH-CH2OH
128
A. OH
CH3CHCHCH2CH3
CH3
OH
B.
3-metil-2-pentanol
Ciclobutanol
129
Reacciones de los alcoholes
Combustion
CH3OH + 2O2 CO2 + 2H2O + Energía
Deshidratacion
H OH
calor
H-C-C-H H-C=C-H + H2O
H H H H
alcohol alqueno
130
Ethers
• Contain an -O--O- between two carbon groups
• Simple ethers named from -yl names-yl names of the
attached groups and addingadding etherether.
CH3-O-CH3 dimethyl ether
CH3-O-CH2CH3 ethyl methyl ether
131
Aldehydes and Ketones
In an aldehyde, an H atomH atom is attached to a
carbonyl group
O carbonyl group

CH3-C-H
In a ketone, two carbon groupstwo carbon groups are attached to
a carbonyl group
O carbonyl group

CH3-C-CH3
132
Naming Aldehydes
IUPAC Replace the -e in the alkane name -al
Common Add aldehyde to the prefixes form
(1C), acet (2C), propion(3), and butry(4C)
O O O
  
H-C-H CH3-C-H CH3CH2C-H
methanal ethanal propanal
(formaldehyde) (acetaldehyde) (propionaldehyde)
methane
ethane propane
133
Aldehydes as Flavorings
CH
O
CH
O
HO
OCH3
CH=CH CH
O
Benzaldehyde Vanillin Cinnamaldehyde
(almonds) (vanilla beans) (cinnamon)
134
Naming Ketones
In the IUPAC name, the -e in the alkane name is
replaced with -one
In the common name, add the word ketone
after naming the alkyl groups attached to the
carbonyl group
O O
 
CH3 -C-CH3 CH3-C-CH2-CH3
Propanone 2-Butanone
(Dimethyl ketone) (Ethyl methyl ketone)
O
Cyclohexanone
Acetone
propane butane
cyclohexane
135
Preparation of aldehydes and Ketones
They are produced by oxidation of alcohols:
CH3CH2OH
Oxidation
CH3CHCH3
OH
Oxidation
CH3CCH3
O
CH3C
O
H
acetaldehyde
acetone
Primary alcohol
Secondary alcohol
ethanal
propanone
136
Question
Classify each as an aldehyde (1), ketone (2)
or neither(3).
O

A. CH3CH2CCH3 B. CH3-O-CH3
CH3 O

C. CH3-C-CH2CH D.
CH3
O
137
Solution
Classify each as an aldehyde (1), ketone (2)
or neither(3).
O

A. CH3CH2CCH3 2 B. CH3-O-CH3 3
CH3 O

C. CH3-C-CH2CH 1 D. 2
CH3
O
138
Question
Name the following
O

A. CH3CH2CCH3 B.
CH3 O

C. CH3-C-CH2CH
CH3
O
139
Solution
O

A. CH3CH2CCH3 B.
2-butanone (ethyl methyl ketone)
CH3 O

C. CH3-C-CH2CH
cyclohexanone
CH3
2,2-dimethylbutanal
O
140
Question
Draw the structural formulas for each:
A. 3-Methylpentanal
B. 2,3-Dichloropropanal
C. 3-Methyl-2-butanone
141
Solution
Draw the structural formulas for each:
CH3 O

A. 3-Methylpentanal CH3CH2CHCH2CH
Br O

B. 2,3-Dibromopropanal Br-CH2CHCH
O

C. 3-Methyl-2-butanone CH3CHCCH3
142
Carboxylic Acids and Esters
Carboxyl Group
Carboxylic acids contain the carboxyl group
as carbon 1.
O
R ||
CH3 —C—OH : CH3—COOH
carboxyl group
143
Naming Carboxylic Acids
Formula IUPAC Common
alkan -oic acid prefix – ic acid
HCOOH methanoic acid formic acid
CH3COOH ethanoic acid acetic acid
CH3CH2COOH propanoic acid propionic acid
CH3CH2CH2COOH butanoic acid butyric acid
144
Naming Rule for Carboxylic acids
• Identify longest chain
• (IUPAC) Number carboxyl carbon as 1carboxyl carbon as 1
CH3
|
CH3 —CH—CH2 —COOH
IUPAC 3-methylbutanoic acid
1234
145
Question
Give IUPAC name:
A. CH3COOH
CH3
|
B. CH3CHCOOH
2
146
Solution
A. CH3COOH
ethanoic acid; acetic acid
CH3
|
B. CH3CHCOOH
2-methylpropanoic acid;
147
Preparation of carboxylic acids
• Oxidation of primary alcohols
CH3CH2OH CH3COOH
KMnO4
148
Reaction of carboxylic acid with alcohol
CH3C
O
OH + H OCH2CH3
CH3C
O
OCH2CH3
+
H2O
Ester
Carboxylic acid Alcohol
Esterification
149
Esters
In a ester, the H in the carboxyl group is
replaced with an alkyl group
O
||
CH3 —C—O —CH3 : CH3—COO —CH3
ester group
•Esters give fruity odors
150
Naming Esters
• The parent alcohol is named first with a –yl
ending
• Change the –oic ending of the parent acid to
–ate
acid alcohol
O
|| methyl
CH3 —C—O —CH3
Ethanoate methyl ethanoate (IUPAC)
(acetate) methyl acetate (common)
151
Some esters and their names
Flavor/Odor
Raspberries
HCOOCH2CH3 ethylmethanoate (IUPAC)
ethylformate (common)
Pineapples
CH3CH2CH2 COOCH2CH3
ethylbutanoate (IUPAC)
ethylbutyrate (common)
152
Question
Give the IUPAC and common names of
the following compound, which is
responsible for the flavor and odor of
pears.
O
||
CH3 —C— O —CH2CH2CH3
153
Solution
O
|| propyl
CH3 —C—O —CH2CH2CH3
propylethanoate (IUPAC)
propyl acetate (common)
154
Question
Draw the structure of the following compounds:
A. 3-bromobutanoic acid
B. Ethyl propionoate
155
Solution
A. 3-bromobutanoic acid
Br
|
CH3CHCH2COOH
B. Ethyl propionoate
O
||
CH3 CH2 COCH2CH3 CH3CH2COOCH2CH3
156
Hydrolysis of esters
• Esters react with water and acid catalyst
• Split into carboxylic acid and alcohol
O
|| H+
H—C—O—CH2CH3 + H2O
O
||
H—C—OH + HO—CH2CH3
-OHH
157
Amines
• Organic compounds of nitrogen N;
derivatives of ammonia
• Classified as primary, secondary, tertiary
CH3 CH3
 
CH3—NH2 CH3—NH CH3—N — CH3
Primary Secondary Tertiary
one N-C two N-C three N-C
bond bonds bonds
158
Naming Amines
IUPAC aminoalkane Common alkylamine
CH3CH2NH2 CH3—NH —CH3
aminoethane N-methylaminomethane
(ethylamine) (dimethylamine)
NH2
|
CH3CHCH3
2-aminopropane Aniline N-methylaniline
(isopropylamine)
NH2 NH CH3
159
Question
Give the common name and classify:
A. CH3NHCH2CH3
CH3
|
B. CH3CH2NCH3
160
Solution
A. CH3NHCH2CH3
ethylmethylamine, (Secondary)
CH3
|
B. CH3CH2NCH3
ethyldimethylamine, (Tertiary)
161
Question
Write a structural formula for
A. 2-aminopentane
B. 1,3-diaminocyclohexane
162
Solution
A. 1-aminopentane
CH3CH2CH2CH2CH2-NH2
B. 1,3-diaminocyclohexane
NH2
NH2
163
Polymers
Poly= many; mers=parts
• Polymers are large, usually chainlike
molecules that are built from small
molecules called monomers joined by
covalent bonds
Monomer Polymer
Ethylene Polyethylene
Vinyl chloride Polyvinyl
chloride
Tetrafluoroethylene Teflon
164
Some common synthetic polymers, their
monomers and applications
165
Types of Polymerization
Addition Polymerization:Addition Polymerization: monomers
“add together” to form the polymer,
with no other products. (Teflon)
Condensation Polymerization:Condensation Polymerization: A
small molecule, such as water, is
formed for each extension of the
polymer chain. (Nylon)
166
Addition Polymerization
OH
C C
H
H
H
H
C
OH
H C
H
H
H
C C
H
H
H
H
C
OH
H C
H
H
H
C
OH
H C
H
H
H
C C
H H
H H
The polymerization process
Is initiated by a free radical
A species with
an unpaired
electron such as
hydroxyl free radical
Free radical attacks and break
The π bond of ethylene molecule
To form a new free radical
• Repetition of the process thousands of times creates a long chain
polymer
• The process is terminated when two radicals react to form a bond;
thus there will be no free radical is available for further repetitions.
167
Condensation Polymerization
Formation of Nylon
N
H
H
(CH2)6 N
H
H C
O
O
(CH2)4H
C
O
O H
Hexamethylendiamine Adipic acid
N
H
H
(CH2)6 N
H
C (CH2)4 C
O
O H
O
+ H2O
• Small molecule such as H2O is formed
from each extension of the polymer chain
• both ends are free to react
Dimer
Diamine Dicarboxylic acid
168
N
H
(CH2)6 N
H
( C (CH2)4 C
OO
)n
Nylon
169
Proteins
• Natural polymers made up of α-amino
acids (molecular weight from ≈ 6000 to
>1,000,000 g/mol).
1. Fibrous Proteins: provide structural
integrity and strength to muscle, hair
and cartilage.
170
Proteins
2. Globular Proteins:
 Roughly spherical shape
 Transport and store oxygen and
nutrients
 Act as catalysts
 Fight invasion by foreign objects
 Participate in the body’s regulatory
system
 Transport electrons in metabolism
171
α-Amino Acids
∀−NH2 always attached to the α-carbon (the
carbon attached to −COOH)
•C = α-carbon
H2N C
H
COOH
R
172
Bonding in α-Amino Acids
• + H2O
∀ ↑
•
A peptide linkage (amide group)
•There are 20 amino acids commonly found in proteins.
• Additional condensation reaction produces
polypeptide eventually yielding a protein
CN
H
H
H
R
C
O
N
H
C
H
R'
C
O
OH
Dipeptide
• The protein polymer is built by condensation reaction
between amino acids
173
The 20
Alpha-amino
Acids found
in most
proteins
174
Levels of Structure
•Primary: Sequence of amino acids
in the protein chain. (lycine-alanine-
leucne: (lys-ala-leu).
– So many arrangements can be
predicted.
Tripeptide containing
Glycine, Cysteine, and
Alanine
175
Levels of Structure
•Secondary: The arrangement of the protein chain
in the long molecule (hydrogen bonding determines
this).
• Hydrogen bonding between lone pairs on an
oxygen atom in the carbonyl group of an amino acid
and a hydrogen atom attached to a nitrogen of
another amino acid
C O NH
This type of interaction can occur with the chain
coils to form a spiral structure called αα- helix- helix
176
Hydrogen bonding within a protein chain causes it to form a stable
helical structure called the alpha-Helix
This is found in
fibrous protein like
wool and hair giving
it the elasticity
177
•Tertiary: The overall shape of the protein
(determined by hydrogen-bonding, dipole-
dipole interactions, ionic bonds, covalent
bonds and London forces).
Summary of the Various Types of Interactions that Stabilize the Tertiary
Structure of a Protein: (a) Ionic, (b) Hydrogen Bonding, (c) Covalent, (d)
London Dispersion, and (e) Dipole-Dipole
178
Summary of the Various Types of Interactions that
Stabilize the Tertiary Structure of a Protein:
(a) Ionic,
(b) Hydrogen Bonding,
(c) Covalent,
(d) London Dispersion, and
(e) Dipole-Dipole
179
CarbohydratesCarbohydrates
Food source for most organisms and
structural material for plants.
Empirical formula = (CH2O)n
 Most carbohydrates such as starch and
cellulose are polymers of monosacharides orpolymers of monosacharides or
simple sugar monomerssimple sugar monomers
Monosaccharides (simple sugars) are
polyhydroxy ketones and aldehydes
Pentoses (5-carbon atoms) - ribose, arabinose
Hexoses (6-carbon atoms) - fructose, glucose
180
Some Important Monosaccharides
181
Chiral carbon atoms in fructose
• Molecules with nonsuperimposable
mirror images exhibit optical isomerism
• A carbon atom with different groups
bonded to it in a tetrahedral arrangement
always has a nonsuperimposable mirror
images which gives rise to a pair of
optical isomers
182
Tetrahedral Carbon
atom with four
different substituents
cannot have its
mirror image
superimposed
183
The Mirror Image Optical Isomers of
Glyceraldehyde
*
Chiral carbon
atom
184
Fructose
D-Fructose
H2OHC
C
CHO H
C
O
H OH
C
CH2OH
OHH
*
*
*
There are 3 chiral
Carbon atoms
There are 23
isomers
That differ in the ability
To rotate light
185
Complex carbohydrates
Disaccharides (formed from 2
monosaccharides joined by a glycoside
linkage)
sucrose (glucose + fructose)
Polysaccharides (many monosaccharide
units)
starch, cellulose
186
Sucrose is a disaccharideformed from alpha-D-
glucose and fructose
187
(a) The Polymer Amylose is a Major Component of Starch
and is Made Up of Alpha-D-Glucose Monomers
(b) The Polymer Cellulose, which Consists of Beta-D-
Glucose Monomers
188
Nucleic Acids
• Life is possible because each cell when it
divides can transmit the vital information
about how it works to the next generation
• The substance that stores and transmits
information is a polymer called
deoxyribonucleic acid (DNA)
• DNA together with other similar nucleic acids
called ribonucleic acids is responsible for
the synthesis of various proteins needed by
the cell to carry out its life functions
189
Nucleic Acids
• DNA (deoxyribonucleic acids):
stores and transmits genetic
information, responsible (with RNA)
for protein synthesis. (Molar mass =
several billion)
•RNA (ribonucleic acid): helps in
protein synthesis. (Molecular
weight = 20,000 to 40,000)
190
Monomers of nucleic acid
Nucleotides
1. Five-carbon sugar, deoxyribose in DNA and
ribose in RNA.
2. Nitrogen containing organic base
3. Phosphoric acid molecule, H3PO4
• The base and the sugar combine to form a unit
that in turn reacts with phosphoric acid to
create a nucleotide
• The nucleotides become connected through
condensation reaction that eliminate water to
give a polymer that contain a billion units.
191
The Organic Bases Found in DNA and RNA
192
The base and sugar combine to form a unit that
in turn reacts with phosphoric acid to create the
nucleotide, which is an ester
193
A Portion of a
typical nucleic
acid chain
194
Double helix formation
• According to Watson and Crick (Nobel prize
winners), CAN is composed of two strands (threads)
running in opposite directions that are bridged by
hydrogen bonds between specific pyrimidine groups
on one strand and purine group on the other
• The two strands are twisted into a double α-helix
structure
• The strongest hydrogen bonds form between
adonine and thymine and between guanine and
cystosine. Thus; A-T or G-C bonding interactions
will take place
• The sequence of nucleotides on one strand of the
double helix determines the sequence of the other
• The sequence of the bases determines what
information is stored.
195
(a) The DNA double helix contains two sugar-phosphate
backbones, with the bases from the two strands hydrogen bonded
to each other; the complementarity of the (b) thymine-adenine and
(c) cytosine-guanine pairs
196
Gracias

More Related Content

What's hot (20)

Ficha alcoholes.pdf
Ficha alcoholes.pdfFicha alcoholes.pdf
Ficha alcoholes.pdf
 
El benceno
El bencenoEl benceno
El benceno
 
Hoja 2 (alqluenos- alquinos)
Hoja 2  (alqluenos- alquinos)Hoja 2  (alqluenos- alquinos)
Hoja 2 (alqluenos- alquinos)
 
Los cicloalcanos
Los cicloalcanosLos cicloalcanos
Los cicloalcanos
 
Tema11.alcanos
Tema11.alcanosTema11.alcanos
Tema11.alcanos
 
Hidrocarburos aromáticos
Hidrocarburos aromáticosHidrocarburos aromáticos
Hidrocarburos aromáticos
 
Ejercicios para hoy g 3 4 (1)
Ejercicios para hoy g 3 4 (1)Ejercicios para hoy g 3 4 (1)
Ejercicios para hoy g 3 4 (1)
 
Tabla de Ka y pKa
Tabla de Ka y pKa Tabla de Ka y pKa
Tabla de Ka y pKa
 
Grupos funcionales
Grupos funcionalesGrupos funcionales
Grupos funcionales
 
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
 
DERIVADOS HALOGENADOS
DERIVADOS HALOGENADOSDERIVADOS HALOGENADOS
DERIVADOS HALOGENADOS
 
Tabla de grupos funcionales orgánicos oxigenados
Tabla de grupos funcionales orgánicos oxigenadosTabla de grupos funcionales orgánicos oxigenados
Tabla de grupos funcionales orgánicos oxigenados
 
Grupos funcionales
Grupos funcionalesGrupos funcionales
Grupos funcionales
 
Alcoholes
AlcoholesAlcoholes
Alcoholes
 
Quimica Organica
Quimica OrganicaQuimica Organica
Quimica Organica
 
Chapter 3 ketone
Chapter 3 ketoneChapter 3 ketone
Chapter 3 ketone
 
FUNCIONES OXIGENADAS
FUNCIONES OXIGENADASFUNCIONES OXIGENADAS
FUNCIONES OXIGENADAS
 
Funciones oxigenadas
Funciones oxigenadasFunciones oxigenadas
Funciones oxigenadas
 
1 presentación alcoholes. bis
1 presentación alcoholes. bis1 presentación alcoholes. bis
1 presentación alcoholes. bis
 
PEPTIDOS (1).pptx
PEPTIDOS (1).pptxPEPTIDOS (1).pptx
PEPTIDOS (1).pptx
 

Similar to Carbono inicial

Or Ganic Intro
Or Ganic IntroOr Ganic Intro
Or Ganic Introscuffruff
 
Chemistry- JIB Organic Chemistry
Chemistry- JIB Organic ChemistryChemistry- JIB Organic Chemistry
Chemistry- JIB Organic ChemistrySam Richard
 
Chemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry ReviewChemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry ReviewSam Richard
 
Ch22 z5e organic
Ch22 z5e organicCh22 z5e organic
Ch22 z5e organicblachman
 
Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01Cleophas Rwemera
 
Ibdp organic introduction
Ibdp organic introductionIbdp organic introduction
Ibdp organic introductiondraakhs doohu
 
Chapter 6 hydroxyl compounds
Chapter 6 hydroxyl compoundsChapter 6 hydroxyl compounds
Chapter 6 hydroxyl compoundsAtindirah Chess
 
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptxRobertAceKadusale
 
Tang 02 alcohols, aldehydes, ketones 2
Tang 02   alcohols, aldehydes, ketones 2Tang 02   alcohols, aldehydes, ketones 2
Tang 02 alcohols, aldehydes, ketones 2mrtangextrahelp
 
Tang 02 alcohols, aldehydes, ketones 2
Tang 02   alcohols, aldehydes, ketones 2Tang 02   alcohols, aldehydes, ketones 2
Tang 02 alcohols, aldehydes, ketones 2mrtangextrahelp
 
Introduction To Carbon Compound
Introduction To Carbon CompoundIntroduction To Carbon Compound
Introduction To Carbon CompoundMohd Norihwan
 
Application of organic chemistry ok1294986436
Application of organic chemistry   ok1294986436Application of organic chemistry   ok1294986436
Application of organic chemistry ok1294986436Navin Joshi
 

Similar to Carbono inicial (20)

Nomenclature
NomenclatureNomenclature
Nomenclature
 
Organic chemistry
Organic chemistryOrganic chemistry
Organic chemistry
 
Or Ganic Intro
Or Ganic IntroOr Ganic Intro
Or Ganic Intro
 
Chemistry- JIB Organic Chemistry
Chemistry- JIB Organic ChemistryChemistry- JIB Organic Chemistry
Chemistry- JIB Organic Chemistry
 
Chemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry ReviewChemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry Review
 
Ch22 z5e organic
Ch22 z5e organicCh22 z5e organic
Ch22 z5e organic
 
Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01
 
Organic chemistry
Organic chemistryOrganic chemistry
Organic chemistry
 
Ibdp organic introduction
Ibdp organic introductionIbdp organic introduction
Ibdp organic introduction
 
Chapter 22
Chapter 22Chapter 22
Chapter 22
 
Chapter 6 hydroxyl compounds
Chapter 6 hydroxyl compoundsChapter 6 hydroxyl compounds
Chapter 6 hydroxyl compounds
 
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx
[CHEM 17] ALDEHYDES AND KETONES (PRE-LAB).pptx
 
Tang 02 alcohols, aldehydes, ketones 2
Tang 02   alcohols, aldehydes, ketones 2Tang 02   alcohols, aldehydes, ketones 2
Tang 02 alcohols, aldehydes, ketones 2
 
Tang 02 alcohols, aldehydes, ketones 2
Tang 02   alcohols, aldehydes, ketones 2Tang 02   alcohols, aldehydes, ketones 2
Tang 02 alcohols, aldehydes, ketones 2
 
Introduction To Carbon Compound
Introduction To Carbon CompoundIntroduction To Carbon Compound
Introduction To Carbon Compound
 
Unit 4
Unit 4Unit 4
Unit 4
 
Unit 4ale
Unit 4aleUnit 4ale
Unit 4ale
 
01_alkanes.pptx
01_alkanes.pptx01_alkanes.pptx
01_alkanes.pptx
 
Organic chem
Organic chemOrganic chem
Organic chem
 
Application of organic chemistry ok1294986436
Application of organic chemistry   ok1294986436Application of organic chemistry   ok1294986436
Application of organic chemistry ok1294986436
 

Recently uploaded

Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
 

Recently uploaded (20)

Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
 

Carbono inicial

  • 1. EL CARBONO, COMPONENTE ESENCIAL DE LAS CÉLULAS Mauricio moreno bogota 2016
  • 2. Importancia del carbono El Carbono permea todo el mundo viviente — desde la organización estructural de las células, pasando por los requerimientos energéticos, hasta la conservación de la información genética. El carbono es un condicionamiento para la existencia de la biosfera.
  • 3. Compuestos orgánicos El Hidrógeno y otros elementos se unen covalentemente al carbono para formar en los seres vivos: Carbohidratos Lipidos Proteínas Acidos nucleicos
  • 4. El átomo de carbono En su último nivel posee cuatro electrones; pudiendo tener 8. Cada átomo de carbono puede unirse máximo con cuatro elementos compartiendo un par de electrones.
  • 5. Los átomos de carbono se pueden unir formando cadenas lineales, ramificadas o anillos. La principal característica es su capacidad de unirse con otros átomos de carbono y de otros elementos y formar millones de compuestos. Glucosa
  • 6. DIFERENTES MODELOS DE LAMOLECULA DE HEMOGLONINA Ball-and-stick model Space-filling model Ribbon model
  • 10. •Clasificación de orbitales híbridos: •Orbitales hibridos sp •Orbitales hibridos sp2 •Orbitales híbridos sp3
  • 11. ORBITAL HÍBRIDO sp3 •Cuando se mezcla un orbital “s” con tres orbitales “p”, de la misma subcapa se forman 4 orbitales híbridos “sp3 “ (ese pe tres(.
  • 13. 13
  • 14. El átomo de carbono
  • 15. METANO: LA SUSTANCIA ORGÁNICA MÁS SIMPLE. Structural formula Ball-and-stick model Space-filling model HH H H C
  • 16. ORBITAL HÍBRIDO sp2 Siempre que se mezcla cierto número de orbitales atómicos se obtiene el mismo número de orbitales híbridos. Cada uno de éstos es equivalente a los demás pero apuntan en dirección distinta. Cuando se mezclan un orbital “s” con dos orbitales “p, se forman 3 orbitales híbridos “sp2 “.
  • 18.
  • 19. 19
  • 20.
  • 21. Orbital Híbrido “ sp“ •Esta hibridación ocurre cuando se mezcla el orbital “s” y uno de los orbitales “p”, para generar dos nuevos orbitales: Ejemplo BeF2
  • 23. 23
  • 24. GRUPOS FUNCIONALES Son átomos o grupos de átomos que se unen covalentemente a una cadena carbonada dandole diferentes propiedades. -CH3 Grupo metilo Grupo Hidroxilo- OH Grupo Amino- NH3 + Grupo Carboxilo- COOH Grupo Fosfato- PO3 - Grupo Sulfhidrilo- SH
  • 25. 25
  • 26. 26
  • 30.
  • 31.
  • 32. ETENO
  • 36.
  • 39.
  • 40.
  • 45.
  • 47.
  • 50.
  • 51.
  • 55.
  • 56.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74. 74 Hidrocarburos • Compuestos de carbono e hidrogeno. • Saturados (alcanos) los elementos unidos al carbono lo hacen a través de un enlace simple. • Formula general [CnH2n+2] H C H H C H H H
  • 75. 75 • Insaturados: Contienen enlaces carbono-carbono de tipo multiple (doble o triple) H C H H C H C H H
  • 76. 76 Alcanos: hidrocarburos saturados • Hidrocarburos saturados, CnH2n+2 – “Saturados” porque ellos no pueden unir más átomos de hidrogeno.
  • 77. 77 Alcanos: hidrocarburos saturados • Hidrocarburos son moleculas compuestas de carbono e hidrogeno. – Cada carbono forma cuatro enlaces químicos. – Un hidrocarburo saturado solo contiene enlaces sencillos C – C y sus moléculas contienen el máximo número de átomos de H. – Los hidrocarburos saturados son llamados ALCANOS
  • 78. 78 Metano es una molécula tetraedrica
  • 79. 79 Estructura de Lewis para el etano.
  • 80. 80
  • 83. 83 Los 10 “Normales” Alcanos NameName FormulaFormula M.P.M.P. B.P.B.P. # Structural Isomers# Structural Isomers • Methane CH4 -183 -162 1 • Ethane C2H6 -172 -89 1 • Propane C3H8 -187 -42 1 • Butane C4H10 -138 0 2 • Pentane C5H12 -130 36 3 • Hexane C6H14 -95 68 5 • Heptane C7H16 -91 98 9 • Octane C8H18 -57 126 18 • Nonane C9H20 -54 151 35 • Decane C10H22 -30 174 75 C1 - C4 are GasesC1 - C4 are Gases at Room Temperatureat Room Temperature C5 - C16 are LiquidsC5 - C16 are Liquids at Room Temperatureat Room Temperature
  • 84. 84 Reglas de la IUPAC para nombrar alcanos • Nombrar la cadena principalNombrar la cadena principal • Numerar los átomos de carbono de la cadenaNumerar los átomos de carbono de la cadena principal empezando por el más cercano a lasprincipal empezando por el más cercano a las ramificacionesramificaciones • Nombrar las ramificaciones con la teminación ilo,Nombrar las ramificaciones con la teminación ilo, ejemplo metilo, etilo, propilo etc.ejemplo metilo, etilo, propilo etc. • Cuando hay más de una ramificación nombrarlas en orden alfabetico • Finalmente usar prefijosprefijos para indicar multiples ramificaciones.
  • 85. 85 Reglas de la IUPAC para nombrar alcanos 1. Para alcanos después del butano, agregar-ano a la raíz griega del número de átomos de carbonos de la cadena más larga . C-C-C-C-C-C : hexano 2. Sustituyentes alquilo: cambiar-ano por -ilo. -C2H5 es el etilo.
  • 86. 86
  • 87. 87 Reglas de la IUPAC para nombrar alcanos 3.La posición de los sutituyentes se especifica con la numeración. C | C-C-C-C-C-C 3-metil-hexano Empezar desde el extremo más cercano a la numeración. 4. Nombrar los sutituyentes en orden alfabetico y usando los prefijos di-, tri- etc.
  • 88. 88
  • 89. 89 Isomeros estructurales • Isomeros: moléculas que tienen la misma formula molecular, pero diferente formula estructural CH3 CH2 CH2 CH2 CH3 CH3 CH2 CH CH3 CH3 n-pentano, C5H12 2-metilbutano, C5H12
  • 92. 92 Reacciones de los alcanos • Reacciones de combustion 2C4H10 + 13 O2 8CO2 + 10 H2O Reacciones de sustituciónReacciones de sustitución CHCl Cl CCl HCl h 3 2 4+ + ν CH4 + Cl2 CH3Cl + HCl CH3Cl + Cl2 CH2Cl2 + HCl CH2Cl2 + Cl2 CH Cl3 + HCl
  • 93. 93 Reacciones de deshidrogenaciónReacciones de deshidrogenación CH3CH3 CH2 CH2 + H2 Etileno
  • 94. 94 Ciclo alcanosCiclo alcanos • Formación de anillos, CnH2n CH3 CH2 CH3 CH2 C H2 CH2 n-propane C3H8 cyclopropane C3H6 60° bond angle unstable!! 109.5° bond angle
  • 95. 95 Ciclohexano –conformaciones de silla y bote • El Ciclohexano no es una molécula plana. • El bote y la silla (99%) son dos conformaciones
  • 96. 96 Alquenos y alquinos Alquenos: hidrocarburos que contienen dobles enlaces carbono-carbono. [CnH2n] C=C Eteno C−C=C propeno Alquinos: hidrocarburos que contienen u triple enlace carbono-carbono. [CnH2n-2] C ≡C Etino C−C−C≡C−C 2-pentino
  • 97. 97 Nomenclatura para los Alquenos 1.La cadena principal debe contener el doble enlace, al nombarla debe terminar en -eno C2H4; CH2=CH2 eteno 2. Cuando hay más de tres carbonos, el doble enlace se indica con el númerocon el número más bajo del carbono del enlacemás bajo del carbono del enlace C=C−C−C 1-buteno
  • 98. 98 Isomeros de los Alquenos: Cis y Trans El doble enlace no permite los giros alrededor del mismo. CH3 CH3 CH3 CH = CH CH = CH cis trans CH3
  • 100. 100 Hidrogenación H H H H Ni H–C=C–H + H2 H–C–C–H H H eteno etano CHCH33-CH-CH33
  • 101. 101 Halogenacion H H H H Ni H–C=C–H + Cl2 H–C–C–H Cl Cl eteno dicloroetano
  • 102. 102 Reacciones de Halogenación CH2 CHCH2CH2CH2 + Br2 CH2Br CHBrCH2CH2CH2 1,2-dibromopentano 1-penteno
  • 103. 103 Alquinos, CnH2n–2 Triple enlace Carbono-carbono Nombres terminados en -ino HC≡CH etino(acetileno) HC≡C-CH3 propino
  • 104. 104
  • 105. 105 1 2 3 4 CH2=CHCH2CH3 1-buteno CH3CH=CHCH3 2-buteno CH3CH≡CHCH3 2-butino
  • 106. 106 Preguntas Cuál es el nombre de los siguientes compuestos: A. CH3CH2C≡CCH3 CH3 B. CH3C=CHCH3 2-pentino 2-metil-2-buteno
  • 107. 107 Preguntas c. CH3CH2C CCHCH2CH3 CH2 CH3 1 2 3 4 5 6 7 5-etil-3-heptino
  • 108. 108 Hidrocarburos aromaticos • Ciclos que contienen enlaces sencillos y dobles alternados. – Se llaman “aromaticos” (por el aroma que generan). – La presencia de la alternacia de enlaces sencilos y dobles le confiere propiedades particulares como participar en reacciones de sustitución y no de adición.
  • 109. 109 Estructuras de Lewis para el benceno
  • 111. 111 Shorthand notation for benzene rings
  • 112. 112 The bonding in the benzene ring is a combination of different Lewis structures.
  • 113. 113
  • 115. 115
  • 116. 116 Nomenclatura de los derivados del benceno
  • 118. 118 Halogenuros de alquilo Son alcanos en los cuales un hidrogeno ha sido reemplazado por un halogeno(F, Cl, Br, or I) CH3Br bromometano Br CH3CH2CHCH3 2-bromobutano Cl clorociclobutano
  • 120. 120 Nomenclatura El nombre del siguiente compuesto es: Cl CH3 CH3CH2CHCH2CHCH3 1) 2,4-dimetilhexano 2) 4-cloro-5-metilhexano 3) 4-cloro-2-metilhexano
  • 121. 121 Alcoholes: R–OH • El grupo hidroxilo –OH hace al alcohol polar y puede formar puentes de hidrogenopuentes de hidrogeno. LoLo hace soluble en aguahace soluble en agua • El Etanol es producto de la fermentacion yeastC6H12O6 Glucosa 2CH3CH2OH Etanol + 2 CO2 CO + 2H2O CH3OH Metanol • El metanol es producto de la hidrogenacion industrial del monoxido de carbono
  • 122. 122 Usos de los alcoholes • Metanol es usado para la síntesis de adhesivos, fibras, plasticos y combustble para motor. • El metanol es toxico para los humanos y puede causar ceguera y muerte. • El Etanol se le adiciona a la gasolina para formar gasohol. Es usado como solvente. • Producción comercial del etanol: CH2=CH2 + H2O CH3CH2OH
  • 123. 123 Clases de alcoholes R CH2OH Primary alchol CHOH R' R Secondary alcohol CR' R R" OH Tertiary alcohol Los alcoholes se pueden clasificar de acuerdo al numero de carbonos unidos al carbono dondenumero de carbonos unidos al carbono donde esta el grupo –OH.
  • 124. 124 Nombrando los Alcoholes En la IUPAC la terminación ano del alcano es reemplazada por -ol. CH4 metano CH3OH metanol (alcohol metilico) CH3CH3 etano CH3CH2OH etanol (alcohol etilico)
  • 126. 126 CH3CH2CH2OH 1-propanol OH CH3CHCH3 2-propanol CH3 OH CH3CHCH2CH2CHCH3 5-metil-2-hexanol5 2
  • 129. 129 Reacciones de los alcoholes Combustion CH3OH + 2O2 CO2 + 2H2O + Energía Deshidratacion H OH calor H-C-C-H H-C=C-H + H2O H H H H alcohol alqueno
  • 130. 130 Ethers • Contain an -O--O- between two carbon groups • Simple ethers named from -yl names-yl names of the attached groups and addingadding etherether. CH3-O-CH3 dimethyl ether CH3-O-CH2CH3 ethyl methyl ether
  • 131. 131 Aldehydes and Ketones In an aldehyde, an H atomH atom is attached to a carbonyl group O carbonyl group  CH3-C-H In a ketone, two carbon groupstwo carbon groups are attached to a carbonyl group O carbonyl group  CH3-C-CH3
  • 132. 132 Naming Aldehydes IUPAC Replace the -e in the alkane name -al Common Add aldehyde to the prefixes form (1C), acet (2C), propion(3), and butry(4C) O O O    H-C-H CH3-C-H CH3CH2C-H methanal ethanal propanal (formaldehyde) (acetaldehyde) (propionaldehyde) methane ethane propane
  • 133. 133 Aldehydes as Flavorings CH O CH O HO OCH3 CH=CH CH O Benzaldehyde Vanillin Cinnamaldehyde (almonds) (vanilla beans) (cinnamon)
  • 134. 134 Naming Ketones In the IUPAC name, the -e in the alkane name is replaced with -one In the common name, add the word ketone after naming the alkyl groups attached to the carbonyl group O O   CH3 -C-CH3 CH3-C-CH2-CH3 Propanone 2-Butanone (Dimethyl ketone) (Ethyl methyl ketone) O Cyclohexanone Acetone propane butane cyclohexane
  • 135. 135 Preparation of aldehydes and Ketones They are produced by oxidation of alcohols: CH3CH2OH Oxidation CH3CHCH3 OH Oxidation CH3CCH3 O CH3C O H acetaldehyde acetone Primary alcohol Secondary alcohol ethanal propanone
  • 136. 136 Question Classify each as an aldehyde (1), ketone (2) or neither(3). O  A. CH3CH2CCH3 B. CH3-O-CH3 CH3 O  C. CH3-C-CH2CH D. CH3 O
  • 137. 137 Solution Classify each as an aldehyde (1), ketone (2) or neither(3). O  A. CH3CH2CCH3 2 B. CH3-O-CH3 3 CH3 O  C. CH3-C-CH2CH 1 D. 2 CH3 O
  • 138. 138 Question Name the following O  A. CH3CH2CCH3 B. CH3 O  C. CH3-C-CH2CH CH3 O
  • 139. 139 Solution O  A. CH3CH2CCH3 B. 2-butanone (ethyl methyl ketone) CH3 O  C. CH3-C-CH2CH cyclohexanone CH3 2,2-dimethylbutanal O
  • 140. 140 Question Draw the structural formulas for each: A. 3-Methylpentanal B. 2,3-Dichloropropanal C. 3-Methyl-2-butanone
  • 141. 141 Solution Draw the structural formulas for each: CH3 O  A. 3-Methylpentanal CH3CH2CHCH2CH Br O  B. 2,3-Dibromopropanal Br-CH2CHCH O  C. 3-Methyl-2-butanone CH3CHCCH3
  • 142. 142 Carboxylic Acids and Esters Carboxyl Group Carboxylic acids contain the carboxyl group as carbon 1. O R || CH3 —C—OH : CH3—COOH carboxyl group
  • 143. 143 Naming Carboxylic Acids Formula IUPAC Common alkan -oic acid prefix – ic acid HCOOH methanoic acid formic acid CH3COOH ethanoic acid acetic acid CH3CH2COOH propanoic acid propionic acid CH3CH2CH2COOH butanoic acid butyric acid
  • 144. 144 Naming Rule for Carboxylic acids • Identify longest chain • (IUPAC) Number carboxyl carbon as 1carboxyl carbon as 1 CH3 | CH3 —CH—CH2 —COOH IUPAC 3-methylbutanoic acid 1234
  • 145. 145 Question Give IUPAC name: A. CH3COOH CH3 | B. CH3CHCOOH 2
  • 146. 146 Solution A. CH3COOH ethanoic acid; acetic acid CH3 | B. CH3CHCOOH 2-methylpropanoic acid;
  • 147. 147 Preparation of carboxylic acids • Oxidation of primary alcohols CH3CH2OH CH3COOH KMnO4
  • 148. 148 Reaction of carboxylic acid with alcohol CH3C O OH + H OCH2CH3 CH3C O OCH2CH3 + H2O Ester Carboxylic acid Alcohol Esterification
  • 149. 149 Esters In a ester, the H in the carboxyl group is replaced with an alkyl group O || CH3 —C—O —CH3 : CH3—COO —CH3 ester group •Esters give fruity odors
  • 150. 150 Naming Esters • The parent alcohol is named first with a –yl ending • Change the –oic ending of the parent acid to –ate acid alcohol O || methyl CH3 —C—O —CH3 Ethanoate methyl ethanoate (IUPAC) (acetate) methyl acetate (common)
  • 151. 151 Some esters and their names Flavor/Odor Raspberries HCOOCH2CH3 ethylmethanoate (IUPAC) ethylformate (common) Pineapples CH3CH2CH2 COOCH2CH3 ethylbutanoate (IUPAC) ethylbutyrate (common)
  • 152. 152 Question Give the IUPAC and common names of the following compound, which is responsible for the flavor and odor of pears. O || CH3 —C— O —CH2CH2CH3
  • 153. 153 Solution O || propyl CH3 —C—O —CH2CH2CH3 propylethanoate (IUPAC) propyl acetate (common)
  • 154. 154 Question Draw the structure of the following compounds: A. 3-bromobutanoic acid B. Ethyl propionoate
  • 155. 155 Solution A. 3-bromobutanoic acid Br | CH3CHCH2COOH B. Ethyl propionoate O || CH3 CH2 COCH2CH3 CH3CH2COOCH2CH3
  • 156. 156 Hydrolysis of esters • Esters react with water and acid catalyst • Split into carboxylic acid and alcohol O || H+ H—C—O—CH2CH3 + H2O O || H—C—OH + HO—CH2CH3 -OHH
  • 157. 157 Amines • Organic compounds of nitrogen N; derivatives of ammonia • Classified as primary, secondary, tertiary CH3 CH3   CH3—NH2 CH3—NH CH3—N — CH3 Primary Secondary Tertiary one N-C two N-C three N-C bond bonds bonds
  • 158. 158 Naming Amines IUPAC aminoalkane Common alkylamine CH3CH2NH2 CH3—NH —CH3 aminoethane N-methylaminomethane (ethylamine) (dimethylamine) NH2 | CH3CHCH3 2-aminopropane Aniline N-methylaniline (isopropylamine) NH2 NH CH3
  • 159. 159 Question Give the common name and classify: A. CH3NHCH2CH3 CH3 | B. CH3CH2NCH3
  • 160. 160 Solution A. CH3NHCH2CH3 ethylmethylamine, (Secondary) CH3 | B. CH3CH2NCH3 ethyldimethylamine, (Tertiary)
  • 161. 161 Question Write a structural formula for A. 2-aminopentane B. 1,3-diaminocyclohexane
  • 163. 163 Polymers Poly= many; mers=parts • Polymers are large, usually chainlike molecules that are built from small molecules called monomers joined by covalent bonds Monomer Polymer Ethylene Polyethylene Vinyl chloride Polyvinyl chloride Tetrafluoroethylene Teflon
  • 164. 164 Some common synthetic polymers, their monomers and applications
  • 165. 165 Types of Polymerization Addition Polymerization:Addition Polymerization: monomers “add together” to form the polymer, with no other products. (Teflon) Condensation Polymerization:Condensation Polymerization: A small molecule, such as water, is formed for each extension of the polymer chain. (Nylon)
  • 166. 166 Addition Polymerization OH C C H H H H C OH H C H H H C C H H H H C OH H C H H H C OH H C H H H C C H H H H The polymerization process Is initiated by a free radical A species with an unpaired electron such as hydroxyl free radical Free radical attacks and break The π bond of ethylene molecule To form a new free radical • Repetition of the process thousands of times creates a long chain polymer • The process is terminated when two radicals react to form a bond; thus there will be no free radical is available for further repetitions.
  • 167. 167 Condensation Polymerization Formation of Nylon N H H (CH2)6 N H H C O O (CH2)4H C O O H Hexamethylendiamine Adipic acid N H H (CH2)6 N H C (CH2)4 C O O H O + H2O • Small molecule such as H2O is formed from each extension of the polymer chain • both ends are free to react Dimer Diamine Dicarboxylic acid
  • 168. 168 N H (CH2)6 N H ( C (CH2)4 C OO )n Nylon
  • 169. 169 Proteins • Natural polymers made up of α-amino acids (molecular weight from ≈ 6000 to >1,000,000 g/mol). 1. Fibrous Proteins: provide structural integrity and strength to muscle, hair and cartilage.
  • 170. 170 Proteins 2. Globular Proteins:  Roughly spherical shape  Transport and store oxygen and nutrients  Act as catalysts  Fight invasion by foreign objects  Participate in the body’s regulatory system  Transport electrons in metabolism
  • 171. 171 α-Amino Acids ∀−NH2 always attached to the α-carbon (the carbon attached to −COOH) •C = α-carbon H2N C H COOH R
  • 172. 172 Bonding in α-Amino Acids • + H2O ∀ ↑ • A peptide linkage (amide group) •There are 20 amino acids commonly found in proteins. • Additional condensation reaction produces polypeptide eventually yielding a protein CN H H H R C O N H C H R' C O OH Dipeptide • The protein polymer is built by condensation reaction between amino acids
  • 174. 174 Levels of Structure •Primary: Sequence of amino acids in the protein chain. (lycine-alanine- leucne: (lys-ala-leu). – So many arrangements can be predicted. Tripeptide containing Glycine, Cysteine, and Alanine
  • 175. 175 Levels of Structure •Secondary: The arrangement of the protein chain in the long molecule (hydrogen bonding determines this). • Hydrogen bonding between lone pairs on an oxygen atom in the carbonyl group of an amino acid and a hydrogen atom attached to a nitrogen of another amino acid C O NH This type of interaction can occur with the chain coils to form a spiral structure called αα- helix- helix
  • 176. 176 Hydrogen bonding within a protein chain causes it to form a stable helical structure called the alpha-Helix This is found in fibrous protein like wool and hair giving it the elasticity
  • 177. 177 •Tertiary: The overall shape of the protein (determined by hydrogen-bonding, dipole- dipole interactions, ionic bonds, covalent bonds and London forces). Summary of the Various Types of Interactions that Stabilize the Tertiary Structure of a Protein: (a) Ionic, (b) Hydrogen Bonding, (c) Covalent, (d) London Dispersion, and (e) Dipole-Dipole
  • 178. 178 Summary of the Various Types of Interactions that Stabilize the Tertiary Structure of a Protein: (a) Ionic, (b) Hydrogen Bonding, (c) Covalent, (d) London Dispersion, and (e) Dipole-Dipole
  • 179. 179 CarbohydratesCarbohydrates Food source for most organisms and structural material for plants. Empirical formula = (CH2O)n  Most carbohydrates such as starch and cellulose are polymers of monosacharides orpolymers of monosacharides or simple sugar monomerssimple sugar monomers Monosaccharides (simple sugars) are polyhydroxy ketones and aldehydes Pentoses (5-carbon atoms) - ribose, arabinose Hexoses (6-carbon atoms) - fructose, glucose
  • 181. 181 Chiral carbon atoms in fructose • Molecules with nonsuperimposable mirror images exhibit optical isomerism • A carbon atom with different groups bonded to it in a tetrahedral arrangement always has a nonsuperimposable mirror images which gives rise to a pair of optical isomers
  • 182. 182 Tetrahedral Carbon atom with four different substituents cannot have its mirror image superimposed
  • 183. 183 The Mirror Image Optical Isomers of Glyceraldehyde * Chiral carbon atom
  • 184. 184 Fructose D-Fructose H2OHC C CHO H C O H OH C CH2OH OHH * * * There are 3 chiral Carbon atoms There are 23 isomers That differ in the ability To rotate light
  • 185. 185 Complex carbohydrates Disaccharides (formed from 2 monosaccharides joined by a glycoside linkage) sucrose (glucose + fructose) Polysaccharides (many monosaccharide units) starch, cellulose
  • 186. 186 Sucrose is a disaccharideformed from alpha-D- glucose and fructose
  • 187. 187 (a) The Polymer Amylose is a Major Component of Starch and is Made Up of Alpha-D-Glucose Monomers (b) The Polymer Cellulose, which Consists of Beta-D- Glucose Monomers
  • 188. 188 Nucleic Acids • Life is possible because each cell when it divides can transmit the vital information about how it works to the next generation • The substance that stores and transmits information is a polymer called deoxyribonucleic acid (DNA) • DNA together with other similar nucleic acids called ribonucleic acids is responsible for the synthesis of various proteins needed by the cell to carry out its life functions
  • 189. 189 Nucleic Acids • DNA (deoxyribonucleic acids): stores and transmits genetic information, responsible (with RNA) for protein synthesis. (Molar mass = several billion) •RNA (ribonucleic acid): helps in protein synthesis. (Molecular weight = 20,000 to 40,000)
  • 190. 190 Monomers of nucleic acid Nucleotides 1. Five-carbon sugar, deoxyribose in DNA and ribose in RNA. 2. Nitrogen containing organic base 3. Phosphoric acid molecule, H3PO4 • The base and the sugar combine to form a unit that in turn reacts with phosphoric acid to create a nucleotide • The nucleotides become connected through condensation reaction that eliminate water to give a polymer that contain a billion units.
  • 191. 191 The Organic Bases Found in DNA and RNA
  • 192. 192 The base and sugar combine to form a unit that in turn reacts with phosphoric acid to create the nucleotide, which is an ester
  • 193. 193 A Portion of a typical nucleic acid chain
  • 194. 194 Double helix formation • According to Watson and Crick (Nobel prize winners), CAN is composed of two strands (threads) running in opposite directions that are bridged by hydrogen bonds between specific pyrimidine groups on one strand and purine group on the other • The two strands are twisted into a double α-helix structure • The strongest hydrogen bonds form between adonine and thymine and between guanine and cystosine. Thus; A-T or G-C bonding interactions will take place • The sequence of nucleotides on one strand of the double helix determines the sequence of the other • The sequence of the bases determines what information is stored.
  • 195. 195 (a) The DNA double helix contains two sugar-phosphate backbones, with the bases from the two strands hydrogen bonded to each other; the complementarity of the (b) thymine-adenine and (c) cytosine-guanine pairs