SlideShare a Scribd company logo
Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
How to cite this article: Ilkhani MH, Moradi E, Lavasani M. Calculation of torsion capacity of the reinforced concrete beams
using artificial neural network. J Soft Comput Civ Eng 2017;1(2):08–18. https://doi.org/10.22115/scce.2017.48685.
2588-2872/ © 2017 The Authors. Published by Pouyan Press.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Contents lists available at SCCE
Journal of Soft Computing in Civil Engineering
Journal homepage: www.jsoftcivil.com
Calculation of Torsion Capacity of the Reinforced Concrete
Beams Using Artificial Neural Network
M.H. Ilkhani1
, E. Moradi1
, M. Lavasani2*
1. Ph.D. Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2. Ph.D., Florida International University, Miami, FL, USA
Corresponding author: ssada006@fiu.edu
https://doi.org/10.22115/SCCE.2017.48685
ARTICLE INFO ABSTRACT
Article history:
Received: 13 June 2017
Revised: 12 July 2017
Accepted: 24 July 2017
This paper presents a model for calculation of torsion
capacity of the reinforced concrete beams using the artificial
neural network. Considering the complex reaction of
reinforced concrete beams under torsion moments, torsion
strength of these beams is depended on different parameters;
therefore using the artificial neural network is a proper
method for estimating the torsion capacity of the beams. In
the presented model the beam's dimensions, concrete
compressive strength and longitudinal and traverse bars
properties are the input data, and torsion capacity of the
reinforced concrete beam is the output of the model. Also
considering the neural network results, a sensitivity analysis
is performed on the network layers weight, and the effect of
different parameters is evaluated on the torsion strength of
the reinforced concrete beams. According to the sensitivity
analysis, properties of traverse steel have the most effect on
torsion capacity of the beams.
Keywords:
Neural network;
Torsion;
RC beam.
1. Introduction
In structural design, usually the effect of the torsional moment is neglected, and members are
designed only for stresses due to bending, shear and axial loads. However, the amount of torsion
M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 9
in lateral beams or the beams connected to a slab or another beam in one side is significant, and
even a small amount of torsion can cause high stresses. Since failure due to torsion is a brittle
and non-predictable failure, therefore designing against torsion becomes essential.
There are not several studies conducted on the reinforced concrete beams behavior under torsion
up to now. H.J. Chiu et al. have studied 13 reinforced concrete beams specimens in two types of
high strength concrete and regular concrete. The purpose of this study was to investigate the
cracks pattern, torsion strength and deformation of the beams under pure torsion loading. The
results showed that hollow beams have less torsion strength against cracking concerning filled
rectangular beams and increasing the ratio in the beams section causes lesser torsion strength,
cracking and increasing of the cracks widths [1].
Victor and Muthukrishnan have investigated the effect of varying number of stirrups on the
torsion capacity of the reinforced concrete beams and presented an empirical relation for the
share of stirrups in the torsion capacity [2].
Rasmussen and Baker have studied the behavior of high strength concrete, and ordinary concrete
beams under pure torsion [3,4]. The results showed that high strength concrete increases the
torsion capacity and stiffness.
McMullen and Rangan have investigated rectangular reinforced concrete beams by varying
dimensional ratios and the number of stirrups [5]. Authors concluded that longitudinal stirrups
are more effective in controlling traverse cracks than traverse stirrups [6,7].
Although many relations have been presented for reinforced concrete beams under pure torsion,
in this study, the behavior of rectangular reinforced concrete beams under pure torsion load has
investigated using the neural network, and finally, the weight effect of each of the input
parameters on the target function (ultimate torsion capacity) has studied.
2. The artificial neural network model
Neural networks can be assumed as a very simplified electronic model of the human brain neural
structure. The learning and training mechanism of the brain is experimental. The electronic
neural network models are based on the same pattern, and the analysis method of these models is
different from the usual calculation method of computer systems. Artificial neural networks
(ANN) are suitable tools for predicting of the non-existing situations based on the existing
conditions. In other words, artificial neural networks can interpret the relations between the
parameters of one phenomenon and the phenomenon using the training based on experience. In
recent years the neural networks have been used by many researchers for many of the civil
engineering systems including predicting of surrounded and non-surrounded concrete
10 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
compressive strength [8,9], predicting of ultimate shear strength of concrete beams reinforced
with FRP [10,11] and their free vibration analysis [12] and predicting of shear capacity of
concrete beams reinforced with steel plates [13].
In general, artificial neural networks are consisting of three layers including the input layer,
middle or hidden layer and an output layer. The presented data to the network including the
variables and target function resulted from them are placed in the input and output layers
respectively. Then by regulating the weights in the middle layer, a pattern is obtained to achieve
the target values from the input data. This trend is called training the network for predicting the
target values. The number of data and less number of input variables result in better training of
the network and more reliable obtained weights and more accurate network prediction.
Therefore the essential step in modeling a reliable and proper artificial neural network is
collecting an appropriate number of experimental accurate and homogenous data (the more
number of data used in modeling will result in better specifying relations among variables by the
network). In this study, 112 homogenous experimental data have been gathered [1,3–5,7,14–18].
The homogenous data is defined as the data in which the behaviors of the specimens are similar,
and shear causes the failure under torsion moment. For example, beams that are failed under a
combination of torsion and bending moment cannot be considered for torsion strength study.
After gathering suitable data for using in the network, selection of effective parameters in the
target values shall be concerned. Studying the existing researches and the relations in the
certified regulations [19,20], the following parameters have specified to be effective in torsion
capacity of the reinforced concrete beam:
 X: rectangular reinforced concrete beam section width
 Y: rectangular reinforced concrete beam section height
 f’c: concrete compressive strength
 AL: total cross section of longitudinal bars
 Fyl: longitudinal bars yield stress
 At: total cross section of traverse bars
 Fyt: traverse bars yield stress
 s: distance between traverse bars
To reduce the number of input variables, some of the related parameters are combined with each
other, and finally, the following five parameters are introduced to the network as the input
variables:
 X: rectangular reinforced concrete beam section width, in mm
 Y: rectangular reinforced concrete beam section height, in mm
 f’c: concrete compressive strength, in MPa
M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 11
 AL Fyl: effect of longitudinal bars, in KN
 At Fyt /s: effect of traverse bars, in N/mm
The ultimate bending moment for the beams (Tu) which is obtained from the experiments is
considered as the target value for each input.
The number of the neuron in the hidden layer is considered as 8. The MSE graph of this network
is shown in figure 1. As it is seen in the figure, MSE starts from high values and decreases to
lower values. This shows the learning process of the network is successful.
At the beginning of learning, the network has a rather high error and with the continuation of
learning and changing the used weights in the 31st
step the amounts of errors reaches to 0.005,
0.09 and 0.1 for Training, Validation and Test respectively. This graph has three curves, each of
them represents a group of Training, Validation, and Test data.
The graphs of procedure of learning and data regression values are presented in Figures 2 and 3
respectively. The reducing of the gradient in figure 2 represents the network procedure of
learning. The reduction of gradient continues until MSE value reaches its minimum. From this
point on the network, learning stops and the gradient value becomes constant. The amount of
regression shown in figure 3 indicates a good network learning and close relation between the
target vector and the network output.
Fig. 1. MSE graph during training of the trained artificial neural network.
12 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
Fig. 2. The learning graph of the trained artificial neural network.
It can be concluded that the modeled network is trained well concerning the input and output
data. Therefore, this network is chosen, and its results are compared with the existing relations
for ultimate torsion moment.
3. Validation of artificial neural network results
To validate the artificial neural network results, a comparison is made between the experimental
results and the network results. Figure 4 shows the experimental results for the ultimate torsion
moment, which are the target vector in network training, versus the output values, resulted from
neural network simulation. In the presented curves the points corresponding to the 45-degree
line, indicate the proper prediction of the model and no difference between the experimental
results and the estimated values by the network and distance from this line indicates the error
percentage of the model. As it can be seen, most of the points of the network prediction fall in
the neighborhood of 45-degree line which indicates the accuracy of the network. %83 of the data
has less than 10% error concerning the experimental results. Also, % 97.3of the data has less
than 20% error concerning the experimental results. Summary of the network function is
presented in Table 1. Considering figure 4 and Table 1, it can be concluded that the maximum
error between the experimental results and the network output results is 30%.
M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 13
Fig. 3. Fitting of the neural network data related to Training, Validation, and Test
Fig. 4. comparison between artificial neural network data and the experimental results.
0
50
100
150
200
250
300
0 50 100 150 200 250 300
torsional
contribution
from
A
nn
(kNm)
experimental torsional contribution (kNm)
14 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
Table 1
comparison between artificial neural network error and the existing relations.
The range of error (%) Number of data in the range of error Percentage of data in the range of error (%)
±5 60 53.5
±10 93 83
±15 102 91
±20 109 97.3
±25 111 99.1
±30 112 100
4. Effect of network input parameters on output data
In the artificial neural network system, each neuron has an internal weight, which affects the
input values of the neuron and directs the weight vectors to the excitation functions. It may be
required for a vector to displace in the vector space in addition to changing its weight; this can be
done by adding a bias to the weight matrix. Then the weight values are transferred to the
excitation functions, and the output function achieves its primary value and considering
obtaining a proper response, these values are compared to the target vector, and if there is the
difference, the values are returned to select better weights for the vectors.
By increasing the number of input parameters, layers and neurons, the calculation of each
parameter effect on the network becomes more complicated. Since 1980, many methods are
presented for interpreting the effect of each parameter on the network. In this study analysis
concerning the weights, size is used.
Analysis concerning the size of the weight is based on the stored values in the weight matrix to
determine the effect of input parameters on outputs. In this study, the presented relation by
Garson [21] is used to evaluate the effect of input parameters on outputs (equation 1).
1
1
1 1
1
( )
( ( ))
l
ij
jk
N
j
rj
r
ik
N l
ij
jk
N
r j
rj
r
w
v
w
Q
w
v
w


 




 

(1)
M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 15
Where:
N: the input neurons,
L: the hidden neurons,
1
N
rj
r
w

 : The sum of N input neurons and j hidden neurons weights
ik
Q : the effect percent of input parameter xi on the output yk
For the calculation of the effect of input parameters on the outputs, the weight of the hidden layer
shall be used. Input and output weights of ANN are presented in Table 2 and 3:
Table 2
The weights of the input layer.
Input nodes X (mm) Y (mm) f’c (MPa) Al Fy (KN) At Fyt /S (N/mm)
Input Weights
0.90496 -0.00676 1.0286 -0.84106 0.16771
-1.1542 -0.69404 -1.779 -0.82361 -1.3617
-0.15887 -0.81979 0.80089 0.48162 2.0927
2.0442 -0.5652 0.88515 5.1367 0.55387
-2.0988 0.76904 0.44781 1.8936 1.7398
-0.93063 -1.1389 -1.0987 1.7881 -0.68459
-0.39337 -0.49757 -0.35269 -0.58626 -1.0928
-0.06803 0.59484 1.0416 -0.17973 1.6589
Table 3
Weights of output layer
Input nodes X (mm) Y (mm) f’c (MPa) Al Fy (KN) At Fyt /S (N/mm)
Target Weights -1.8417 1.2028 0.66981 0.86408 -0.88664
16 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
Substituting the weight values of the hidden layer in equation (1), the effect of input parameters
on network outputs can be determined. The values of relative effect percentage of each of the 5
input parameters are presented in figure 5 and Table 4.
Fig. 5. effect percentage of input parameters on network outputs.
Table 4
Effect percentage of input parameters on network outputs.
Parameter X (mm) Y (mm) f’c (MPa) Al Fy (kN) At Fyt /S (N/mm)
Effect (%) 15.51 13.07 20.25 24.93 26.24
According to the above table, it can be concluded that AtFyt/s parameter with relative effect
percentage of 26.24% has the most effect on network output. It means that the target vector
(ultimate torsion moment) has high sensitivity to AtFyt/s variations. On the other hand, Y (the
larger dimension of the beam) parameter with relative effect percentage of 13.07% has the least
effect on the ultimate torsion moment.
5. Conclusion
In this study, a model presented for calculation of reinforced concrete beams ultimate torsion
moment using artificial neural network algorithm. Using the existing technical data, the results of
experiments on 112 reinforced concrete beams under pure torsion have been gathered. After
network training for validation of the network outputs, simulation of the existing data was
performed and resulted in highly accurate outputs and proved the ability of the trained neural
0.00
5.00
10.00
15.00
20.00
25.00
30.00
X Y f'c Al.Fyl At.Fyt/s
effect
of
each
parameters
(%)
M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 17
network for estimation of torsion capacity of the reinforced concrete beams. The maximum error
between the experimental results and the network output results was 30%.
Also by analyzing the network weights, it was concluded that in reinforced concrete beams, a
variation of traverse reinforcements has the most effect on the torsion moment.
Reference
[1] Chiu H-J, Fang I-K, Young W-T, Shiau J-K. Behavior of reinforced concrete beams with minimum
torsional reinforcement. Eng Struct 2007;29:2193–205. doi:10.1016/j.engstruct.2006.11.004.
[2] Victor DJ, Muthukrishnan R. Effect of stirrups on ultimate torque of reinforced concrete beams. J.
Proc., vol. 70, 1973, p. 300–6.
[3] Rasmussen LJ, Baker G. Assessment of the torsional strength in reinforced normal and high
strength concrete beams. Trans Inst Eng Aust Civ Eng 1994;36:165–71.
[4] Rasmussen LJ, Baker G. Torsion in reinforced normal and high-strength concrete beams part 1:
experimental test series. Struct J 1995;92:56–62.
[5] E. McMullen A, Rangan BV. Pure torsion in rectangular section-A reexamination. Struct J
1978;75:511–9.
[6] Collins MP, Mitchell D. SHEAR AND TORSION DESIGN OF PRESTRESSED AND NON
PRESTRESSED CONCRETE BEAMS. Struct J 1980;25:32–100.
[7] Hsu TTC. Torsion of structural concrete-behavior of reinforced concrete rectangular members.
Spec Publ 1968;18:261–306.
[8] Ni H-G, Wang J-Z. Prediction of compressive strength of concrete by neural networks. Cem Concr
Res 2000;30:1245–50. doi:10.1016/S0008-8846(00)00345-8.
[9] Naderpour H, Kheyroddin A, Amiri GG. Prediction of FRP-confined compressive strength of
concrete using artificial neural networks. Compos Struct 2010;92:2817–29.
doi:10.1016/j.compstruct.2010.04.008.
[10] Perera R, Arteaga A, Diego A De. Artificial intelligence techniques for prediction of the capacity
of RC beams strengthened in shear with external FRP reinforcement. Compos Struct
2010;92:1169–75. doi:10.1016/j.compstruct.2009.10.027.
[11] Perera R, Barchín M, Arteaga A, Diego A De. Prediction of the ultimate strength of reinforced
concrete beams FRP-strengthened in shear using neural networks. Compos Part B Eng
2010;41:287–98. doi:10.1016/j.compositesb.2010.03.003.
[12] Jodaei A, Jalal M, Yas MH. Free vibration analysis of functionally graded annular plates by state-
space based differential quadrature method and comparative modeling by ANN. Compos Part B
Eng 2012;43:340–53. doi:10.1016/j.compositesb.2011.08.052.
[13] Adhikary BB, Mutsuyoshi H. Artificial neural networks for the prediction of shear capacity of steel
plate strengthened RC beams. Constr Build Mater 2004;18:409–17.
doi:10.1016/j.conbuildmat.2004.03.002.
[14] Leonhardt F, Schelling G. Torsionsversuche an Stahl betonbalken. Dtsch Ausschuss Für Stahlbet
1974:122.
[15] Mitchell D, Collins MP. Diagonal compression field theory-a rational model for structural concrete
in pure torsion. J. Proc., vol. 71, 1974, p. 396–408.
[16] Koutchoukali N-E, Belarbi A. Torsion of high-strength reinforced concrete beams and minimum
reinforcement requirement. Struct J 2001;98:462–9.
18 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18
[17] Fang I-K, Shiau J-K. Torsional behavior of normal-and high-strength concrete beams. ACI Struct J
2004;101:304–13.
[18] Peng X-N, Wong Y-L. Behavior of reinforced concrete walls subjected to monotonic pure
torsion—An experimental study. Eng Struct 2011;33:2495–508.
doi:10.1016/j.engstruct.2011.04.022.
[19] ACI. Guide for the design and construction of externally bonded FRP systems for strengthening
concrete structures, in Rep. No. 440 2R-08. 2008.
[20] FIB. Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for
reinforced concrete structures. 2001.
[21] Garson GD. Interpreting neural-network connection weights. AI Expert 1991;6:46–51.

More Related Content

What's hot

Ao4101231237
Ao4101231237Ao4101231237
Ao4101231237
IJERA Editor
 
Unguided crack growth simulation in asymmetric specimens using bond-based per...
Unguided crack growth simulation in asymmetric specimens using bond-based per...Unguided crack growth simulation in asymmetric specimens using bond-based per...
Unguided crack growth simulation in asymmetric specimens using bond-based per...
IRJET Journal
 
A simulation based multi-objective design optimization of electronic packages...
A simulation based multi-objective design optimization of electronic packages...A simulation based multi-objective design optimization of electronic packages...
A simulation based multi-objective design optimization of electronic packages...
Phuong Dx
 
Molecular dynamics simulation
Molecular dynamics simulationMolecular dynamics simulation
Molecular dynamics simulation
csandit
 
Investigations on material casualty of plates under impact load conditions
Investigations on material casualty of plates under impact load conditionsInvestigations on material casualty of plates under impact load conditions
Investigations on material casualty of plates under impact load conditions
eSAT Journals
 
Investigations on material casualty of plates under
Investigations on material casualty of plates underInvestigations on material casualty of plates under
Investigations on material casualty of plates under
eSAT Publishing House
 
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESGNumber of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
journalBEEI
 
Compressive stregnth of concerte using image processing ANM & ML
Compressive stregnth of concerte using image processing ANM & MLCompressive stregnth of concerte using image processing ANM & ML
Compressive stregnth of concerte using image processing ANM & ML
SujitMundhe
 
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using FeaMicro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
theijes
 
Prediction of Deflection and Stresses of Laminated Composite Plate with Arti...
Prediction of Deflection and Stresses of Laminated Composite  Plate with Arti...Prediction of Deflection and Stresses of Laminated Composite  Plate with Arti...
Prediction of Deflection and Stresses of Laminated Composite Plate with Arti...
IJMER
 
Experimental investigation on circular hollow steel
Experimental investigation on circular hollow steelExperimental investigation on circular hollow steel
Experimental investigation on circular hollow steel
eSAT Publishing House
 
Micromechanical analysis of frp composites 2
Micromechanical analysis of frp composites 2Micromechanical analysis of frp composites 2
Micromechanical analysis of frp composites 2IAEME Publication
 
16 siddareddy.bathini 13
16 siddareddy.bathini 1316 siddareddy.bathini 13
16 siddareddy.bathini 13
Alexander Decker
 
S vol 3 10-70
S vol 3 10-70S vol 3 10-70
S vol 3 10-70
AbdoHassan41
 
Gigliotti_Pinho_MST_Accepted_Manuscript
Gigliotti_Pinho_MST_Accepted_ManuscriptGigliotti_Pinho_MST_Accepted_Manuscript
Gigliotti_Pinho_MST_Accepted_ManuscriptLuigi Gigliotti
 
Dissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdfDissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdf
Goldi Patil
 
Damage Detection based on the Natural Frequency shifting of a clamped rectang...
Damage Detection based on the Natural Frequency shifting of a clamped rectang...Damage Detection based on the Natural Frequency shifting of a clamped rectang...
Damage Detection based on the Natural Frequency shifting of a clamped rectang...
Irfan Hilmy
 

What's hot (17)

Ao4101231237
Ao4101231237Ao4101231237
Ao4101231237
 
Unguided crack growth simulation in asymmetric specimens using bond-based per...
Unguided crack growth simulation in asymmetric specimens using bond-based per...Unguided crack growth simulation in asymmetric specimens using bond-based per...
Unguided crack growth simulation in asymmetric specimens using bond-based per...
 
A simulation based multi-objective design optimization of electronic packages...
A simulation based multi-objective design optimization of electronic packages...A simulation based multi-objective design optimization of electronic packages...
A simulation based multi-objective design optimization of electronic packages...
 
Molecular dynamics simulation
Molecular dynamics simulationMolecular dynamics simulation
Molecular dynamics simulation
 
Investigations on material casualty of plates under impact load conditions
Investigations on material casualty of plates under impact load conditionsInvestigations on material casualty of plates under impact load conditions
Investigations on material casualty of plates under impact load conditions
 
Investigations on material casualty of plates under
Investigations on material casualty of plates underInvestigations on material casualty of plates under
Investigations on material casualty of plates under
 
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESGNumber of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
Number of Iteration Analysis for Complex FSS Shape Using GA for Efficient ESG
 
Compressive stregnth of concerte using image processing ANM & ML
Compressive stregnth of concerte using image processing ANM & MLCompressive stregnth of concerte using image processing ANM & ML
Compressive stregnth of concerte using image processing ANM & ML
 
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using FeaMicro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
Micro Mechanical Modeling of Fiber / Epoxy Unidirectional Laminates Using Fea
 
Prediction of Deflection and Stresses of Laminated Composite Plate with Arti...
Prediction of Deflection and Stresses of Laminated Composite  Plate with Arti...Prediction of Deflection and Stresses of Laminated Composite  Plate with Arti...
Prediction of Deflection and Stresses of Laminated Composite Plate with Arti...
 
Experimental investigation on circular hollow steel
Experimental investigation on circular hollow steelExperimental investigation on circular hollow steel
Experimental investigation on circular hollow steel
 
Micromechanical analysis of frp composites 2
Micromechanical analysis of frp composites 2Micromechanical analysis of frp composites 2
Micromechanical analysis of frp composites 2
 
16 siddareddy.bathini 13
16 siddareddy.bathini 1316 siddareddy.bathini 13
16 siddareddy.bathini 13
 
S vol 3 10-70
S vol 3 10-70S vol 3 10-70
S vol 3 10-70
 
Gigliotti_Pinho_MST_Accepted_Manuscript
Gigliotti_Pinho_MST_Accepted_ManuscriptGigliotti_Pinho_MST_Accepted_Manuscript
Gigliotti_Pinho_MST_Accepted_Manuscript
 
Dissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdfDissertation-_jufri_hazlan_11377.pdf
Dissertation-_jufri_hazlan_11377.pdf
 
Damage Detection based on the Natural Frequency shifting of a clamped rectang...
Damage Detection based on the Natural Frequency shifting of a clamped rectang...Damage Detection based on the Natural Frequency shifting of a clamped rectang...
Damage Detection based on the Natural Frequency shifting of a clamped rectang...
 

Similar to Calculation of Torsion Capacity of the Reinforced Concrete Beams Using Artificial Neural Network

Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
Journal of Soft Computing in Civil Engineering
 
DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
 DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN... DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
IAEME Publication
 
Ijciet 10 02_053
Ijciet 10 02_053Ijciet 10 02_053
Ijciet 10 02_053
IAEME Publication
 
New model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprNew model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprIAEME Publication
 
New model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprNew model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprIAEME Publication
 
The effective width in multi girder composite steel beams with web openings
The effective width in multi girder composite steel beams with web openingsThe effective width in multi girder composite steel beams with web openings
The effective width in multi girder composite steel beams with web openings
IAEME Publication
 
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET Journal
 
infilled frame
infilled frame infilled frame
infilled frame
Vito Gerardi
 
Comparative Study of Girders for Bridge by Using Software
Comparative Study of Girders for Bridge by Using SoftwareComparative Study of Girders for Bridge by Using Software
Comparative Study of Girders for Bridge by Using Software
IJERA Editor
 
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
IAEME Publication
 
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
inventionjournals
 
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
Pouyan Fakharian
 
Mechanics of chain-link wire nets
Mechanics of chain-link wire netsMechanics of chain-link wire nets
Mechanics of chain-link wire netsJuan Escallón
 
size effect on fracture
size effect on fracturesize effect on fracture
size effect on fractureAly Domiaty
 
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTIONMODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
IAEME Publication
 
IRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical PasswordsIRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical Passwords
IRJET Journal
 
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
IJERA Editor
 
Practical analysis procedures of steel portal frames having different connect...
Practical analysis procedures of steel portal frames having different connect...Practical analysis procedures of steel portal frames having different connect...
Practical analysis procedures of steel portal frames having different connect...
Ali Msabawy
 

Similar to Calculation of Torsion Capacity of the Reinforced Concrete Beams Using Artificial Neural Network (20)

Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
Comparison Study of Soft Computing Approaches for Estimation of the Non-Ducti...
 
DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
 DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN... DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FIN...
 
Ijciet 10 02_053
Ijciet 10 02_053Ijciet 10 02_053
Ijciet 10 02_053
 
New model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprNew model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann appr
 
New model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann apprNew model of cfrp confined circular concrete columns ann appr
New model of cfrp confined circular concrete columns ann appr
 
The effective width in multi girder composite steel beams with web openings
The effective width in multi girder composite steel beams with web openingsThe effective width in multi girder composite steel beams with web openings
The effective width in multi girder composite steel beams with web openings
 
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
 
infilled frame
infilled frame infilled frame
infilled frame
 
Comparative Study of Girders for Bridge by Using Software
Comparative Study of Girders for Bridge by Using SoftwareComparative Study of Girders for Bridge by Using Software
Comparative Study of Girders for Bridge by Using Software
 
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHIN...
 
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
Non Linear Analysis of Composite Beam Slab Junction with Shear Connectors usi...
 
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-N...
 
Mechanics of chain-link wire nets
Mechanics of chain-link wire netsMechanics of chain-link wire nets
Mechanics of chain-link wire nets
 
size effect on fracture
size effect on fracturesize effect on fracture
size effect on fracture
 
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTIONMODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION
 
20320140503007
2032014050300720320140503007
20320140503007
 
IRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical PasswordsIRJET-Authentication System – Overview of Graphical Passwords
IRJET-Authentication System – Overview of Graphical Passwords
 
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
Experimental Study, Simulation and Model Predictions of Recycled PET Strip-Re...
 
Paper no. 1
Paper no. 1Paper no. 1
Paper no. 1
 
Practical analysis procedures of steel portal frames having different connect...
Practical analysis procedures of steel portal frames having different connect...Practical analysis procedures of steel portal frames having different connect...
Practical analysis procedures of steel portal frames having different connect...
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 

Calculation of Torsion Capacity of the Reinforced Concrete Beams Using Artificial Neural Network

  • 1. Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 How to cite this article: Ilkhani MH, Moradi E, Lavasani M. Calculation of torsion capacity of the reinforced concrete beams using artificial neural network. J Soft Comput Civ Eng 2017;1(2):08–18. https://doi.org/10.22115/scce.2017.48685. 2588-2872/ © 2017 The Authors. Published by Pouyan Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Contents lists available at SCCE Journal of Soft Computing in Civil Engineering Journal homepage: www.jsoftcivil.com Calculation of Torsion Capacity of the Reinforced Concrete Beams Using Artificial Neural Network M.H. Ilkhani1 , E. Moradi1 , M. Lavasani2* 1. Ph.D. Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran 2. Ph.D., Florida International University, Miami, FL, USA Corresponding author: ssada006@fiu.edu https://doi.org/10.22115/SCCE.2017.48685 ARTICLE INFO ABSTRACT Article history: Received: 13 June 2017 Revised: 12 July 2017 Accepted: 24 July 2017 This paper presents a model for calculation of torsion capacity of the reinforced concrete beams using the artificial neural network. Considering the complex reaction of reinforced concrete beams under torsion moments, torsion strength of these beams is depended on different parameters; therefore using the artificial neural network is a proper method for estimating the torsion capacity of the beams. In the presented model the beam's dimensions, concrete compressive strength and longitudinal and traverse bars properties are the input data, and torsion capacity of the reinforced concrete beam is the output of the model. Also considering the neural network results, a sensitivity analysis is performed on the network layers weight, and the effect of different parameters is evaluated on the torsion strength of the reinforced concrete beams. According to the sensitivity analysis, properties of traverse steel have the most effect on torsion capacity of the beams. Keywords: Neural network; Torsion; RC beam. 1. Introduction In structural design, usually the effect of the torsional moment is neglected, and members are designed only for stresses due to bending, shear and axial loads. However, the amount of torsion
  • 2. M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 9 in lateral beams or the beams connected to a slab or another beam in one side is significant, and even a small amount of torsion can cause high stresses. Since failure due to torsion is a brittle and non-predictable failure, therefore designing against torsion becomes essential. There are not several studies conducted on the reinforced concrete beams behavior under torsion up to now. H.J. Chiu et al. have studied 13 reinforced concrete beams specimens in two types of high strength concrete and regular concrete. The purpose of this study was to investigate the cracks pattern, torsion strength and deformation of the beams under pure torsion loading. The results showed that hollow beams have less torsion strength against cracking concerning filled rectangular beams and increasing the ratio in the beams section causes lesser torsion strength, cracking and increasing of the cracks widths [1]. Victor and Muthukrishnan have investigated the effect of varying number of stirrups on the torsion capacity of the reinforced concrete beams and presented an empirical relation for the share of stirrups in the torsion capacity [2]. Rasmussen and Baker have studied the behavior of high strength concrete, and ordinary concrete beams under pure torsion [3,4]. The results showed that high strength concrete increases the torsion capacity and stiffness. McMullen and Rangan have investigated rectangular reinforced concrete beams by varying dimensional ratios and the number of stirrups [5]. Authors concluded that longitudinal stirrups are more effective in controlling traverse cracks than traverse stirrups [6,7]. Although many relations have been presented for reinforced concrete beams under pure torsion, in this study, the behavior of rectangular reinforced concrete beams under pure torsion load has investigated using the neural network, and finally, the weight effect of each of the input parameters on the target function (ultimate torsion capacity) has studied. 2. The artificial neural network model Neural networks can be assumed as a very simplified electronic model of the human brain neural structure. The learning and training mechanism of the brain is experimental. The electronic neural network models are based on the same pattern, and the analysis method of these models is different from the usual calculation method of computer systems. Artificial neural networks (ANN) are suitable tools for predicting of the non-existing situations based on the existing conditions. In other words, artificial neural networks can interpret the relations between the parameters of one phenomenon and the phenomenon using the training based on experience. In recent years the neural networks have been used by many researchers for many of the civil engineering systems including predicting of surrounded and non-surrounded concrete
  • 3. 10 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 compressive strength [8,9], predicting of ultimate shear strength of concrete beams reinforced with FRP [10,11] and their free vibration analysis [12] and predicting of shear capacity of concrete beams reinforced with steel plates [13]. In general, artificial neural networks are consisting of three layers including the input layer, middle or hidden layer and an output layer. The presented data to the network including the variables and target function resulted from them are placed in the input and output layers respectively. Then by regulating the weights in the middle layer, a pattern is obtained to achieve the target values from the input data. This trend is called training the network for predicting the target values. The number of data and less number of input variables result in better training of the network and more reliable obtained weights and more accurate network prediction. Therefore the essential step in modeling a reliable and proper artificial neural network is collecting an appropriate number of experimental accurate and homogenous data (the more number of data used in modeling will result in better specifying relations among variables by the network). In this study, 112 homogenous experimental data have been gathered [1,3–5,7,14–18]. The homogenous data is defined as the data in which the behaviors of the specimens are similar, and shear causes the failure under torsion moment. For example, beams that are failed under a combination of torsion and bending moment cannot be considered for torsion strength study. After gathering suitable data for using in the network, selection of effective parameters in the target values shall be concerned. Studying the existing researches and the relations in the certified regulations [19,20], the following parameters have specified to be effective in torsion capacity of the reinforced concrete beam:  X: rectangular reinforced concrete beam section width  Y: rectangular reinforced concrete beam section height  f’c: concrete compressive strength  AL: total cross section of longitudinal bars  Fyl: longitudinal bars yield stress  At: total cross section of traverse bars  Fyt: traverse bars yield stress  s: distance between traverse bars To reduce the number of input variables, some of the related parameters are combined with each other, and finally, the following five parameters are introduced to the network as the input variables:  X: rectangular reinforced concrete beam section width, in mm  Y: rectangular reinforced concrete beam section height, in mm  f’c: concrete compressive strength, in MPa
  • 4. M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 11  AL Fyl: effect of longitudinal bars, in KN  At Fyt /s: effect of traverse bars, in N/mm The ultimate bending moment for the beams (Tu) which is obtained from the experiments is considered as the target value for each input. The number of the neuron in the hidden layer is considered as 8. The MSE graph of this network is shown in figure 1. As it is seen in the figure, MSE starts from high values and decreases to lower values. This shows the learning process of the network is successful. At the beginning of learning, the network has a rather high error and with the continuation of learning and changing the used weights in the 31st step the amounts of errors reaches to 0.005, 0.09 and 0.1 for Training, Validation and Test respectively. This graph has three curves, each of them represents a group of Training, Validation, and Test data. The graphs of procedure of learning and data regression values are presented in Figures 2 and 3 respectively. The reducing of the gradient in figure 2 represents the network procedure of learning. The reduction of gradient continues until MSE value reaches its minimum. From this point on the network, learning stops and the gradient value becomes constant. The amount of regression shown in figure 3 indicates a good network learning and close relation between the target vector and the network output. Fig. 1. MSE graph during training of the trained artificial neural network.
  • 5. 12 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 Fig. 2. The learning graph of the trained artificial neural network. It can be concluded that the modeled network is trained well concerning the input and output data. Therefore, this network is chosen, and its results are compared with the existing relations for ultimate torsion moment. 3. Validation of artificial neural network results To validate the artificial neural network results, a comparison is made between the experimental results and the network results. Figure 4 shows the experimental results for the ultimate torsion moment, which are the target vector in network training, versus the output values, resulted from neural network simulation. In the presented curves the points corresponding to the 45-degree line, indicate the proper prediction of the model and no difference between the experimental results and the estimated values by the network and distance from this line indicates the error percentage of the model. As it can be seen, most of the points of the network prediction fall in the neighborhood of 45-degree line which indicates the accuracy of the network. %83 of the data has less than 10% error concerning the experimental results. Also, % 97.3of the data has less than 20% error concerning the experimental results. Summary of the network function is presented in Table 1. Considering figure 4 and Table 1, it can be concluded that the maximum error between the experimental results and the network output results is 30%.
  • 6. M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 13 Fig. 3. Fitting of the neural network data related to Training, Validation, and Test Fig. 4. comparison between artificial neural network data and the experimental results. 0 50 100 150 200 250 300 0 50 100 150 200 250 300 torsional contribution from A nn (kNm) experimental torsional contribution (kNm)
  • 7. 14 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 Table 1 comparison between artificial neural network error and the existing relations. The range of error (%) Number of data in the range of error Percentage of data in the range of error (%) ±5 60 53.5 ±10 93 83 ±15 102 91 ±20 109 97.3 ±25 111 99.1 ±30 112 100 4. Effect of network input parameters on output data In the artificial neural network system, each neuron has an internal weight, which affects the input values of the neuron and directs the weight vectors to the excitation functions. It may be required for a vector to displace in the vector space in addition to changing its weight; this can be done by adding a bias to the weight matrix. Then the weight values are transferred to the excitation functions, and the output function achieves its primary value and considering obtaining a proper response, these values are compared to the target vector, and if there is the difference, the values are returned to select better weights for the vectors. By increasing the number of input parameters, layers and neurons, the calculation of each parameter effect on the network becomes more complicated. Since 1980, many methods are presented for interpreting the effect of each parameter on the network. In this study analysis concerning the weights, size is used. Analysis concerning the size of the weight is based on the stored values in the weight matrix to determine the effect of input parameters on outputs. In this study, the presented relation by Garson [21] is used to evaluate the effect of input parameters on outputs (equation 1). 1 1 1 1 1 ( ) ( ( )) l ij jk N j rj r ik N l ij jk N r j rj r w v w Q w v w            (1)
  • 8. M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 15 Where: N: the input neurons, L: the hidden neurons, 1 N rj r w   : The sum of N input neurons and j hidden neurons weights ik Q : the effect percent of input parameter xi on the output yk For the calculation of the effect of input parameters on the outputs, the weight of the hidden layer shall be used. Input and output weights of ANN are presented in Table 2 and 3: Table 2 The weights of the input layer. Input nodes X (mm) Y (mm) f’c (MPa) Al Fy (KN) At Fyt /S (N/mm) Input Weights 0.90496 -0.00676 1.0286 -0.84106 0.16771 -1.1542 -0.69404 -1.779 -0.82361 -1.3617 -0.15887 -0.81979 0.80089 0.48162 2.0927 2.0442 -0.5652 0.88515 5.1367 0.55387 -2.0988 0.76904 0.44781 1.8936 1.7398 -0.93063 -1.1389 -1.0987 1.7881 -0.68459 -0.39337 -0.49757 -0.35269 -0.58626 -1.0928 -0.06803 0.59484 1.0416 -0.17973 1.6589 Table 3 Weights of output layer Input nodes X (mm) Y (mm) f’c (MPa) Al Fy (KN) At Fyt /S (N/mm) Target Weights -1.8417 1.2028 0.66981 0.86408 -0.88664
  • 9. 16 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 Substituting the weight values of the hidden layer in equation (1), the effect of input parameters on network outputs can be determined. The values of relative effect percentage of each of the 5 input parameters are presented in figure 5 and Table 4. Fig. 5. effect percentage of input parameters on network outputs. Table 4 Effect percentage of input parameters on network outputs. Parameter X (mm) Y (mm) f’c (MPa) Al Fy (kN) At Fyt /S (N/mm) Effect (%) 15.51 13.07 20.25 24.93 26.24 According to the above table, it can be concluded that AtFyt/s parameter with relative effect percentage of 26.24% has the most effect on network output. It means that the target vector (ultimate torsion moment) has high sensitivity to AtFyt/s variations. On the other hand, Y (the larger dimension of the beam) parameter with relative effect percentage of 13.07% has the least effect on the ultimate torsion moment. 5. Conclusion In this study, a model presented for calculation of reinforced concrete beams ultimate torsion moment using artificial neural network algorithm. Using the existing technical data, the results of experiments on 112 reinforced concrete beams under pure torsion have been gathered. After network training for validation of the network outputs, simulation of the existing data was performed and resulted in highly accurate outputs and proved the ability of the trained neural 0.00 5.00 10.00 15.00 20.00 25.00 30.00 X Y f'c Al.Fyl At.Fyt/s effect of each parameters (%)
  • 10. M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 17 network for estimation of torsion capacity of the reinforced concrete beams. The maximum error between the experimental results and the network output results was 30%. Also by analyzing the network weights, it was concluded that in reinforced concrete beams, a variation of traverse reinforcements has the most effect on the torsion moment. Reference [1] Chiu H-J, Fang I-K, Young W-T, Shiau J-K. Behavior of reinforced concrete beams with minimum torsional reinforcement. Eng Struct 2007;29:2193–205. doi:10.1016/j.engstruct.2006.11.004. [2] Victor DJ, Muthukrishnan R. Effect of stirrups on ultimate torque of reinforced concrete beams. J. Proc., vol. 70, 1973, p. 300–6. [3] Rasmussen LJ, Baker G. Assessment of the torsional strength in reinforced normal and high strength concrete beams. Trans Inst Eng Aust Civ Eng 1994;36:165–71. [4] Rasmussen LJ, Baker G. Torsion in reinforced normal and high-strength concrete beams part 1: experimental test series. Struct J 1995;92:56–62. [5] E. McMullen A, Rangan BV. Pure torsion in rectangular section-A reexamination. Struct J 1978;75:511–9. [6] Collins MP, Mitchell D. SHEAR AND TORSION DESIGN OF PRESTRESSED AND NON PRESTRESSED CONCRETE BEAMS. Struct J 1980;25:32–100. [7] Hsu TTC. Torsion of structural concrete-behavior of reinforced concrete rectangular members. Spec Publ 1968;18:261–306. [8] Ni H-G, Wang J-Z. Prediction of compressive strength of concrete by neural networks. Cem Concr Res 2000;30:1245–50. doi:10.1016/S0008-8846(00)00345-8. [9] Naderpour H, Kheyroddin A, Amiri GG. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos Struct 2010;92:2817–29. doi:10.1016/j.compstruct.2010.04.008. [10] Perera R, Arteaga A, Diego A De. Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement. Compos Struct 2010;92:1169–75. doi:10.1016/j.compstruct.2009.10.027. [11] Perera R, Barchín M, Arteaga A, Diego A De. Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks. Compos Part B Eng 2010;41:287–98. doi:10.1016/j.compositesb.2010.03.003. [12] Jodaei A, Jalal M, Yas MH. Free vibration analysis of functionally graded annular plates by state- space based differential quadrature method and comparative modeling by ANN. Compos Part B Eng 2012;43:340–53. doi:10.1016/j.compositesb.2011.08.052. [13] Adhikary BB, Mutsuyoshi H. Artificial neural networks for the prediction of shear capacity of steel plate strengthened RC beams. Constr Build Mater 2004;18:409–17. doi:10.1016/j.conbuildmat.2004.03.002. [14] Leonhardt F, Schelling G. Torsionsversuche an Stahl betonbalken. Dtsch Ausschuss Für Stahlbet 1974:122. [15] Mitchell D, Collins MP. Diagonal compression field theory-a rational model for structural concrete in pure torsion. J. Proc., vol. 71, 1974, p. 396–408. [16] Koutchoukali N-E, Belarbi A. Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement. Struct J 2001;98:462–9.
  • 11. 18 M.H. Ilkhani et al./ Journal of Soft Computing in Civil Engineering 1-2 (2017) 08-18 [17] Fang I-K, Shiau J-K. Torsional behavior of normal-and high-strength concrete beams. ACI Struct J 2004;101:304–13. [18] Peng X-N, Wong Y-L. Behavior of reinforced concrete walls subjected to monotonic pure torsion—An experimental study. Eng Struct 2011;33:2495–508. doi:10.1016/j.engstruct.2011.04.022. [19] ACI. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, in Rep. No. 440 2R-08. 2008. [20] FIB. Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. 2001. [21] Garson GD. Interpreting neural-network connection weights. AI Expert 1991;6:46–51.