Se usará el método de secciones, ya que se desea calcular las fuerzas en un
número reducido de barras en la armadura.

Dibujamos el diagrama de cuerpo libre:

!!

20!!"!

20!!"!

!!

36!!"!
2,4!!!

!!
!!

!!
omplete Online Solutions Manual Organization System

!!

B
!

4, Solution 19.

4,5!!!

4,5!!!

4,5!!!

COSMOS: Complete Online Solutions Manual Organization System

dy Diagram:

Aplicando las ecuaciones de equilibrio obtenemos:

OSMOS: Complete Online Solutions (a) From free-body diagram
Manual Organization System

Chapter 4, Solution 19.

of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0

𝑀! = 0:          36 2,4 − 𝐵 13,5 + 20 9 +   20 4,5 = 0

hapter 4, Solution 19.

Free-Body Diagram:
(b) From free-body diagram of lever BCD of lever BCD
(a) From free-body diagram

Free-Body Diagram:

Then
and

∴ TAB = 300

36 2,4 + 0: + 9 ( 300mm4,5 200
ΣFx = 0: 200M C  +=C20 TAB +   20 ) )= 0 N ( 75 mm ) = 0
0.6 50 N −
Σ N
x
𝑩 =   
= 𝟐𝟔, 𝟒  𝒌𝑵   ↑
(a) From free-body diagram13,5 BCD
of lever
∴ C x = −380 N
or
C x = 380 N
∴ TAB = 300
ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0
Σ(b) =From C y + 0.8 ( 300 N ) = of lever BCD
Fy 0: free-body diagram 0
∴ TAB = 300
ΣFx = 0: 200 N C36 +    300 0
x
∴ C y = −240 N 0:                  +−C y+=0.6 (𝐾! =N ) = 0
240 N
𝐹! = or
(b) From free-body diagram of lever BCD
∴ C x = −380 N
or
C x = 380 N
2
2
2
2
C = CΣFx C y 0: 200 N)+ + x 240 ) ( 300 N ) = N
C ( + 0.6 = 449.44 0
x + = = ( 380
  𝑲 C + 0.8 ( 300
ΣFy = 0:𝒙 = y  𝟑𝟔  𝒌𝑵   →N ) = 0
or
C x = 380 N
C y ⎞ ∴ C x−1= − 380 ⎞
⎛
⎛ −240 N
θ = tan −1 ⎜ ⎟ = tan ⎜∴ C y = =240276° or
C y = 240 N
⎟ − 32. N
Σ⎜ C x=⎟ 0: C y ⎝ − 380 ⎠ N ) = 0
F
+ 0.8 ( 300
⎝y ⎠
𝐹! = 0:                  26,4 − 20 −2 20   +   𝐾! = 0
2
2
2

C =C C x −+ C yN= or or = 449240240= 449.44 N
( 380 ) +C( y N ) 32.3° ▹
C
∴ y = 240
=
N

Then

2
2
⎛ − 240 =
2
2 ⎛C ⎞
C x = tany−1 = y( 380tan+1 ( 240 ) ⎞ =449.44 N
θ + C ⎜ ⎟= ) − ⎜
⎟ 32.276°
⎜C ⎟
⎝ − 380 ⎠
⎝ x⎠
⎛ Cy ⎞
⎛ − 240 ⎞
θ = tan −1 ⎜ ⎟ = tan −1 ⎜
⎟ = 32.276° or C = 449 N
⎜C ⎟
− 380

Then and C =
and

32.3° ▹
 𝑲 𝒚 = 40 − 26,4 = 𝟏𝟑, 𝟔  𝒌𝑵   ↑
Al calcular el valor en cada componente de las reacciones, seccionara la
armadura en los elementos AD, CD y CE:
!!"
!!"

36!!"! !!

!!

!
17

1,2!!!

8!

15!
15!

!!
1,2!!!

17
!

8!

!!

!!

OS: Complete Online Solutions Manual Organization System

2,25!!!
!!"

26,4!!"!

ter 4, Solution 19.

-Body Diagram:

4,5!!!

Aplicando de nuevo las ecuaciones de equilibrio obtenemos:
(a) From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0

𝑀! =
COSMOS: Complete Online Solutions Manual Organization System

0:          36 1,2 − 26,4 2,25 − 𝐹!" 1,2 = 0

∴ TAB = 300

(b) From free-body diagram of lever BCD

ΣFx = 0: 36 1,2+ −x26,4 ( 300 N ) = 0
200 N C + 0.6 2,25

𝑭 𝑨𝑫 =   

Chapter 4, Solution 19.

∴ C x = −3801,2
N

OS: Complete Online Solutions Manual Organization System F
Σ y
Free-Body Diagram:
𝐹!" =

ter 4, Solution 19.

-Body Diagram:

Then

= −𝟏𝟑, 𝟓  𝒌𝑵  

or

C x = 380 N

= 0: C y + 0.8 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐    𝒆𝒏  𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒊𝒐𝒏
13,5  𝑘𝑁            𝑪  ( 300 N ) = 0

(a) From free-body diagram of lever BCD
∴ C y = −240 N
or
C y = 240 N
ΣM C = 0: TAB ( 50 mm8 − 200 N ( 75 mm ) = 0
) 2
𝑀!2 = ( 380 )2
2
C = C x + C y = 0:                     + ( 240 ) 𝐹!" 449.44 N 0
= 4,5 =
17

∴ TAB = 300

⎛ Cy ⎞
(b) From free-body diagram− 240 ⎞  0 BCD
⎛ of lever
and
θ = tan −1 ⎜ ⎟ = tan −1 ⎜𝐹!" = ⎟ = 32.276°
⎜C ⎟
⎝ +C
(a) From free-body diagram of leverN380 ⎠x + 0.6 ( 300 N ) = 0
⎠
⎝
ΣFx x = 0: 200 −BCD

N
32.3°
ΣM C = 0: TAB (∴ C 15 380 N ( 75C = ) = C = 380 N ▹
50 mm ) − 200 N or or 4490
−
mm
x =
x

𝑀! = 0:                    

𝐹!"

2,4    − 26,4 4,5 = 0

17
∴ TAB = 300
ΣFy = 0: C y + 0.8 ( 300 N ) = 0
(b) From free-body diagram of lever BCD
∴ C y = −240 N
or
C y = 240 N
ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0
2
2
2
2
C = C x + C y = ( 380 ) + ( 240 ) = 449.44 N
Then
∴ C x = −380 N
or
C x = 380 N
⎛ C y ⎞ N ⎛ − 240 ⎞
300
and ΣFy = 0: = C y −1 ⎜0.8 (⎟ = tan)−1= 0
θ tan +
⎟ = 32.276°
⎜
𝑭 𝑪𝑬 =   

17 26,4 4,5
= 𝟓𝟔, 𝟏  𝒌𝑵  
15 2,4

𝑭 𝑪𝑬 =   𝟓𝟔, 𝟏  𝒌𝑵            𝑻   𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐  𝒆𝒏  𝒕𝒓𝒂𝒄𝒄𝒊𝒐𝒏

Bryan

  • 1.
    Se usará elmétodo de secciones, ya que se desea calcular las fuerzas en un número reducido de barras en la armadura. Dibujamos el diagrama de cuerpo libre: !! 20!!"! 20!!"! !! 36!!"! 2,4!!! !! !! !! omplete Online Solutions Manual Organization System !! B ! 4, Solution 19. 4,5!!! 4,5!!! 4,5!!! COSMOS: Complete Online Solutions Manual Organization System dy Diagram: Aplicando las ecuaciones de equilibrio obtenemos: OSMOS: Complete Online Solutions (a) From free-body diagram Manual Organization System Chapter 4, Solution 19. of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = 0:          36 2,4 − 𝐵 13,5 + 20 9 +  20 4,5 = 0 hapter 4, Solution 19. Free-Body Diagram: (b) From free-body diagram of lever BCD of lever BCD (a) From free-body diagram Free-Body Diagram: Then and ∴ TAB = 300 36 2,4 + 0: + 9 ( 300mm4,5 200 ΣFx = 0: 200M C  +=C20 TAB +  20 ) )= 0 N ( 75 mm ) = 0 0.6 50 N − Σ N x 𝑩 =   = 𝟐𝟔, 𝟒  𝒌𝑵   ↑ (a) From free-body diagram13,5 BCD of lever ∴ C x = −380 N or C x = 380 N ∴ TAB = 300 ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 Σ(b) =From C y + 0.8 ( 300 N ) = of lever BCD Fy 0: free-body diagram 0 ∴ TAB = 300 ΣFx = 0: 200 N C36 +   300 0 x ∴ C y = −240 N 0:                  +−C y+=0.6 (𝐾! =N ) = 0 240 N 𝐹! = or (b) From free-body diagram of lever BCD ∴ C x = −380 N or C x = 380 N 2 2 2 2 C = CΣFx C y 0: 200 N)+ + x 240 ) ( 300 N ) = N C ( + 0.6 = 449.44 0 x + = = ( 380  𝑲 C + 0.8 ( 300 ΣFy = 0:𝒙 = y  𝟑𝟔  𝒌𝑵   →N ) = 0 or C x = 380 N C y ⎞ ∴ C x−1= − 380 ⎞ ⎛ ⎛ −240 N θ = tan −1 ⎜ ⎟ = tan ⎜∴ C y = =240276° or C y = 240 N ⎟ − 32. N Σ⎜ C x=⎟ 0: C y ⎝ − 380 ⎠ N ) = 0 F + 0.8 ( 300 ⎝y ⎠ 𝐹! = 0:                  26,4 − 20 −2 20   +  𝐾! = 0 2 2 2 C =C C x −+ C yN= or or = 449240240= 449.44 N ( 380 ) +C( y N ) 32.3° ▹ C ∴ y = 240 = N Then 2 2 ⎛ − 240 = 2 2 ⎛C ⎞ C x = tany−1 = y( 380tan+1 ( 240 ) ⎞ =449.44 N θ + C ⎜ ⎟= ) − ⎜ ⎟ 32.276° ⎜C ⎟ ⎝ − 380 ⎠ ⎝ x⎠ ⎛ Cy ⎞ ⎛ − 240 ⎞ θ = tan −1 ⎜ ⎟ = tan −1 ⎜ ⎟ = 32.276° or C = 449 N ⎜C ⎟ − 380 Then and C = and 32.3° ▹
  • 2.
     𝑲 𝒚 =40 − 26,4 = 𝟏𝟑, 𝟔  𝒌𝑵   ↑ Al calcular el valor en cada componente de las reacciones, seccionara la armadura en los elementos AD, CD y CE: !!" !!" 36!!"! !! !! ! 17 1,2!!! 8! 15! 15! !! 1,2!!! 17 ! 8! !! !! OS: Complete Online Solutions Manual Organization System 2,25!!! !!" 26,4!!"! ter 4, Solution 19. -Body Diagram: 4,5!!! Aplicando de nuevo las ecuaciones de equilibrio obtenemos: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = COSMOS: Complete Online Solutions Manual Organization System 0:          36 1,2 − 26,4 2,25 − 𝐹!" 1,2 = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 36 1,2+ −x26,4 ( 300 N ) = 0 200 N C + 0.6 2,25 𝑭 𝑨𝑫 =   Chapter 4, Solution 19. ∴ C x = −3801,2 N OS: Complete Online Solutions Manual Organization System F Σ y Free-Body Diagram: 𝐹!" = ter 4, Solution 19. -Body Diagram: Then = −𝟏𝟑, 𝟓  𝒌𝑵   or C x = 380 N = 0: C y + 0.8 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐    𝒆𝒏  𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒊𝒐𝒏 13,5  𝑘𝑁            𝑪  ( 300 N ) = 0 (a) From free-body diagram of lever BCD ∴ C y = −240 N or C y = 240 N ΣM C = 0: TAB ( 50 mm8 − 200 N ( 75 mm ) = 0 ) 2 𝑀!2 = ( 380 )2 2 C = C x + C y = 0:                     + ( 240 ) 𝐹!" 449.44 N 0 = 4,5 = 17 ∴ TAB = 300 ⎛ Cy ⎞ (b) From free-body diagram− 240 ⎞  0 BCD ⎛ of lever and θ = tan −1 ⎜ ⎟ = tan −1 ⎜𝐹!" = ⎟ = 32.276° ⎜C ⎟ ⎝ +C (a) From free-body diagram of leverN380 ⎠x + 0.6 ( 300 N ) = 0 ⎠ ⎝ ΣFx x = 0: 200 −BCD N 32.3° ΣM C = 0: TAB (∴ C 15 380 N ( 75C = ) = C = 380 N ▹ 50 mm ) − 200 N or or 4490 − mm x = x 𝑀! = 0:                     𝐹!" 2,4   − 26,4 4,5 = 0 17 ∴ TAB = 300 ΣFy = 0: C y + 0.8 ( 300 N ) = 0 (b) From free-body diagram of lever BCD ∴ C y = −240 N or C y = 240 N ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 2 2 2 2 C = C x + C y = ( 380 ) + ( 240 ) = 449.44 N Then ∴ C x = −380 N or C x = 380 N ⎛ C y ⎞ N ⎛ − 240 ⎞ 300 and ΣFy = 0: = C y −1 ⎜0.8 (⎟ = tan)−1= 0 θ tan + ⎟ = 32.276° ⎜
  • 3.
    𝑭 𝑪𝑬 =   17 26,4 4,5 = 𝟓𝟔, 𝟏  𝒌𝑵   15 2,4 𝑭 𝑪𝑬 =  𝟓𝟔, 𝟏  𝒌𝑵            𝑻   𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒐  𝒆𝒏  𝒕𝒓𝒂𝒄𝒄𝒊𝒐𝒏