1
Fast Multiplication
Bit-Pair Recoding of Multipliers
2
Bit-Pair Recoding of
Multipliers
Bit-pair recoding halves the maximum number of
summands (versions of the multiplicand).
1+1−
(a) Example of bit-pair recoding derived from Booth recoding
0
000
1 1 0 1 0
Implied 0 to right of LSB
1
0
Sign extension
1
21− −
−
3
Bit-Pair Recoding of
Multipliers
i 1+ i 1
(b) Table of multiplicand selection decisions
selected at position i
MultiplicandMultiplier bit-pair
i
0
0
1
1
1
0
1
0
1
1
1
1
0
0
0
1
1
0
0
1
0
0
1
Multiplier bit on the right
0 0 ×M
1+
1
1+
0
1
2
2+
−
−
−
−
×M
×M
×M
×M
×M
×M
×M
4
Bit-Pair Recoding of
Multipliers
1-
0000
1 1 1 1 1 0
0 0 0 0 11
1 1 1 1 10 0
0 0 0 0 0 0
0000 111111
0 1 1 0 1
0
1 010011111
1 1 1 1 0 0 1 1
0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 0
0
1
0 0
1 0
1
0 0
0
0 1
0
0 1
10
0
010
0 1 1 0 1
11
1-
6-( )
13+( )
1+
78-( )
1- 2-
´
Multiplication requiring only n/2 summands.

Bit pair recoding

  • 1.
  • 2.
    2 Bit-Pair Recoding of Multipliers Bit-pairrecoding halves the maximum number of summands (versions of the multiplicand). 1+1− (a) Example of bit-pair recoding derived from Booth recoding 0 000 1 1 0 1 0 Implied 0 to right of LSB 1 0 Sign extension 1 21− − −
  • 3.
    3 Bit-Pair Recoding of Multipliers i1+ i 1 (b) Table of multiplicand selection decisions selected at position i MultiplicandMultiplier bit-pair i 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 Multiplier bit on the right 0 0 ×M 1+ 1 1+ 0 1 2 2+ − − − − ×M ×M ×M ×M ×M ×M ×M
  • 4.
    4 Bit-Pair Recoding of Multipliers 1- 0000 11 1 1 1 0 0 0 0 0 11 1 1 1 1 10 0 0 0 0 0 0 0 0000 111111 0 1 1 0 1 0 1 010011111 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 10 0 010 0 1 1 0 1 11 1- 6-( ) 13+( ) 1+ 78-( ) 1- 2- ´ Multiplication requiring only n/2 summands.