BASIC FORMULA
SURFACE AREAS AND VOLUME
PRESENTED BY RAKESH VERMA
INDEX
• CUBE
• CUBOID
• RIGHT CIRCULAR CYLINDER
• CONE
• SPHERE
CUBE
IF THE LENGTH OF EACH EDGE OF A CABE IS A UNITS
• VOLUME OF CUBE= a³
• TOTAL SURFACE AREA=6a²
• DIGONAL OF CUB=a 3
CUBOID
• Let l,b and h denote respectively
the length,breadth and height of a
cuboid then.
• Volume = lbh
• Total surface = 2(lb+bh+lh)
• Digonal of the
cuboid= 𝑙2 + 𝑏2 + ℎ²
CYLINDER(RIGHT CIRCULAR CYLINDER)
• For base radius ‘r’ and height ‘h’ then.
• Curved surface area=2𝜋𝑟ℎ
• Total surface area=2𝜋𝑟(h+r)
• Volume= 𝜋𝑟²ℎ
HELLOW CYLINDER
• Let ‘R’ and ‘r’ be the external and
internal radius of a hellow cylinder of
height ‘h’ then.
• Curved surface area=2𝜋ℎ(R+r)
• Total surface area=2𝜋(𝑅 + 𝑟)(𝑅 +
ℎ − 𝑟)
• Volume = 𝜋ℎ(R²+r²)
CONE(RIGHT CIRCULAR CONE)
For a right circular cone of height ‘h’ slant
height ‘l’ and radius of base ‘r’
• Slant height = 𝑟2 + ℎ²
• Total surface area = 𝜋𝑟 𝑙 + 𝑟
• Curved surface area = 𝜋𝑟𝑙
• Volume =
1
3
𝜋𝑟²ℎ
CONE(FRUSTUM OF CONE)
• Slant height = ℎ2 + (𝑅 − 𝑟)²
• Total surface area = 𝜋𝑙 𝑅 + 𝑟 +
𝜋(𝑅 + 𝑟)
• Volume =
1
3
𝜋ℎ (R+Rr+r²)
• Lateral surface area = 𝜋𝑙 (𝑅 + 𝑟)
SPHERE
• For a sphere of radius ‘r’ we have.
• Surface area = 4𝜋𝑟²
• Volume =
4
3
𝜋𝑟³
HEMI SPHERE
• For a hemi sphere of radius ‘r’ we
have.
• Surface area = 2𝝅𝒓 𝟐
• Total surface area = 3 𝝅𝒓 𝟐
• Volume =
𝟐
𝟑
𝝅𝒓³
END
SPHERICAL SHELL
• If ‘R’ and ‘r’ are respectively the outer
and inner radius of a spherical shell.
• Outer surface area = = 4𝜋𝑅2
• Volume = ==
4
3
𝜋(𝑅³ − 𝑟3)

Basic formula

  • 1.
    BASIC FORMULA SURFACE AREASAND VOLUME PRESENTED BY RAKESH VERMA
  • 2.
    INDEX • CUBE • CUBOID •RIGHT CIRCULAR CYLINDER • CONE • SPHERE
  • 3.
    CUBE IF THE LENGTHOF EACH EDGE OF A CABE IS A UNITS • VOLUME OF CUBE= a³ • TOTAL SURFACE AREA=6a² • DIGONAL OF CUB=a 3
  • 4.
    CUBOID • Let l,band h denote respectively the length,breadth and height of a cuboid then. • Volume = lbh • Total surface = 2(lb+bh+lh) • Digonal of the cuboid= 𝑙2 + 𝑏2 + ℎ²
  • 5.
    CYLINDER(RIGHT CIRCULAR CYLINDER) •For base radius ‘r’ and height ‘h’ then. • Curved surface area=2𝜋𝑟ℎ • Total surface area=2𝜋𝑟(h+r) • Volume= 𝜋𝑟²ℎ
  • 6.
    HELLOW CYLINDER • Let‘R’ and ‘r’ be the external and internal radius of a hellow cylinder of height ‘h’ then. • Curved surface area=2𝜋ℎ(R+r) • Total surface area=2𝜋(𝑅 + 𝑟)(𝑅 + ℎ − 𝑟) • Volume = 𝜋ℎ(R²+r²)
  • 7.
    CONE(RIGHT CIRCULAR CONE) Fora right circular cone of height ‘h’ slant height ‘l’ and radius of base ‘r’ • Slant height = 𝑟2 + ℎ² • Total surface area = 𝜋𝑟 𝑙 + 𝑟 • Curved surface area = 𝜋𝑟𝑙 • Volume = 1 3 𝜋𝑟²ℎ
  • 8.
    CONE(FRUSTUM OF CONE) •Slant height = ℎ2 + (𝑅 − 𝑟)² • Total surface area = 𝜋𝑙 𝑅 + 𝑟 + 𝜋(𝑅 + 𝑟) • Volume = 1 3 𝜋ℎ (R+Rr+r²) • Lateral surface area = 𝜋𝑙 (𝑅 + 𝑟)
  • 9.
    SPHERE • For asphere of radius ‘r’ we have. • Surface area = 4𝜋𝑟² • Volume = 4 3 𝜋𝑟³
  • 10.
    HEMI SPHERE • Fora hemi sphere of radius ‘r’ we have. • Surface area = 2𝝅𝒓 𝟐 • Total surface area = 3 𝝅𝒓 𝟐 • Volume = 𝟐 𝟑 𝝅𝒓³
  • 11.
  • 12.
    SPHERICAL SHELL • If‘R’ and ‘r’ are respectively the outer and inner radius of a spherical shell. • Outer surface area = = 4𝜋𝑅2 • Volume = == 4 3 𝜋(𝑅³ − 𝑟3)