SlideShare a Scribd company logo
Seoul
신규 서비스 살펴보기
Thomas Park
Head of Solutions Architecture, Korea
What if you could devote 30% more of
your resources to your customers?
IT Map - Traditional IT
E-mail, Productivity,
Collaboration, HR,
Finance, ERP
Desktop Support, Device
Management, Telephony,
IT Support
Information Security, CISO
Encryption, Key Management, Identity
Management, Firewalls, IDS, DDoS
Business Applications
Digital Products, Brand
Websites, Mobile
Applications, Point of Sale
Systems, Commerce
Corporate Applications End User Computing
Infrastructure Servers, Storage, Networking, Databases,
Data Warehousing, Data Centers
IT Map - Traditional IT with AWS
Information Security, CISO
Corporate Applications End User Computing
Infrastructure
Business Applications
AWS Elastic Beanstalk,
AWS Lambda, Amazon SQS,
Amazon SNS, Amazon
Mobile Analytics, Amazon
CloudFront
Amazon WorkMail,
Amazon WorkDocs, AWS
Marketplace, AWS
Directory Service, SaaS
Amazon WorkSpaces,
Amazon AppStream, AWS
Marketplace, AWS Mobile
Services, SaaS
AWS Identity and Access Management
(IAM), AWS CloudHSM, AWS Key
Management Service (AWS KMS),
Security Groups, AWS Marketplace
Amazon EC2, Amazon S3, Amazon RDS, Amazon VPC,
Amazon Direct Connect, Directory Service, IAM, AWS
Service Catalog
Enterprise Customers
IT Map - A Cloud-First Tomorrow
Information Security, CISO
Business Applications
DevOps
Corporate Applications
End User Computing
AWS Elastic Beanstalk,
AWS Lambda, Amazon SQS, Amazon
SNS, Amazon Mobile Analytics,
Amazon CloudFront
Amazon WorkMail,
Amazon WorkDocs, AWS
Marketplace, AWS
Directory Service, SaaS
Amazon WorkSpaces,
Amazon AppStream, AWS
Marketplace, AWS Mobile
Services, SaaS
Amazon EC2, Amazon S3, Amazon RDS, Amazon VPC,
Amazon Direct Connect, Directory Service, IAM, AWS
Service Catalog, AWS Code Services
AWS Identity and Access Management
(IAM), AWS CloudHSM, AWS Key
Management Service (AWS KMS),
Security Groups, AWS Marketplace
• Service-Oriented
Architecture (SOA)
• Everything gets a
service interface
• Primitives
• “Microservices”
• Decentralized
• Two-pizza teams
• Agility, autonomy,
accountability, and
ownership
• “DevOps”
• Deployment service
• Zero downtime
• Health checking
• Versioned artifacts
& rollbacks
• Continuous
delivery
• From check-in to
production
• CI/CD + release
automation
• >90% of teams
Pipelines
DevOps
Pipeline
Source
Developers
commit
changes
Build
Changes
are built and
unit tested
Staging
Code deployed
to staging and
load/UI tested
Production
Code is
deployed to
production
Changes,
Updates, and
Fixes
Ideas,
Requests, and
Bugs
Developers Customers
= 50 million deployments a year
Thousands of teams +
Microservices architecture +
Multiple environments +
Continuous delivery
AWS Code services
CodeCommit
Private Beta
CodePipeline
Private Beta
CodeDeploy
Launched
What about the infrastructure?
Amazon EC2 Container Service
What are containers?
• OS virtualization
• Process isolation
• Automation
• ImagesServer
Guest OS
Bins/Libs Bins/Libs
App2App1
Common Customer Challenges/Desires
• Cluster Management
• Configuration Management
• Availability
• Scalability (application and repository)
• Scheduling
• Monitoring
• AWS integration
– VPC, ELB, Auto Scaling, CloudWatch, etc.
Amazon EC2 Container Service
• Building Block Service
• Cluster Management Made
Easy
• Flexible Scheduling
• Performance at Scale
• Security
• Extensible
AWS Lambda
Amazon S3 Bucket Events
Original image Thumbnailed image
1
2
3
Application
Monitoring
Security
Deploy
Yes, you can do with EC2 instances…
Amazon S3 Bucket Events
Original image Thumbnailed image
1
2
3
Application
Monitoring
Security
Deploy
High
Availability Scalability
PUT
Original
GET
PUT
Thumbnail
Application
Monitoring
Security
Deploy
An event-driven computing service for dynamic
applications
High
Availability Scalability
What is AWS Lambda?
AWS Lambda is a compute service that runs your code in
response to events such as image uploads, in-app activity,
website clicks, or outputs from connected devices.
Data Triggers: Amazon S3
Amazon S3 Bucket Events AWS Lambda
Original image Thumbnailed image
1
2
3
Amazon Machine Learning
Three types of data-driven development
Retrospective
analysis and
reporting
Here-and-now
real-time processing
and dashboards
Predictions
to enable smart
applications
Amazon Kinesis
Amazon EC2
AWS Lambda
Amazon Redshift,
Amazon RDS
Amazon S3
Amazon EMR
Machine learning and smart applications
Machine learning is the technology that
automatically finds patterns in your data
and uses them to make predictions for new
data points as they become available
Your data + machine learning = smart applications
Building smart applications – a counter-pattern
Dear Thomas,
This awesome quadcopter is on sale
for just $49.99!
Smart applications by counter-example
SELECT c.ID
FROM customers c
LEFT JOIN orders o
ON c.ID = o.customer
GROUP BY c.ID
HAVING o.date > GETDATE() – 30
We can start by
sending the offer to
all customers who
placed an order in
the last 30 days
Smart applications by counter-example
SELECT c.ID
FROM customers c
LEFT JOIN orders o
ON c.ID = o.customer
GROUP BY c.ID
HAVING
AND o.date > GETDATE() – 30
… let’s narrow it
down to just
customers who
bought toys
Smart applications by counter-example
SELECT c.ID
FROM customers c
LEFT JOIN orders o
ON c.ID = o.customer
GROUP BY c.ID
HAVING o.category = ‘toys’
AND
(COUNT(*) > 2
AND
)
… and expand the
query to customers
who purchased other
toy helicopters
recently
Smart applications by counter-example
SELECT c.ID
FROM customers c
LEFT JOIN orders o
ON c.ID = o.customer
GROUP BY c.ID
HAVING o.category = ‘toys’
AND
(COUNT(*) > 2
AND SUM(o.price) > 200
AND o.date > GETDATE() – 30)
)
Use machine learning
technology to learn
your business rules
from data!
Why aren’t there more smart applications?
1. Machine learning expertise is rare
2. Building and scaling machine learning
technology is hard
3. Closing the gap between models and
applications is time-consuming and
expensive
Introducing Amazon Machine Learning
Easy to use, managed machine learning
service built for developers
Robust, powerful machine learning
technology based on Amazon’s internal
systems
Create models using your data already
stored in the AWS cloud
Deploy models to production in seconds
Explore and understand your data
Explore model quality
Batch predictions with Amazon Redshift
Structured data
In Amazon Redshift
Load predictions into
Amazon Redshift
-or-
Read prediction results
directly from S3
Predictions
in S3
Query for predictions with
Amazon ML batch API
Your application
Real-time predictions for interactive applications
Your application
Query for predictions with
Amazon ML real-time API
Unconstrained Big Data Growth
• IT/Application server logs
IT Infrastructure logs, Metering, Audit logs,
Change logs
• Websites/Mobile apps/Ads
Clickstream, User Engagement
• Sensor data/IoT
Weather, Smart Grids, Wearables
• Social media, user content
450MM+ Tweets/day
GB
TB
PB
ZB
EB
Amazon RDS Aurora
Current DB architectures are monolithic
Multiple layers of
functionality all on a
single box
SQL
Transactions
Caching
Logging
Current DB architectures are monolithic
Even when you scale
it out, you’re still
replicating the same
stack
SQL
Transactions
Caching
Logging
SQL
Transactions
Caching
Logging
Application
Current DB architectures are monolithic
SQL
Transactions
Caching
Logging
SQL
Transactions
Caching
Logging
Storage
Application Even when you scale
it out, you’re still
replicating the same
stack
This is a problem.
For cost. For flexibility. And for availability.
Reimagining the relational database
What if you were inventing the database today?
You wouldn’t design it the way we did in 1970. At least not entirely.
You’d build something that can scale out, that is self-healing, and that
leverages existing AWS services.
Amazon Aurora is Easy to Use
Amazon RDS
Aurora
Aurora storage
• Highly available by default
– 6-way replication across 3 AZs
– 4 of 6 write quorum
• Automatic fallback to
3 of 4 if an AZ is unavailable
– 3 of 6 read quorum
• SSD, scale-out, multi-tenant storage
– Seamless storage scalability
– Up to 64 TB database size
– Only pay for what you use
• Log-structured storage
– Many small segments, each with
their own redo logs
– Log pages used to generate data pages
– Eliminates chatter between database and
storage
SQL
Transactions
AZ 1 AZ 2 AZ 3
Caching
Amazon S3
Self-healing, fault-tolerant
• Lose two copies or an AZ failure without read or write availability impact
• Lose three copies without read availability impact
• Automatic detection, replication, and repair
SQL
Transactio
n
AZ 1 AZ 2 AZ 3
Caching
SQL
Transactio
n
AZ 1 AZ 2 AZ 3
Caching
Read and write availabilityRead availability
Survivable caches
• We moved the cache out of
the database process
• Cache remains warm in the
event of a database restart
• Lets you resume fully loaded
operations much faster
• Instant crash recovery +
survivable cache = quick and
easy recovery from DB
failures
SQL
Transactions
Caching
SQL
Transactions
Caching
SQL
Transactions
Caching
Caching process is outside the DB process
and remains warm across a database restart
Simulate failures using SQL
• To cause the failure of a component at the database node:
ALTER SYSTEM CRASH [{INSTANCE | DISPATCHER | NODE}]
• To simulate the failure of disks:
ALTER SYSTEM SIMULATE percent_failure DISK failure_type IN
[DISK index | NODE index] FOR INTERVAL interval
• To simulate the failure of networking:
ALTER SYSTEM SIMULATE percent_failure NETWORK failure_type
[TO {ALL | read_replica | availability_zone}] FOR INTERVAL interval
Amazon Elastic File System (EFS)
Operating shared file storage today is a pain
Application owner
or developer
IT administrator
Business owner
• Estimate demand
• Procure hardware
• Set aside physical space
• Set up and maintain hardware (and network)
• Manage access and security
• Provide demand forecasts/business case
• Add lead times and extra coordination to your schedule
• Limit your flexibility and agility
• Make up-front capital investments, over-buy, stay on a
constant upgrade/refresh cycle
• Sacrifice business agility
• Distract your people from your business’s mission
We focused on changing the game
EFS is
simple
EFS is
elastic
EFS is
scalable
1 2 3
EFS is simple
• Fully managed
– No hardware, network, file layer
– Create a scalable file system in seconds!
• Seamless integration with existing
tools and apps
– NFS v4—widespread, open
– Standard file system semantics
– Works with standard OS file system APIs
• Simple pricing = simple forecasting
1
EFS is elastic
• File systems grow and shrink
automatically as you add and remove
files
• No need to provision storage capacity
or performance
• You pay only for the storage space you
use, with no minimum fee
2
• File systems can grow to petabyte
scale
• Throughput and IOPS scale
automatically as file systems grow
• Consistent low latencies regardless
of file system size
• Support for thousands of concurrent
NFS connections
EFS is scalable3
Cloud Has Become The New Normal
Infrastructure Regions Points of PresenceAvailability Zones
Core Services
Storage
(Object, Block
and Archival)
Compute
(VMs, Auto-scaling
and Load Balancing)
Databases
(Relational, NoSQL, Caching)
Networking
(VPC, DX, DNS)
CDN
Access Control
Usage
Auditing
Monitoring and
Logs
Administration &
Security
Key
Storage
Identity
Management
Platform Services
Deployment & Management
One-click web app
deployment
Dev/ops resource
management
Resource
Templates
Push
Notifications
Mobile Services
Mobile
Analytics
Identity
Sync
App Services
Workflow
Transcoding
Email
Search
Queuing &
Notifications
App streaming
Analytics
Hadoop
Data
Pipelines
Data
Warehouse
Real-time
Streaming Data
Enterprise
Applications
Virtual
Desktops
Collaboration and
Sharing
More Functionality Than Any Other Infrastructure Provider
What if you could devote 30% more of
your resources to your customers?
PLACE

More Related Content

What's hot

Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
Amazon Web Services Korea
 
AWS_Basics_By_Aadarsh_Sharan
AWS_Basics_By_Aadarsh_SharanAWS_Basics_By_Aadarsh_Sharan
AWS_Basics_By_Aadarsh_Sharan
Aadarsh Sharan
 
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
Amazon Web Services Korea
 
What's New at AWS - March 2011
What's New at AWS - March 2011What's New at AWS - March 2011
What's New at AWS - March 2011
Amazon Web Services
 
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
Amazon Web Services Korea
 
Em tempo real: Ingestão, processamento e analise de dados
Em tempo real: Ingestão, processamento e analise de dadosEm tempo real: Ingestão, processamento e analise de dados
Em tempo real: Ingestão, processamento e analise de dados
Amazon Web Services LATAM
 
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 GamingCloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Amazon Web Services Korea
 
AWS basics
AWS basicsAWS basics
AWS basics
mbaric
 
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh VariaThe Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
Amazon Web Services
 
Getting Started on AWS
Getting Started on AWSGetting Started on AWS
Getting Started on AWS
Amazon Web Services
 
AWS Cloud Computing for Startups Werner Vogels -part i
AWS Cloud Computing for Startups   Werner Vogels -part iAWS Cloud Computing for Startups   Werner Vogels -part i
AWS Cloud Computing for Startups Werner Vogels -part i
Amazon Web Services
 
Aws
AwsAws
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
Amazon Web Services
 
AWS 101 - Amazon Web Services
AWS 101 - Amazon Web ServicesAWS 101 - Amazon Web Services
AWS 101 - Amazon Web Services
Enmanuel Sosa G.
 
(CMP404) Cloud Rendering at Walt Disney Animation Studios
(CMP404) Cloud Rendering at Walt Disney Animation Studios(CMP404) Cloud Rendering at Walt Disney Animation Studios
(CMP404) Cloud Rendering at Walt Disney Animation Studios
Amazon Web Services
 
Best Practices for Hosting Web Applications on AWS
Best Practices for Hosting Web Applications on AWSBest Practices for Hosting Web Applications on AWS
Best Practices for Hosting Web Applications on AWS
Amazon Web Services
 
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 SeoulNew Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
Amazon Web Services Korea
 
Understand AWS Pricing
Understand AWS PricingUnderstand AWS Pricing
Understand AWS Pricing
Lynn Langit
 
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
Amazon Web Services
 
Trustpilot
TrustpilotTrustpilot

What's hot (20)

Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
Riot Games 글로벌 게임 운영을 위한 Docker 및 Amazon ECS 활용사례 - AWS Summit Seoul 2017
 
AWS_Basics_By_Aadarsh_Sharan
AWS_Basics_By_Aadarsh_SharanAWS_Basics_By_Aadarsh_Sharan
AWS_Basics_By_Aadarsh_Sharan
 
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
20150724 제10회 부산 모바일 포럼 - 클라우드컴퓨팅과 함께하는 아마존 웹 서비스
 
What's New at AWS - March 2011
What's New at AWS - March 2011What's New at AWS - March 2011
What's New at AWS - March 2011
 
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
Media Service on a Cloud :: 콘텐츠연합플랫폼 :: AWS Media Day 2016
 
Em tempo real: Ingestão, processamento e analise de dados
Em tempo real: Ingestão, processamento e analise de dadosEm tempo real: Ingestão, processamento e analise de dados
Em tempo real: Ingestão, processamento e analise de dados
 
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 GamingCloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
CloudFront로 동적 컨텐츠를 전송하는 네가지 이유 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
 
AWS basics
AWS basicsAWS basics
AWS basics
 
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh VariaThe Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
The Cloud as a Platform - Cloud Connections 2011 Keynote - Jinesh Varia
 
Getting Started on AWS
Getting Started on AWSGetting Started on AWS
Getting Started on AWS
 
AWS Cloud Computing for Startups Werner Vogels -part i
AWS Cloud Computing for Startups   Werner Vogels -part iAWS Cloud Computing for Startups   Werner Vogels -part i
AWS Cloud Computing for Startups Werner Vogels -part i
 
Aws
AwsAws
Aws
 
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
數位媒體雲端儲存案例和技術分享 (AWS Storage Options for Media Industry)
 
AWS 101 - Amazon Web Services
AWS 101 - Amazon Web ServicesAWS 101 - Amazon Web Services
AWS 101 - Amazon Web Services
 
(CMP404) Cloud Rendering at Walt Disney Animation Studios
(CMP404) Cloud Rendering at Walt Disney Animation Studios(CMP404) Cloud Rendering at Walt Disney Animation Studios
(CMP404) Cloud Rendering at Walt Disney Animation Studios
 
Best Practices for Hosting Web Applications on AWS
Best Practices for Hosting Web Applications on AWSBest Practices for Hosting Web Applications on AWS
Best Practices for Hosting Web Applications on AWS
 
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 SeoulNew Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
 
Understand AWS Pricing
Understand AWS PricingUnderstand AWS Pricing
Understand AWS Pricing
 
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
AWS re:Invent 2016: Journeys to the Cloud: Different Experiences in Video (CT...
 
Trustpilot
TrustpilotTrustpilot
Trustpilot
 

Viewers also liked

AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
Amazon Web Services Korea
 
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
Amazon Web Services Korea
 
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
Amazon Web Services Korea
 
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
Amazon Web Services Korea
 
Amazon Aurora (Debanjan Saha) - AWS DB Day
Amazon Aurora (Debanjan Saha) - AWS DB DayAmazon Aurora (Debanjan Saha) - AWS DB Day
Amazon Aurora (Debanjan Saha) - AWS DB Day
Amazon Web Services Korea
 
Criando o seu datacenter virtual vpc e conectividade
Criando o seu datacenter virtual  vpc e conectividadeCriando o seu datacenter virtual  vpc e conectividade
Criando o seu datacenter virtual vpc e conectividade
Amazon Web Services LATAM
 
Sybase To Oracle Migration for Developers
Sybase To Oracle Migration for DevelopersSybase To Oracle Migration for Developers
Sybase To Oracle Migration for Developers
Clearwater Technical Group Inc
 
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 GamingAurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Amazon Web Services Korea
 
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
Amazon Web Services Korea
 
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
Amazon Web Services Korea
 
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Amazon Web Services Korea
 
쉐이커의 AWS 이용 사례
쉐이커의 AWS 이용 사례쉐이커의 AWS 이용 사례
쉐이커의 AWS 이용 사례
Minku Lee
 
Amazon Aurora Deep Dive (김기완) - AWS DB Day
Amazon Aurora Deep Dive (김기완) - AWS DB DayAmazon Aurora Deep Dive (김기완) - AWS DB Day
Amazon Aurora Deep Dive (김기완) - AWS DB Day
Amazon Web Services Korea
 
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
Amazon Web Services Korea
 
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
Amazon Web Services Korea
 
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
Amazon Web Services Korea
 
AWS Summit Seoul 2015 - 예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
AWS Summit Seoul 2015 -  예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)AWS Summit Seoul 2015 -  예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
AWS Summit Seoul 2015 - 예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
Amazon Web Services Korea
 
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
Amazon Web Services Korea
 
Amazon Aurora 100% 활용하기
Amazon Aurora 100% 활용하기Amazon Aurora 100% 활용하기
Amazon Aurora 100% 활용하기
Amazon Web Services Korea
 
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
Amazon Web Services Korea
 

Viewers also liked (20)

AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
AWS re:Invent re:Cap - 새로운 관계형 데이터베이스 엔진: Amazon Aurora - 양승도
 
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
Gaming on AWS - 2. Amazon Aurora 100% 활용하기 - 신규 기능 및 이전 방법 시연
 
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
AWS re:Invent re:Cap - 자동화된 반응형 코드 구동: Amazon Lambda - 정윤진
 
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
Gam301 Real-Time Game Analytics with Amazon Redshift, Amazon Kinesis, and Ama...
 
Amazon Aurora (Debanjan Saha) - AWS DB Day
Amazon Aurora (Debanjan Saha) - AWS DB DayAmazon Aurora (Debanjan Saha) - AWS DB Day
Amazon Aurora (Debanjan Saha) - AWS DB Day
 
Criando o seu datacenter virtual vpc e conectividade
Criando o seu datacenter virtual  vpc e conectividadeCriando o seu datacenter virtual  vpc e conectividade
Criando o seu datacenter virtual vpc e conectividade
 
Sybase To Oracle Migration for Developers
Sybase To Oracle Migration for DevelopersSybase To Oracle Migration for Developers
Sybase To Oracle Migration for Developers
 
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 GamingAurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
Aurora는 어떻게 다른가 - 김일호 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
 
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
2015 AWS 리인벤트의 모든것 - 강환빈 :: 2015 리인벤트 리캡 게이밍
 
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
관계형 데이터베이스의 새로운 패러다임 Amazon Aurora :: 김상필 :: AWS Summit Seoul 2016
 
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
게임 서비스 품질 향상을 위한 데이터 분석 활용하기 - 김필중 솔루션즈 아키텍트:: AWS Cloud Track 3 Gaming
 
쉐이커의 AWS 이용 사례
쉐이커의 AWS 이용 사례쉐이커의 AWS 이용 사례
쉐이커의 AWS 이용 사례
 
Amazon Aurora Deep Dive (김기완) - AWS DB Day
Amazon Aurora Deep Dive (김기완) - AWS DB DayAmazon Aurora Deep Dive (김기완) - AWS DB Day
Amazon Aurora Deep Dive (김기완) - AWS DB Day
 
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
AWS Summit Seoul 2015 - 모바일 및 IoT 환경을 위한 AWS 클라우드 플랫폼의 진화 (윤석찬, Markku Lepisto)
 
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
AWS Summit Seoul 2015 - 게임 서비스 혁신을 위한 데이터 분석
 
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
컴퓨팅 서비스 업데이트 - EC2, ECS, Lambda (김상필) :: re:Invent re:Cap Webinar 2015
 
AWS Summit Seoul 2015 - 예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
AWS Summit Seoul 2015 -  예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)AWS Summit Seoul 2015 -  예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
AWS Summit Seoul 2015 - 예약 인스턴스를 활용한 비용 최적화 (게임빌-고객사례)
 
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
AWS Summit Seoul 2015 - AWS를 통한 게임 운영의 정석
 
Amazon Aurora 100% 활용하기
Amazon Aurora 100% 활용하기Amazon Aurora 100% 활용하기
Amazon Aurora 100% 활용하기
 
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
AWS Summit Seoul 2015 - 국내 엔터프라이즈 클라우드 도입 구축사례 및 고려사항
 

Similar to AWS Summit Seoul 2015 - AWS 최신 서비스 살펴보기 - Aurora, Lambda, EFS, Machine Learning, ECS

Building a Big Data & Analytics Platform using AWS
Building a Big Data & Analytics Platform using AWS Building a Big Data & Analytics Platform using AWS
Building a Big Data & Analytics Platform using AWS
Amazon Web Services
 
5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS
Christian Beedgen
 
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
Amazon Web Services
 
AWSome Day Manchester 2105 - Intro/Close
AWSome Day Manchester 2105 - Intro/CloseAWSome Day Manchester 2105 - Intro/Close
AWSome Day Manchester 2105 - Intro/Close
Ian Massingham
 
Intro Presentation at AWS AWSome Day London September 2015
Intro Presentation at AWS AWSome Day London September 2015Intro Presentation at AWS AWSome Day London September 2015
Intro Presentation at AWS AWSome Day London September 2015
Ian Massingham
 
Building your First Big Data Application on AWS
Building your First Big Data Application on AWSBuilding your First Big Data Application on AWS
Building your First Big Data Application on AWS
Amazon Web Services
 
Vancouver keynote - AWS Innovate - Sam Elmalak
Vancouver keynote - AWS Innovate - Sam ElmalakVancouver keynote - AWS Innovate - Sam Elmalak
Vancouver keynote - AWS Innovate - Sam Elmalak
Amazon Web Services
 
AWS AWSome Day London October 2015
AWS AWSome Day London October 2015 AWS AWSome Day London October 2015
AWS AWSome Day London October 2015
Ian Massingham
 
Why Scale Matters and How the Cloud is Really Different (at scale)
Why Scale Matters and How the Cloud is Really Different (at scale)Why Scale Matters and How the Cloud is Really Different (at scale)
Why Scale Matters and How the Cloud is Really Different (at scale)
Amazon Web Services
 
Introduction of AWS Cloud Computing and its future for Biometric Department
Introduction of AWS Cloud Computing and its future for Biometric DepartmentIntroduction of AWS Cloud Computing and its future for Biometric Department
Introduction of AWS Cloud Computing and its future for Biometric Department
Kevin Lee
 
Serverless Architecture Patterns
Serverless Architecture PatternsServerless Architecture Patterns
Serverless Architecture Patterns
Amazon Web Services
 
serverless_architecture_patterns_london_loft.pdf
serverless_architecture_patterns_london_loft.pdfserverless_architecture_patterns_london_loft.pdf
serverless_architecture_patterns_london_loft.pdf
Amazon Web Services
 
AWS Startup Insights Kuala Lumpur
AWS Startup Insights Kuala LumpurAWS Startup Insights Kuala Lumpur
AWS Startup Insights Kuala Lumpur
Amazon Web Services
 
AWS Startup Insights Singapore
AWS Startup Insights SingaporeAWS Startup Insights Singapore
AWS Startup Insights Singapore
Amazon Web Services
 
Big Data on AWS
Big Data on AWSBig Data on AWS
Big Data on AWS
Amazon Web Services
 
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
Amazon Web Services
 
Getting Started with Amazon Redshift
Getting Started with Amazon RedshiftGetting Started with Amazon Redshift
Getting Started with Amazon Redshift
Amazon Web Services
 
AWS Cloud Kata | Manila - Getting to Scale on AWS
AWS Cloud Kata | Manila - Getting to Scale on AWSAWS Cloud Kata | Manila - Getting to Scale on AWS
AWS Cloud Kata | Manila - Getting to Scale on AWS
Amazon Web Services
 
Intro Presentation at AWS AWSome Day Glasgow September 2015
Intro Presentation at AWS AWSome Day Glasgow September 2015Intro Presentation at AWS AWSome Day Glasgow September 2015
Intro Presentation at AWS AWSome Day Glasgow September 2015
Ian Massingham
 
AWS 101, London - September 2014
AWS 101, London - September 2014AWS 101, London - September 2014
AWS 101, London - September 2014
Ian Massingham
 

Similar to AWS Summit Seoul 2015 - AWS 최신 서비스 살펴보기 - Aurora, Lambda, EFS, Machine Learning, ECS (20)

Building a Big Data & Analytics Platform using AWS
Building a Big Data & Analytics Platform using AWS Building a Big Data & Analytics Platform using AWS
Building a Big Data & Analytics Platform using AWS
 
5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS5 Years Of Building SaaS On AWS
5 Years Of Building SaaS On AWS
 
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
AWS Summit 2013 | Singapore - Big Data Analytics, Presented by AWS, Intel and...
 
AWSome Day Manchester 2105 - Intro/Close
AWSome Day Manchester 2105 - Intro/CloseAWSome Day Manchester 2105 - Intro/Close
AWSome Day Manchester 2105 - Intro/Close
 
Intro Presentation at AWS AWSome Day London September 2015
Intro Presentation at AWS AWSome Day London September 2015Intro Presentation at AWS AWSome Day London September 2015
Intro Presentation at AWS AWSome Day London September 2015
 
Building your First Big Data Application on AWS
Building your First Big Data Application on AWSBuilding your First Big Data Application on AWS
Building your First Big Data Application on AWS
 
Vancouver keynote - AWS Innovate - Sam Elmalak
Vancouver keynote - AWS Innovate - Sam ElmalakVancouver keynote - AWS Innovate - Sam Elmalak
Vancouver keynote - AWS Innovate - Sam Elmalak
 
AWS AWSome Day London October 2015
AWS AWSome Day London October 2015 AWS AWSome Day London October 2015
AWS AWSome Day London October 2015
 
Why Scale Matters and How the Cloud is Really Different (at scale)
Why Scale Matters and How the Cloud is Really Different (at scale)Why Scale Matters and How the Cloud is Really Different (at scale)
Why Scale Matters and How the Cloud is Really Different (at scale)
 
Introduction of AWS Cloud Computing and its future for Biometric Department
Introduction of AWS Cloud Computing and its future for Biometric DepartmentIntroduction of AWS Cloud Computing and its future for Biometric Department
Introduction of AWS Cloud Computing and its future for Biometric Department
 
Serverless Architecture Patterns
Serverless Architecture PatternsServerless Architecture Patterns
Serverless Architecture Patterns
 
serverless_architecture_patterns_london_loft.pdf
serverless_architecture_patterns_london_loft.pdfserverless_architecture_patterns_london_loft.pdf
serverless_architecture_patterns_london_loft.pdf
 
AWS Startup Insights Kuala Lumpur
AWS Startup Insights Kuala LumpurAWS Startup Insights Kuala Lumpur
AWS Startup Insights Kuala Lumpur
 
AWS Startup Insights Singapore
AWS Startup Insights SingaporeAWS Startup Insights Singapore
AWS Startup Insights Singapore
 
Big Data on AWS
Big Data on AWSBig Data on AWS
Big Data on AWS
 
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
Getting Started with Managed Database Services on AWS - AWS Summit Tel Aviv 2017
 
Getting Started with Amazon Redshift
Getting Started with Amazon RedshiftGetting Started with Amazon Redshift
Getting Started with Amazon Redshift
 
AWS Cloud Kata | Manila - Getting to Scale on AWS
AWS Cloud Kata | Manila - Getting to Scale on AWSAWS Cloud Kata | Manila - Getting to Scale on AWS
AWS Cloud Kata | Manila - Getting to Scale on AWS
 
Intro Presentation at AWS AWSome Day Glasgow September 2015
Intro Presentation at AWS AWSome Day Glasgow September 2015Intro Presentation at AWS AWSome Day Glasgow September 2015
Intro Presentation at AWS AWSome Day Glasgow September 2015
 
AWS 101, London - September 2014
AWS 101, London - September 2014AWS 101, London - September 2014
AWS 101, London - September 2014
 

More from Amazon Web Services Korea

AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Web Services Korea
 
From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
Amazon Web Services Korea
 
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
Amazon Web Services Korea
 
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon Web Services Korea
 
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
Amazon Web Services Korea
 
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
Amazon Web Services Korea
 
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
Amazon Web Services Korea
 
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
Amazon Web Services Korea
 
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
Amazon Web Services Korea
 

More from Amazon Web Services Korea (20)

AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
 
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
 
From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
 
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
 
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
 
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
 
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
 
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
 
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
 
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
 

AWS Summit Seoul 2015 - AWS 최신 서비스 살펴보기 - Aurora, Lambda, EFS, Machine Learning, ECS

  • 2. 신규 서비스 살펴보기 Thomas Park Head of Solutions Architecture, Korea
  • 3. What if you could devote 30% more of your resources to your customers?
  • 4. IT Map - Traditional IT E-mail, Productivity, Collaboration, HR, Finance, ERP Desktop Support, Device Management, Telephony, IT Support Information Security, CISO Encryption, Key Management, Identity Management, Firewalls, IDS, DDoS Business Applications Digital Products, Brand Websites, Mobile Applications, Point of Sale Systems, Commerce Corporate Applications End User Computing Infrastructure Servers, Storage, Networking, Databases, Data Warehousing, Data Centers
  • 5. IT Map - Traditional IT with AWS Information Security, CISO Corporate Applications End User Computing Infrastructure Business Applications AWS Elastic Beanstalk, AWS Lambda, Amazon SQS, Amazon SNS, Amazon Mobile Analytics, Amazon CloudFront Amazon WorkMail, Amazon WorkDocs, AWS Marketplace, AWS Directory Service, SaaS Amazon WorkSpaces, Amazon AppStream, AWS Marketplace, AWS Mobile Services, SaaS AWS Identity and Access Management (IAM), AWS CloudHSM, AWS Key Management Service (AWS KMS), Security Groups, AWS Marketplace Amazon EC2, Amazon S3, Amazon RDS, Amazon VPC, Amazon Direct Connect, Directory Service, IAM, AWS Service Catalog
  • 7. IT Map - A Cloud-First Tomorrow Information Security, CISO Business Applications DevOps Corporate Applications End User Computing AWS Elastic Beanstalk, AWS Lambda, Amazon SQS, Amazon SNS, Amazon Mobile Analytics, Amazon CloudFront Amazon WorkMail, Amazon WorkDocs, AWS Marketplace, AWS Directory Service, SaaS Amazon WorkSpaces, Amazon AppStream, AWS Marketplace, AWS Mobile Services, SaaS Amazon EC2, Amazon S3, Amazon RDS, Amazon VPC, Amazon Direct Connect, Directory Service, IAM, AWS Service Catalog, AWS Code Services AWS Identity and Access Management (IAM), AWS CloudHSM, AWS Key Management Service (AWS KMS), Security Groups, AWS Marketplace
  • 8.
  • 9. • Service-Oriented Architecture (SOA) • Everything gets a service interface • Primitives • “Microservices”
  • 10. • Decentralized • Two-pizza teams • Agility, autonomy, accountability, and ownership • “DevOps”
  • 11.
  • 12. • Deployment service • Zero downtime • Health checking • Versioned artifacts & rollbacks
  • 13. • Continuous delivery • From check-in to production • CI/CD + release automation • >90% of teams Pipelines
  • 14. DevOps Pipeline Source Developers commit changes Build Changes are built and unit tested Staging Code deployed to staging and load/UI tested Production Code is deployed to production Changes, Updates, and Fixes Ideas, Requests, and Bugs Developers Customers
  • 15. = 50 million deployments a year Thousands of teams + Microservices architecture + Multiple environments + Continuous delivery
  • 16.
  • 17. AWS Code services CodeCommit Private Beta CodePipeline Private Beta CodeDeploy Launched
  • 18. What about the infrastructure?
  • 20. What are containers? • OS virtualization • Process isolation • Automation • ImagesServer Guest OS Bins/Libs Bins/Libs App2App1
  • 21.
  • 22. Common Customer Challenges/Desires • Cluster Management • Configuration Management • Availability • Scalability (application and repository) • Scheduling • Monitoring • AWS integration – VPC, ELB, Auto Scaling, CloudWatch, etc.
  • 23.
  • 24. Amazon EC2 Container Service • Building Block Service • Cluster Management Made Easy • Flexible Scheduling • Performance at Scale • Security • Extensible
  • 26. Amazon S3 Bucket Events Original image Thumbnailed image 1 2 3 Application Monitoring Security Deploy
  • 27. Yes, you can do with EC2 instances… Amazon S3 Bucket Events Original image Thumbnailed image 1 2 3 Application Monitoring Security Deploy High Availability Scalability
  • 28.
  • 29. PUT Original GET PUT Thumbnail Application Monitoring Security Deploy An event-driven computing service for dynamic applications High Availability Scalability
  • 30. What is AWS Lambda? AWS Lambda is a compute service that runs your code in response to events such as image uploads, in-app activity, website clicks, or outputs from connected devices.
  • 31. Data Triggers: Amazon S3 Amazon S3 Bucket Events AWS Lambda Original image Thumbnailed image 1 2 3
  • 33. Three types of data-driven development Retrospective analysis and reporting Here-and-now real-time processing and dashboards Predictions to enable smart applications Amazon Kinesis Amazon EC2 AWS Lambda Amazon Redshift, Amazon RDS Amazon S3 Amazon EMR
  • 34. Machine learning and smart applications Machine learning is the technology that automatically finds patterns in your data and uses them to make predictions for new data points as they become available Your data + machine learning = smart applications
  • 35. Building smart applications – a counter-pattern Dear Thomas, This awesome quadcopter is on sale for just $49.99!
  • 36. Smart applications by counter-example SELECT c.ID FROM customers c LEFT JOIN orders o ON c.ID = o.customer GROUP BY c.ID HAVING o.date > GETDATE() – 30 We can start by sending the offer to all customers who placed an order in the last 30 days
  • 37. Smart applications by counter-example SELECT c.ID FROM customers c LEFT JOIN orders o ON c.ID = o.customer GROUP BY c.ID HAVING AND o.date > GETDATE() – 30 … let’s narrow it down to just customers who bought toys
  • 38. Smart applications by counter-example SELECT c.ID FROM customers c LEFT JOIN orders o ON c.ID = o.customer GROUP BY c.ID HAVING o.category = ‘toys’ AND (COUNT(*) > 2 AND ) … and expand the query to customers who purchased other toy helicopters recently
  • 39. Smart applications by counter-example SELECT c.ID FROM customers c LEFT JOIN orders o ON c.ID = o.customer GROUP BY c.ID HAVING o.category = ‘toys’ AND (COUNT(*) > 2 AND SUM(o.price) > 200 AND o.date > GETDATE() – 30) ) Use machine learning technology to learn your business rules from data!
  • 40. Why aren’t there more smart applications? 1. Machine learning expertise is rare 2. Building and scaling machine learning technology is hard 3. Closing the gap between models and applications is time-consuming and expensive
  • 41. Introducing Amazon Machine Learning Easy to use, managed machine learning service built for developers Robust, powerful machine learning technology based on Amazon’s internal systems Create models using your data already stored in the AWS cloud Deploy models to production in seconds
  • 44. Batch predictions with Amazon Redshift Structured data In Amazon Redshift Load predictions into Amazon Redshift -or- Read prediction results directly from S3 Predictions in S3 Query for predictions with Amazon ML batch API Your application
  • 45. Real-time predictions for interactive applications Your application Query for predictions with Amazon ML real-time API
  • 46. Unconstrained Big Data Growth • IT/Application server logs IT Infrastructure logs, Metering, Audit logs, Change logs • Websites/Mobile apps/Ads Clickstream, User Engagement • Sensor data/IoT Weather, Smart Grids, Wearables • Social media, user content 450MM+ Tweets/day GB TB PB ZB EB
  • 48.
  • 49. Current DB architectures are monolithic Multiple layers of functionality all on a single box SQL Transactions Caching Logging
  • 50. Current DB architectures are monolithic Even when you scale it out, you’re still replicating the same stack SQL Transactions Caching Logging SQL Transactions Caching Logging Application
  • 51. Current DB architectures are monolithic SQL Transactions Caching Logging SQL Transactions Caching Logging Storage Application Even when you scale it out, you’re still replicating the same stack
  • 52. This is a problem. For cost. For flexibility. And for availability.
  • 53. Reimagining the relational database What if you were inventing the database today? You wouldn’t design it the way we did in 1970. At least not entirely. You’d build something that can scale out, that is self-healing, and that leverages existing AWS services.
  • 54. Amazon Aurora is Easy to Use Amazon RDS Aurora
  • 55. Aurora storage • Highly available by default – 6-way replication across 3 AZs – 4 of 6 write quorum • Automatic fallback to 3 of 4 if an AZ is unavailable – 3 of 6 read quorum • SSD, scale-out, multi-tenant storage – Seamless storage scalability – Up to 64 TB database size – Only pay for what you use • Log-structured storage – Many small segments, each with their own redo logs – Log pages used to generate data pages – Eliminates chatter between database and storage SQL Transactions AZ 1 AZ 2 AZ 3 Caching Amazon S3
  • 56. Self-healing, fault-tolerant • Lose two copies or an AZ failure without read or write availability impact • Lose three copies without read availability impact • Automatic detection, replication, and repair SQL Transactio n AZ 1 AZ 2 AZ 3 Caching SQL Transactio n AZ 1 AZ 2 AZ 3 Caching Read and write availabilityRead availability
  • 57. Survivable caches • We moved the cache out of the database process • Cache remains warm in the event of a database restart • Lets you resume fully loaded operations much faster • Instant crash recovery + survivable cache = quick and easy recovery from DB failures SQL Transactions Caching SQL Transactions Caching SQL Transactions Caching Caching process is outside the DB process and remains warm across a database restart
  • 58. Simulate failures using SQL • To cause the failure of a component at the database node: ALTER SYSTEM CRASH [{INSTANCE | DISPATCHER | NODE}] • To simulate the failure of disks: ALTER SYSTEM SIMULATE percent_failure DISK failure_type IN [DISK index | NODE index] FOR INTERVAL interval • To simulate the failure of networking: ALTER SYSTEM SIMULATE percent_failure NETWORK failure_type [TO {ALL | read_replica | availability_zone}] FOR INTERVAL interval
  • 59. Amazon Elastic File System (EFS)
  • 60. Operating shared file storage today is a pain Application owner or developer IT administrator Business owner • Estimate demand • Procure hardware • Set aside physical space • Set up and maintain hardware (and network) • Manage access and security • Provide demand forecasts/business case • Add lead times and extra coordination to your schedule • Limit your flexibility and agility • Make up-front capital investments, over-buy, stay on a constant upgrade/refresh cycle • Sacrifice business agility • Distract your people from your business’s mission
  • 61. We focused on changing the game EFS is simple EFS is elastic EFS is scalable 1 2 3
  • 62. EFS is simple • Fully managed – No hardware, network, file layer – Create a scalable file system in seconds! • Seamless integration with existing tools and apps – NFS v4—widespread, open – Standard file system semantics – Works with standard OS file system APIs • Simple pricing = simple forecasting 1
  • 63. EFS is elastic • File systems grow and shrink automatically as you add and remove files • No need to provision storage capacity or performance • You pay only for the storage space you use, with no minimum fee 2
  • 64. • File systems can grow to petabyte scale • Throughput and IOPS scale automatically as file systems grow • Consistent low latencies regardless of file system size • Support for thousands of concurrent NFS connections EFS is scalable3
  • 65. Cloud Has Become The New Normal
  • 66. Infrastructure Regions Points of PresenceAvailability Zones Core Services Storage (Object, Block and Archival) Compute (VMs, Auto-scaling and Load Balancing) Databases (Relational, NoSQL, Caching) Networking (VPC, DX, DNS) CDN Access Control Usage Auditing Monitoring and Logs Administration & Security Key Storage Identity Management Platform Services Deployment & Management One-click web app deployment Dev/ops resource management Resource Templates Push Notifications Mobile Services Mobile Analytics Identity Sync App Services Workflow Transcoding Email Search Queuing & Notifications App streaming Analytics Hadoop Data Pipelines Data Warehouse Real-time Streaming Data Enterprise Applications Virtual Desktops Collaboration and Sharing More Functionality Than Any Other Infrastructure Provider
  • 67. What if you could devote 30% more of your resources to your customers?
  • 68.
  • 69. PLACE