SlideShare a Scribd company logo
1 of 86
Download to read offline
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Amazon DocumentDB
For Modern Applications
Donghoon Jang
Database Solution Architect
WWSO
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Modern Database ?
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
데이터에 대한 접근방식을 재고해야 하는 이유는 무엇인가?
데이터 접근에 대한 혁신적 변화
Data grows 10x
every 5 years
Transition from IT
to DevOps increases
rate of change
Purpose-built databases provide
optimized performance and cost
savings
Explosion of data Microservices changes data and
analytics requirements
Rapid rate of change
Dev Ops
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
현대화된 어플리케이션은?
Users 1M+
Data volume Terabytes–petabytes
Locality Global
Performance Microsecond latency
Request rate Millions per second
Access Mobile, IoT, devices
Scale Virtually unlimited
Economics Pay-as-you-go
Developer access Instance API access
Development Apps and storage
are decoupled
Online
gaming
Social
media
Media
streaming
e-commerce Shared
economy
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
현대화된 어플리케이션에 적합한 데이터 인프라는?
Built-in best practices
Routine maintenance
Automated patching
Industry compliance
Isolation and security
Backup and recovery
Push-button scaling
Advanced monitoring
Automatic fail-over
Schema design
Query optimization
Query construction
Built-in best practices
Routine maintenance
Automated patching
Industry compliance
Isolation and security
Automatic fail-over
Backup and recovery
Push-button scaling
Advanced monitoring
Query construction
Query Optimization
Schema design
You
Self managed Fully managed
You
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
현대화된 어플리케이션에 적합한 데이터 스토어는?
Moving to Open Database
+
Commercial-grade performance and reliability
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Amazon Web Service Managed Database Services
DOCUMENT
Amazon DocumentDB
CACHING
Amazon ElastiCache
KEY- VALUE
Amazon DynamoDB
GRAPH
Amazon Neptune
LEDGER
Amazon QLDB
TIME- SERIES
Amazon TimeStream
WIDE COLUMN
Amazon KeySpaces
MEMORY
Amazon MemoryDB
Amazon
RDS
Amazon
Aurora
RELATIONAL
기본적으로 JSON
데이터 저장,
쿼리 및 인덱싱
유연한
인덱싱
유연한
스키마구조
Ad hoc 쿼리
기능
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
요구사항
• MongoDB와의 호환성
• 마이크로서비스를 독립적으로 확장
• 복잡한 순위 쿼리의 성능 향상
• 완전 관리형 데이터베이스 서비스로 원활한 마이그레이션
해결방안
• 55% 적은 인스턴스로 마이크로서비스를 확장 ( 클러스터/LoB)
• 순위 지정 쿼리의 지연 시간 16배 감소 : 읽기 전용 복제본 활용
• 최소한의 코드 변경 : MongoDB 호환성으로 60% 절감
효과
• 정전 횟수 : 0
• 대기 시간 : 500ms -> 80ms
• 운영 오버헤드: 50%
• 3개월 동안 100개 이상의 마이그레이션
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Amazon DocumentDB
Architecture
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Amazon DocumentDB: Cloud Native Architecture
호환성
복제
스토리지와 컴퓨팅의
분리
내구성
백업
Modern, cloud-native
database architecture
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Amazon DocumentDB: Cloud Native Architecture
Compute
2-96 cores
4-768 GB RAM
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Backup
AZ 1 AZ 2 AZ 3
Amazon S3
Storage
Distributed storage volume
호환성
복제
스토리지와 컴퓨팅의
분리
내구성
백업
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Distributed storage volume
호환성
Amazon
DocumentDB는
MongoDB API를
에뮬레이션
db.foo.find({}) {"x":1}
AZ 1 AZ 2 AZ 3
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Demo code
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
클라우드 네이티브
데이터베이스
아키텍처
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Distributed storage volume
AZ 1 AZ 2 AZ 3
Compute
Storage
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
API
Query processor
Caching
Logging
Storage
Monolithic,
shared disk
architecture
기존 데이터베이스
아키텍처
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
API
Query processor
Caching
Logging
Storage
API
Query processor
Caching
Logging
Storage
확장하려면 전체
스택을 복사
API
Query processor
Caching
Logging
Storage
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
API
Query processor
Caching
Logging
Storage
Log writes
스토리지와 컴퓨팅의
분리
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
API
Query processor
Caching
Logging
Storage
Log writes
Compute layer
Storage layer
스토리지와 컴퓨팅의
분리
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
API
Query processor
Caching
Logging
Storage
Log writes
Decouple compute and storage
Compute layer
Storage layer
Scale compute
Scale storage
스토리지와 컴퓨팅의
분리
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
스토리지와 컴퓨팅의
분리
Distributed storage volume
AZ 1 AZ 2 AZ 3
Compute
Storage
Instance
(primary)
Reads
Writes
r6g.large
Instance
(replica)
Reads
r6g.large
Instance
(replica)
Reads
r6g.large
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
복제
ACK
db.foo.insert({’x’:1})
db.foo.insert({’x’:1}) ACK
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Distributed storage volume
AZ 1 AZ 2 AZ 3
Compute
Storage
Eventual
consistency
Eventual
consistency
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
복제
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Distributed storage volume
AZ 1 AZ 2 AZ 3
Compute
Storage
Eventual
consistency
Eventual
consistency
db.foo.find({}) {‘x’:1}
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Demo code
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
내구성
평균 복구 시간(mean
time-to-recovery )은
10GB를 복제하는
기능
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Distributed storage volume
AZ 1 AZ 2 AZ 3
Compute
Storage
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Demo code
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Architecture
백업
Amazon S3로 연속
스트리밍
Backup
AZ 1 AZ 2 AZ 3
Amazon S3
Storage
Distributed storage volume
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Compute
Storage
Cost Optimization: Pricing
Distributed storage volume
Amazon S3
Backup: GiB/month (100% Free! $0.021/GiB)
4
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Storage: GiB/month ($0.10/GiB)
3
Instances: Size/hr * count (db.t4g.medium $0.075/hr)
1
IOPS: Count ($0.20/million)
2
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Best Practices
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Number of instances determines availability target
Availability Target Total Instances Replicas Availability Zones
Recovery
Time
99% 1 0 1 8-10min
99.9% 2 1 2 <30sec
99.99% 3 2 3 <30sec
99.99% 4 3 3 <30sec
Best Practice: Use at least 2 replicas in different AZs for production deployments
Cluster Sizing: Availability
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Instance Size = Processing Power + Cache
Class vCPU Memory (GiB) Estimated Cache Size
(~2/3 of RAM)
t4g.medium 2 4 ~2.5GB
r6g.large 2 16 ~10.5GB
r6g.xlarge 4 32 ~21GB
r6g.2xlarge 8 64 ~42.5GB
r6g.4xlarge 16 128 ~85GB
r6g.8xlarge 32 256 ~171GB
r6g.12xlarge 48 384 ~256GB
r6g.16xlarge 64 512 ~341GB
r5.24xlarge 96 768 ~512GB
Best Practice: Ensure indices and working set fit in cache
Cluster Sizing: Instance Performance
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Recover to any time from 5 minutes ago until the Backup Retention Period
Best practice: set retention based on your Recovery Point Objective
Cluster Sizing: Backups
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Connecting: Endpoints
Distributed storage volume
AZ 1 AZ 2 AZ 3
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Instance
(replica)
Reads
"members":[
{
"_id":1,
"stateStr":"PRIMARY",
...
},
{
"_id":2,
"stateStr":"SECONDARY",
...
},
{
"_id":3,
"stateStr":"SECONDARY",
...
}
]
Application
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Best practice: Use cluster endpoint and connect as a replica set
Connecting: Replica Set Emulation
© 2023, Amazon Web Services, Inc. or its Affiliates.
Connecting: Failover
Distributed storage volume
AZ 1 AZ 2 AZ 3
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Primary fails
© 2023, Amazon Web Services, Inc. or its Affiliates.
Connecting: Failover
Distributed storage volume
AZ 1 AZ 2 AZ 3
Instance
(replica)
Reads
Replica promoted to new primary
Instance
(primary)
Reads
Writes
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Instance
(Primary)
Distributed storage volume
AZ1 AZ2 AZ3
Reads
Instance
(Replica)
Instance
(Replica)
Reads
Writes
Reads
Containers
Up to
30000
Up to
30000
Up to
30000
Connection Limits
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Instance
(Primary)
Distributed storage volume
AZ1 AZ2 AZ3
Reads
Instance
(Replica)
Instance
(Replica)
Reads
Writes
Reads
Containers
Up to
4560
Up to
4560
Up to
4560
Cursor Limits
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Scaling: Dynamic Read Preference
Distributed storage volume
AZ 1 AZ 2 AZ 3
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
Instance
(replica)
Reads
Application
Override on each call
(readPreference: primary)
Default read preference
(readPreference:
secondaryPreferred)
© 2023, Amazon Web Services, Inc. or its Affiliates.
Scaling: Write Traffic
Distributed storage volume
AZ 1 AZ 2 AZ 3
Reads
Writes
Replica
db.r6g.large
Reads
Replica
db.r6g.large
Reads
Replica
db.r6g.large
Reads
Primary
db.r6g.4xlarge
Reads
Replica
db.r6g.4xlarge
Reads
Replica
db.r6g.4xlarge
Writes
© 2023, Amazon Web Services, Inc. or its Affiliates.
Compute
Storage
Scaling: Storage and I/O
Distributed storage volume
Grows automatically from
10 GiB - 128 TiB
AZ 1 AZ 2 AZ 3
Instance
(replica)
Reads
Instance
(primary)
Reads
Writes
Instance
(replica)
Reads
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Create billing alarms
• 50% spend
• 75% spend
• Cost Allocation Tags
Monitoring: Billing
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
BufferCacheHitRatio
IndexBufferCacheHitRatio
DatabaseConnections
DatabaseCursors
FreeableMemory
CPUUtilization
Monitoring: Instance Metrics
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
DBClusterReplicaLagMaximum
DatabaseCursorsTimedOut
VolumeWriteIOPs
VolumeReadIOPs
Opscounters
Monitoring: Cluster Metrics
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Auditing
DDL events
Auth events
Role Grants
Create alarms
Profiling
Slow queries
Monitoring: Auditing and Profiling
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
데이터베이스 로드를 측정하여
지난 시점의 시스템 활동 검토
• Average Active Sessions
• Wait States
• Operation level granularity
Complementary to profiling
Monitoring: Performance Insights
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Indexes come with a cost
• Constrain indexes to those
necessary for common queries
• 5 per collection max
rule of thumb
• 1% selectivity goal
rs0:PRIMARY> db.collName.getIndexes()
[
{
"v":2,
"key":{
"_id":1
},
"name":"_id_",
"ns":"tournament.results"
},
{
"v":2,
"key":{
"user_id":1
},
"name":"user_id_1",
"ns":"tournament.results"
}
]
Indexing
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Verify indexes fit in memory
• Monitor IndexBufferCacheHitRatio
rs0:PRIMARY> db.collName.stats()
{
"ns":"tournament.results",
"count":39549,
"size":7000173,
"avgObjSize":177.303,
"storageSize":8609792,
"capped":false,
"nindexes":2,
"totalIndexSize":5472256,
"indexSizes":{
"_id_":2760704,
"user_id_1":2711552
},
"ok":1
}
Indexing: Caching
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Drop unused indexes where possible
rs0:PRIMARY> db.collName.aggregate([{$indexStats:{}}]).pretty()
{
"name":"user_id_1",
"key":{
"user_id":1
},
"host":"docdb2019.us-east-2.docdb.amazonaws.com:27017",
"accesses":{
"ops":NumberLong(0),
"since":ISODate("2020-01-15T06:57:38Z")
}
}
Indexing: Unused Indexes
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Stops for up to 7 days; cluster then restarts automatically
• While Stopped :
• No instance costs
• Storage costs continue
• Backup costs do not increase
Cost Optimization: Start/Stop Cluster
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Cost Optimization: I/O
• 적절한 인스턴스 크기 선택
▪ Working set and indices should fit in cache
▪ Monitor metrics to ensure cache is appropriately sized
– BufferCacheHitRatio and IndexBufferCacheHitRatio
– Should be >90%
• Special Case : TTL 워크로드
▪ TTL 인덱스는 데이터를 삭제하기 위해 I/O를 발생시킴
▪ Instead use a collection per day
– Query all collections for the data of interest
– Drop entire collection when the data “expires” (No I/O cost to drop a collection)
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Cost Optimization: Storage and Backup
• 필요한 데이터만 저장
▪ 미사용 인덱스 식별
▪ 불필요한 데이터 식별
– 문서 내 불필요한 필드
– 불필요한 문서
• 필요한 백업만 유지
▪ Snapshot 에 주의
– 더 이상 필요하지 않은 항목 제거
▪ 복구 지점 목표 검토
– 백업 보존 기간을 적절하게 조정
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Security group B
VPC
Security group A
Application DocumentDB Cluster
Security group B:
• Inbound (min): TCP (27017)
Security group A:
• Outbound (min): TCP (27017)
Security Groups
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Role Scope Role Name Description Actions
Database read
Read any collection in a
DB
collStats, dbStats, find,
listCollections, …
Database readWrite
Read and write any
collection in a DB
createCollection,, createIndex,
insert, remove, update, …
Cluster readAnyDatabase
Read any collection in any
DB
listChangeStreams,
listDatabases, [actions in read]
Cluster readWriteAnyDatabase
Read or write any
collection in any DB
listChangeStreams,
listDatabases, [actions in
readWrite]
Cluster clusterMonitor
Read access for
monitoring tools
listSessions, serverStatus, top,
dbStats, …
RBAC – Built-in Roles
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
RBAC – User Defined Roles
• Roles 은 사용자가 DB 리소스에서 수행할 수 있는 작업을 결정
• User-defined roles 은 조직의 요구 사항에 따라 RBAC 역할을 사용자 지정할 수 있는 유연성을
제공
• 세분화된 액세스 제어(일명 최소 권한 액세스)로 사용자를 생성할 수 있음
• 특정 작업/API에 대한 액세스를 제한하는 역할 생성
• 특정 컬렉션에 대한 액세스를 제한하는 역할 생성
• 기존 사용자 정의 역할에 기본 제공 역할 또는 작업에 대한 액세스를 추가할 수 있음
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Use TLS in-transit
• KMS-backed at-rest
encryption
Encryption
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
AWS Secrets Manager
Amazon DocumentDB
Application
Lambda Rotation
Function
Retrieve credentials
Login with credentials
Update credentials
Trigger update
Integration with AWS Secrets Manager
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Data Modeling
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
What is it ?
물리적 또는 논리적으로 고유하게
식별할 수 있는 추상화 개체
Entities for an e-commerce application
Data modeling concepts - Entities
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
➢ One to one
➢ One to many
➢ Many to many
Data modeling concepts - Relationships
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Data modeling concepts – Normalized or Denormalized
Embed model
{
"username": "john",
"userId": 1234,
"access": {
"level": 2,
"group": "dba"
},
"contact":{
"phone": "123-24212",
"email": "john@domain.tld"
}
}
Embedded sub-doc
Embedded sub-doc
{
"username": "john",
"userId": 1234
}
{
"userId": 1234,
"phone": "123-24212",
"email": "john@domain.tld"
}
{
"userId": 1234,
"group": "dba",
"level": 2
}
User document
Reference model
Contact document
Access document
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
• Optimize the access patterns
• Better document structure
• Simplify queries
• Less indexes
What is it ?
다양한 사용 사례에 적용하고
재사용할 수 있는 데이터 모델링
기술
Data modeling concepts – Design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Data modeling
methodology
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
응용
프로그램
요구 사항
설명
엔터티 및
관계 식별
디자인 패턴
적용
Schema
model
Methodology - Phases
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
PHASE 1
워크로드 식별
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
응용
프로그램
요구 사항
설명
INPUT
• 요구사항 문서
• 시나리오
• 지표 및 로그
• 기존 NoSQL 모델 마이그레이션
또는 리팩터링
• 가정
• 어플리케이션 요구 사항 및 데이터 사용 방법 정의
• 액세스 패턴, 읽기vs 쓰기 식별
• 가장 중요한 쿼리 식별
• 데이터 크기 추정
• 오래된 데이터에 대한 일관성 요구 사항 및 허용
오차를 식별
Methodology – Identify workload
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
시나리오 예제 :
온라인 블로그 웹 사이트에서 작성자는 모든 기사에 대한 기사
및 댓글을 게시하거나 읽을 수 있습니다. 각 기사에는 태그가
있을 수 있으며 하나 이상의 범주에 속할 수 있음
CRUD Operation Type Frequency (peak) Avg doc size Max Latency
New blog added/updated Write 100/month 500 KB < 500ms
New comment added
Author added
Write
Write
5000/month
30/month
32 KB
2 KB
< 150ms
<100ms
Blog views Read 10000/day/blog 5ms
Author logs in
Read 200/day 10ms
응용
프로그램
요구 사항
설명
Methodology – Identify operations
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
PHASE 2
엔터티 및 관계 식별
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
엔터티 및 관계 식별
Embedding
or
Referencing ?
Methodology – Identify relationships
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Authors
• id
• name
• email
Blogs
• id
• title
• date
• text
Categories
• id
• name
Tags
• id
• name
Comments
• id
• date
• text
Blogs
• id
• title
• date
• text
Authors
• id
• name
• email
Categories
• id
• name
Tags
• id
• name
Comments
• id
• date
• text
Duplication of
authors data
Query by blogs
Query by authors
Methodology – Model by access pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
id
Authors
•
• name
• email
Query by blogs and authors
Authors 데이터 중복 방지
Blogs
• id
• title
• date
• text
• author_id
Categories
• id
• name
Tags
• id
• name
Comments
• id
• date
• text
Methodology – Model by access pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Blogs
• id
• title
• date
• text
• author_id
Categories
• id
• name
Tags
• id
• name
Comments
• id
• date
• text
Blogs -> Comments – one to many unbounded
comments 를 다른 컬렉션으로 분리하고 여러
쪽에 참조를 유지.
Blogs
• id
• title
• date
• text
• author_id
Categories
• id
• name
Tags
• id
• name
Comments
• id
• date
• text
• blog_id
Methodology – Model by relationship type 1:M
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Courses
{
”course_id": <objectId>,
"name": <string>,
"instructors": [
List[inst_id]
]
}
Instructors
{
"inst_id": <objectId>,
"name": <string>,
"courses": [
List[course_id]
]
}
Two-way embedding
Courses
{
”course_id": <objectId>,
"name": <string>,
}
Students
{
”student_id": <objectId>,
"name": <string>,
"courses": [
List[course_id]
]
}
Many to many bounded Many to many unbounded
Courses -> Instructors Courses -> Students
Methodology – Model by relationship type N:M
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Access pattern or relationship type Recommended model
- Need all related data in one query
- One to one relationship
- One to many, where many is bounded Embedded
- A portion of data is rarely accessed
- Data that is frequently updated and growing
- One to many potentially unbounded Reference
- Many to many Combination of both
Embedding vs. Referencing - How to choose ?
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
PHASE 3
Identify and apply design
patterns
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
{
"name": <string>,
"price": <int>,
"specs": [
{k:"size", v: <string>},
{k:"weight", v: <string>},
{k:"colour", v: <string>},
{k:"material", v: <string>}
]
}
Only one index needed:
➢ { "specs.k": 1, "specs.v": 1 }
// Item document
{
"name": <string>,
"price": <int>,
"size": <string>,
"weight": <string>,
"colour": <string>,
"material": <string>
}
4 indexes needed:
➢ {"size": 1}
➢ {"weight": 1}
➢ {"colour": 1}
➢ {"material": 1}
Attribute pattern
Challenge:
• Many similar fields
• Fields present only in a subset of
documents
Use cases:
• Catalogs, Inventory
Methodology – Apply design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
// Blogs collection
{
"id": <objectId>,
"title": <string>,
"date": <date>,
"text": <string>,
"author_id": <objectId>,
"last_comments": [
List[Last 20 comments]
]
}
// Comments collection
{
"id": <objectId>,
"date": <date>,
"text": <string>,
"blog_id": <objectId>
}
Subset pattern
Challenge:
• Documents too large
• Working set doesn’t fit in RAM
Use cases:
• Whenever a significant data inside
a document that is rarely needed
Methodology – Apply design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
// Items
{
"id": <objecId>,
"name": <string>,
"description": <string>,
"specs": [
{"k": <string>,
"v": <string>
}
],
"category": [
List[categories]
]
}
Counting items for each category will
require to read all items and group per
category
“Cache” the count when a new item is
inserted
// items_category_count
db.itemsitems_category_count.update(
{_id: "books"},
{$inc: {count: 1}}
)
Computed pattern
Challenge:
• Repeated calculations
• Read intensive workload
Use cases:
• Catalogs, IoT, Mobile, Real
time analysis
Methodology – Apply design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
// Invoices
{
"invoice_id": <objectId>,
"customer_id": <objectId>,
"customer_info": {
"fullName": <string>,
"street": <string>,
"city": <string>,
"zipcode": <string>
}
}
// Customers
{
"customer_id": <objectId>,
"fullName": <string>,
"street": <string>,
"city": <string>,
"zipcode": <string>,
"email": <string>,
"phone": <string>
}
You need to manage duplication:
• Duplicate only needed fields and that do
not change often
Extended reference
Challenge:
• Too many roundtrips to
database or joins
Use case:
• Catalog, Mobile apps, E-
commerce
Methodology – Apply design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Bucket pattern
// SensorData
{
"device_id": 4523,
"ts": ISODate("2023-03-10T10:00"),
"temp": 20
},
{
"device_id": 4523,
"ts": ISODate("2023-03-10T10:01"),
"temp": 20
},
{
"device_id": 4523,
"ts": ISODate("2023-03-10T10:02"),
"temp": 21
}
Bucket per hour
Combine with
computed pattern
//SensorData
"device
"date": ISODate("2023-03-10T10"),
"temp": [
{"ts": ISODate("2023-03-10T10:00"), "temp": 20},
{"ts": ISODate("2023-03-10T10:00"), "temp": 20},
{"ts": ISODate("2023-03-10T10:00"), "temp": 21},
],
"temp_count": 3,
"temp_sum": 61
Challenge:
• Large documents or too
many documents
Use cases:
• IoT
• Historical data
• Lots of data associated with
one entity
Methodology – Apply design pattern
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Current & Next
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
A few highlights from recent releases
2019 2020 2021 2022 2023
Frankfurt
Secrets Manager
DDL
auditing
Aggregation
operators
Launch
Sydney
London
Canada t3 instances
Cross-region
snapshot copy
RBAC user-defined
roles
JDBC driver
Geospatial
Performance
Insights (preview)
Elastic Clusters
Slow query logger
Aggregation
operators
RBAC Free trial
Aggregation
operators
MongoDB 4.0
Acid transactions
Fast database
cloning
Per-second billing
Tokyo
Seoul
Change streams
Mumbai
Paris
Singapore Glue ETL Global clusters Milan
DML auditing
Decimal128
support
Start/stop cluster
Deletion protection
Aggregation
operators
Increase cursor &
connection limits
Graviton2
AWS Backup
Dynamic volume
resizing
MongoDB 5.0
Lambda ESM
Client-side field
level encryption
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
db.foo.findOne() {“x”:1}
Global replication: Up to 5 secondary regions
Low replica lag: Typically < 1 sec
Fast recovery: Typically < 1 min downtime
Compatibility: Version 4.0 and later
Global reader instances: Up to 90
db.foo.insertOne({“x”:1})
Reads
Reads
Writes
Reads
Replication
Service
(primary region)
Ohio
Reads
Reads
Replication
Service
(secondary region)
Oregon
Reads
Reads
Replication
Service
(secondary region)
Tokyo
Global Clusters
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Elastic Cluster architecture
db.foo.find(
{
order_id:1
})
{
“order_id”:1,
“name”:”Amazon”
}
db.foo.insert(
{
order_id: 2
})
{“inserted_id”:2}
Shard-1
Compute capacity
Writes
Reads
Distributed storage volume
Shard-2
Compute capacity
Writes
Reads
Distributed storage volume
Shard-n
Compute capacity
Writes
Reads
Distributed storage volume
Elastic Cluster
Request Router and Service
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
What’s Next?
“Amazon DocumentDB resources”
https://aws.amazon.com/documentdb/resources/
“Amazon DocumentDB immersion day workshop”
https://documentdb-immersionday.workshop.aws/
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Q&A
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.
Thank you!

More Related Content

What's hot

AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
Amazon Web Services Korea
 

What's hot (20)

워크로드 특성에 따른 안전하고 효율적인 Data Lake 운영 방안
워크로드 특성에 따른 안전하고 효율적인 Data Lake 운영 방안워크로드 특성에 따른 안전하고 효율적인 Data Lake 운영 방안
워크로드 특성에 따른 안전하고 효율적인 Data Lake 운영 방안
 
AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용
AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용
AWS Summit Seoul 2023 | 삼성전자/쿠팡의 대규모 트래픽 처리를 위한 클라우드 네이티브 데이터베이스 활용
 
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
 
AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
AWS DMS를 통한 오라클 DB 마이그레이션 방법 - AWS Summit Seoul 2017
 
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
AWS Lake Formation을 통한 손쉬운 데이터 레이크 구성 및 관리 - 윤석찬 :: AWS Unboxing 온라인 세미나
 
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
농심 그룹 메가마트 : 온프레미스 Exadata의 AWS 클라우드 환경 전환 사례 공유-김동현, NDS Cloud Innovation Ce...
 
Amazon DocumentDB vs MongoDB 의 내부 아키텍쳐 와 장단점 비교
Amazon DocumentDB vs MongoDB 의 내부 아키텍쳐 와 장단점 비교Amazon DocumentDB vs MongoDB 의 내부 아키텍쳐 와 장단점 비교
Amazon DocumentDB vs MongoDB 의 내부 아키텍쳐 와 장단점 비교
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
 
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
 
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!
AWS Summit Seoul 2023 | 서버리스, 이제는 데이터 분석에서 활용해요!
 
AWS Summit Seoul 2023 | "이봐, 해봤어?" 해본! 사람의 Modern Data Architecture 비밀 노트
AWS Summit Seoul 2023 | "이봐, 해봤어?" 해본! 사람의 Modern Data Architecture 비밀 노트AWS Summit Seoul 2023 | "이봐, 해봤어?" 해본! 사람의 Modern Data Architecture 비밀 노트
AWS Summit Seoul 2023 | "이봐, 해봤어?" 해본! 사람의 Modern Data Architecture 비밀 노트
 
AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성
AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성
AWS Summit Seoul 2023 | AWS에서 최소한의 비용으로 구현하는 멀티리전 DR 자동화 구성
 
효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
효율적인 빅데이터 분석 및 처리를 위한 Glue, EMR 활용 - 김태현 솔루션즈 아키텍트, AWS :: AWS Summit Seoul 2019
 
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
 
AWS BlackBelt Online Seminar 2017 Amazon CloudFront + AWS Lambda@Edge
AWS BlackBelt Online Seminar 2017 Amazon CloudFront + AWS Lambda@EdgeAWS BlackBelt Online Seminar 2017 Amazon CloudFront + AWS Lambda@Edge
AWS BlackBelt Online Seminar 2017 Amazon CloudFront + AWS Lambda@Edge
 
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법
AWS Summit Seoul 2023 | 갤럭시 규모의 서비스를 위한 Amazon DynamoDB의 역할과 비용 최적화 방법
 
Amazon Dynamo DB 활용하기 - 강민석 :: AWS Database Modernization Day 온라인
Amazon Dynamo DB 활용하기 - 강민석 :: AWS Database Modernization Day 온라인Amazon Dynamo DB 활용하기 - 강민석 :: AWS Database Modernization Day 온라인
Amazon Dynamo DB 활용하기 - 강민석 :: AWS Database Modernization Day 온라인
 
AWS Summit Seoul 2023 | 금융 디지털 서비스 혁신을 리딩하는 교보정보통신의 클라우드 마이그레이션 사례 소개
AWS Summit Seoul 2023 | 금융 디지털 서비스 혁신을 리딩하는 교보정보통신의 클라우드 마이그레이션 사례 소개AWS Summit Seoul 2023 | 금융 디지털 서비스 혁신을 리딩하는 교보정보통신의 클라우드 마이그레이션 사례 소개
AWS Summit Seoul 2023 | 금융 디지털 서비스 혁신을 리딩하는 교보정보통신의 클라우드 마이그레이션 사례 소개
 
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
AWS Summit Seoul 2023 | 12가지 디자인 패턴으로 알아보는 클라우드 네이티브 마이크로서비스 아키텍처
 
AWS Summit Seoul 2023 | 롯데면세점이 고객에게 차별화된 경험을 제공하는 방법: AWS Native 서비스를 활용한 초개인...
AWS Summit Seoul 2023 | 롯데면세점이 고객에게 차별화된 경험을 제공하는 방법: AWS Native 서비스를 활용한 초개인...AWS Summit Seoul 2023 | 롯데면세점이 고객에게 차별화된 경험을 제공하는 방법: AWS Native 서비스를 활용한 초개인...
AWS Summit Seoul 2023 | 롯데면세점이 고객에게 차별화된 경험을 제공하는 방법: AWS Native 서비스를 활용한 초개인...
 

Similar to Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. Database SA, WWSO, AWS ::: AWS Data Roadshow 2023

Similar to Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. Database SA, WWSO, AWS ::: AWS Data Roadshow 2023 (20)

Amazon Aurora - Rajeev Chakrabarti
Amazon Aurora - Rajeev ChakrabartiAmazon Aurora - Rajeev Chakrabarti
Amazon Aurora - Rajeev Chakrabarti
 
Amazon Aurora
Amazon AuroraAmazon Aurora
Amazon Aurora
 
AWS 신규 데이터베이스 서비스 분석 - 강민석 솔루션즈아키텍트 , AWS :: AWS Summit Seoul 2019
AWS 신규 데이터베이스 서비스 분석 - 강민석 솔루션즈아키텍트 , AWS :: AWS Summit Seoul 2019AWS 신규 데이터베이스 서비스 분석 - 강민석 솔루션즈아키텍트 , AWS :: AWS Summit Seoul 2019
AWS 신규 데이터베이스 서비스 분석 - 강민석 솔루션즈아키텍트 , AWS :: AWS Summit Seoul 2019
 
Amazon Aurora (MySQL, Postgres)
Amazon Aurora (MySQL, Postgres)Amazon Aurora (MySQL, Postgres)
Amazon Aurora (MySQL, Postgres)
 
SRV308 Deep Dive on Amazon Aurora
SRV308 Deep Dive on Amazon AuroraSRV308 Deep Dive on Amazon Aurora
SRV308 Deep Dive on Amazon Aurora
 
Managed Relational Databases
Managed Relational DatabasesManaged Relational Databases
Managed Relational Databases
 
Amazon Aurora
Amazon AuroraAmazon Aurora
Amazon Aurora
 
Serverless Architectural Patterns
Serverless Architectural PatternsServerless Architectural Patterns
Serverless Architectural Patterns
 
Databases & Analytics - re:Invent Come to London 2.0
Databases & Analytics - re:Invent Come to London 2.0Databases & Analytics - re:Invent Come to London 2.0
Databases & Analytics - re:Invent Come to London 2.0
 
STG301_Deep Dive on Amazon S3 and Glacier Architecture
STG301_Deep Dive on Amazon S3 and Glacier ArchitectureSTG301_Deep Dive on Amazon S3 and Glacier Architecture
STG301_Deep Dive on Amazon S3 and Glacier Architecture
 
Amazon Aurora
Amazon AuroraAmazon Aurora
Amazon Aurora
 
Scaling Up To and Beyond 10M Users
Scaling Up To and Beyond 10M UsersScaling Up To and Beyond 10M Users
Scaling Up To and Beyond 10M Users
 
AWS 資料湖服務
AWS 資料湖服務AWS 資料湖服務
AWS 資料湖服務
 
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
Build on Amazon Aurora with MySQL Compatibility (DAT348-R4) - AWS re:Invent 2018
 
Build Data Lakes and Analytics on AWS: Patterns & Best Practices
Build Data Lakes and Analytics on AWS: Patterns & Best PracticesBuild Data Lakes and Analytics on AWS: Patterns & Best Practices
Build Data Lakes and Analytics on AWS: Patterns & Best Practices
 
Build Data Lakes & Analytics on AWS: Patterns & Best Practices
Build Data Lakes & Analytics on AWS: Patterns & Best PracticesBuild Data Lakes & Analytics on AWS: Patterns & Best Practices
Build Data Lakes & Analytics on AWS: Patterns & Best Practices
 
Amazon Aurora: Deep Dive - SRV308 - Chicago AWS Summit
Amazon Aurora: Deep Dive - SRV308 - Chicago AWS SummitAmazon Aurora: Deep Dive - SRV308 - Chicago AWS Summit
Amazon Aurora: Deep Dive - SRV308 - Chicago AWS Summit
 
How UCSD Simplified Data Protection with Rubrik and AWS (STG207-S) - AWS re:I...
How UCSD Simplified Data Protection with Rubrik and AWS (STG207-S) - AWS re:I...How UCSD Simplified Data Protection with Rubrik and AWS (STG207-S) - AWS re:I...
How UCSD Simplified Data Protection with Rubrik and AWS (STG207-S) - AWS re:I...
 
Storage Data Management: Tools and Templates to Seamlessly Automate and Optim...
Storage Data Management: Tools and Templates to Seamlessly Automate and Optim...Storage Data Management: Tools and Templates to Seamlessly Automate and Optim...
Storage Data Management: Tools and Templates to Seamlessly Automate and Optim...
 
Amazon Aurora and AWS Database Migration Service
Amazon Aurora and AWS Database Migration ServiceAmazon Aurora and AWS Database Migration Service
Amazon Aurora and AWS Database Migration Service
 

More from Amazon Web Services Korea

More from Amazon Web Services Korea (18)

AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
 
From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
 
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
[Keynote] Accelerating Business Outcomes with AWS Data - 발표자: Saeed Gharadagh...
 
[Keynote] Data Driven Organizations with AWS Data - 발표자: Agnes Panosian, Head...
[Keynote] Data Driven Organizations with AWS Data - 발표자: Agnes Panosian, Head...[Keynote] Data Driven Organizations with AWS Data - 발표자: Agnes Panosian, Head...
[Keynote] Data Driven Organizations with AWS Data - 발표자: Agnes Panosian, Head...
 
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
 
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기
AWS Summit Seoul 2023 | 생성 AI 모델의 임베딩 벡터를 이용한 서버리스 추천 검색 구현하기
 
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
AWS Summit Seoul 2023 | 스타트업의 서버리스 기반 SaaS 데이터 처리 및 데이터웨어하우스 구축 사례
 
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례
AWS Summit Seoul 2023 | Amazon EKS 데이터 전송 비용 절감 및 카오스 엔지니어링 적용 사례
 
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기
AWS Summit Seoul 2023 | 실시간 CDC 데이터 처리! Modern Transactional Data Lake 구축하기
 
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기
AWS Summit Seoul 2023 | AWS에서 OpenTelemetry 기반의 애플리케이션 Observability 구축/활용하기
 
AWS Summit Seoul 2023 | 클라우드의 경계를 허무는 AWS Hybrid Cloud Services
AWS Summit Seoul 2023 | 클라우드의 경계를 허무는 AWS Hybrid Cloud ServicesAWS Summit Seoul 2023 | 클라우드의 경계를 허무는 AWS Hybrid Cloud Services
AWS Summit Seoul 2023 | 클라우드의 경계를 허무는 AWS Hybrid Cloud Services
 
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정
AWS Summit Seoul 2023 | 기업 고객 대상 기계학습 기반 콜센터 도입을 위한 여정
 

Recently uploaded

Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
UXDXConf
 

Recently uploaded (20)

Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Your enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4jYour enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4j
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Using IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandUsing IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & Ireland
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch Tuesday
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
 
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
 

Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. Database SA, WWSO, AWS ::: AWS Data Roadshow 2023

  • 1. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Amazon DocumentDB For Modern Applications Donghoon Jang Database Solution Architect WWSO
  • 2. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Modern Database ?
  • 3. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 데이터에 대한 접근방식을 재고해야 하는 이유는 무엇인가? 데이터 접근에 대한 혁신적 변화 Data grows 10x every 5 years Transition from IT to DevOps increases rate of change Purpose-built databases provide optimized performance and cost savings Explosion of data Microservices changes data and analytics requirements Rapid rate of change Dev Ops
  • 4. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 현대화된 어플리케이션은? Users 1M+ Data volume Terabytes–petabytes Locality Global Performance Microsecond latency Request rate Millions per second Access Mobile, IoT, devices Scale Virtually unlimited Economics Pay-as-you-go Developer access Instance API access Development Apps and storage are decoupled Online gaming Social media Media streaming e-commerce Shared economy
  • 5. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 현대화된 어플리케이션에 적합한 데이터 인프라는? Built-in best practices Routine maintenance Automated patching Industry compliance Isolation and security Backup and recovery Push-button scaling Advanced monitoring Automatic fail-over Schema design Query optimization Query construction Built-in best practices Routine maintenance Automated patching Industry compliance Isolation and security Automatic fail-over Backup and recovery Push-button scaling Advanced monitoring Query construction Query Optimization Schema design You Self managed Fully managed You
  • 6. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 현대화된 어플리케이션에 적합한 데이터 스토어는? Moving to Open Database + Commercial-grade performance and reliability
  • 7. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Amazon Web Service Managed Database Services DOCUMENT Amazon DocumentDB CACHING Amazon ElastiCache KEY- VALUE Amazon DynamoDB GRAPH Amazon Neptune LEDGER Amazon QLDB TIME- SERIES Amazon TimeStream WIDE COLUMN Amazon KeySpaces MEMORY Amazon MemoryDB Amazon RDS Amazon Aurora RELATIONAL 기본적으로 JSON 데이터 저장, 쿼리 및 인덱싱 유연한 인덱싱 유연한 스키마구조 Ad hoc 쿼리 기능
  • 8. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 요구사항 • MongoDB와의 호환성 • 마이크로서비스를 독립적으로 확장 • 복잡한 순위 쿼리의 성능 향상 • 완전 관리형 데이터베이스 서비스로 원활한 마이그레이션 해결방안 • 55% 적은 인스턴스로 마이크로서비스를 확장 ( 클러스터/LoB) • 순위 지정 쿼리의 지연 시간 16배 감소 : 읽기 전용 복제본 활용 • 최소한의 코드 변경 : MongoDB 호환성으로 60% 절감 효과 • 정전 횟수 : 0 • 대기 시간 : 500ms -> 80ms • 운영 오버헤드: 50% • 3개월 동안 100개 이상의 마이그레이션
  • 9. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Amazon DocumentDB Architecture
  • 10. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Amazon DocumentDB: Cloud Native Architecture 호환성 복제 스토리지와 컴퓨팅의 분리 내구성 백업 Modern, cloud-native database architecture
  • 11. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Amazon DocumentDB: Cloud Native Architecture Compute 2-96 cores 4-768 GB RAM Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Backup AZ 1 AZ 2 AZ 3 Amazon S3 Storage Distributed storage volume 호환성 복제 스토리지와 컴퓨팅의 분리 내구성 백업
  • 12. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Distributed storage volume 호환성 Amazon DocumentDB는 MongoDB API를 에뮬레이션 db.foo.find({}) {"x":1} AZ 1 AZ 2 AZ 3
  • 13. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Demo code
  • 14. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 클라우드 네이티브 데이터베이스 아키텍처 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Distributed storage volume AZ 1 AZ 2 AZ 3 Compute Storage
  • 15. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 API Query processor Caching Logging Storage Monolithic, shared disk architecture 기존 데이터베이스 아키텍처
  • 16. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 API Query processor Caching Logging Storage API Query processor Caching Logging Storage 확장하려면 전체 스택을 복사 API Query processor Caching Logging Storage
  • 17. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 API Query processor Caching Logging Storage Log writes 스토리지와 컴퓨팅의 분리
  • 18. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 API Query processor Caching Logging Storage Log writes Compute layer Storage layer 스토리지와 컴퓨팅의 분리
  • 19. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 API Query processor Caching Logging Storage Log writes Decouple compute and storage Compute layer Storage layer Scale compute Scale storage 스토리지와 컴퓨팅의 분리
  • 20. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 스토리지와 컴퓨팅의 분리 Distributed storage volume AZ 1 AZ 2 AZ 3 Compute Storage Instance (primary) Reads Writes r6g.large Instance (replica) Reads r6g.large Instance (replica) Reads r6g.large
  • 21. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 복제 ACK db.foo.insert({’x’:1}) db.foo.insert({’x’:1}) ACK Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Distributed storage volume AZ 1 AZ 2 AZ 3 Compute Storage Eventual consistency Eventual consistency
  • 22. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 복제 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Distributed storage volume AZ 1 AZ 2 AZ 3 Compute Storage Eventual consistency Eventual consistency db.foo.find({}) {‘x’:1}
  • 23. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Demo code
  • 24. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 내구성 평균 복구 시간(mean time-to-recovery )은 10GB를 복제하는 기능 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Distributed storage volume AZ 1 AZ 2 AZ 3 Compute Storage
  • 25. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Demo code
  • 26. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Architecture 백업 Amazon S3로 연속 스트리밍 Backup AZ 1 AZ 2 AZ 3 Amazon S3 Storage Distributed storage volume
  • 27. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Compute Storage Cost Optimization: Pricing Distributed storage volume Amazon S3 Backup: GiB/month (100% Free! $0.021/GiB) 4 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Storage: GiB/month ($0.10/GiB) 3 Instances: Size/hr * count (db.t4g.medium $0.075/hr) 1 IOPS: Count ($0.20/million) 2
  • 28. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Best Practices
  • 29. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Number of instances determines availability target Availability Target Total Instances Replicas Availability Zones Recovery Time 99% 1 0 1 8-10min 99.9% 2 1 2 <30sec 99.99% 3 2 3 <30sec 99.99% 4 3 3 <30sec Best Practice: Use at least 2 replicas in different AZs for production deployments Cluster Sizing: Availability
  • 30. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Instance Size = Processing Power + Cache Class vCPU Memory (GiB) Estimated Cache Size (~2/3 of RAM) t4g.medium 2 4 ~2.5GB r6g.large 2 16 ~10.5GB r6g.xlarge 4 32 ~21GB r6g.2xlarge 8 64 ~42.5GB r6g.4xlarge 16 128 ~85GB r6g.8xlarge 32 256 ~171GB r6g.12xlarge 48 384 ~256GB r6g.16xlarge 64 512 ~341GB r5.24xlarge 96 768 ~512GB Best Practice: Ensure indices and working set fit in cache Cluster Sizing: Instance Performance
  • 31. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Recover to any time from 5 minutes ago until the Backup Retention Period Best practice: set retention based on your Recovery Point Objective Cluster Sizing: Backups
  • 32. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Connecting: Endpoints Distributed storage volume AZ 1 AZ 2 AZ 3 Instance (primary) Reads Writes Instance (replica) Reads Instance (replica) Reads "members":[ { "_id":1, "stateStr":"PRIMARY", ... }, { "_id":2, "stateStr":"SECONDARY", ... }, { "_id":3, "stateStr":"SECONDARY", ... } ] Application
  • 33. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Best practice: Use cluster endpoint and connect as a replica set Connecting: Replica Set Emulation
  • 34. © 2023, Amazon Web Services, Inc. or its Affiliates. Connecting: Failover Distributed storage volume AZ 1 AZ 2 AZ 3 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads Primary fails
  • 35. © 2023, Amazon Web Services, Inc. or its Affiliates. Connecting: Failover Distributed storage volume AZ 1 AZ 2 AZ 3 Instance (replica) Reads Replica promoted to new primary Instance (primary) Reads Writes
  • 36. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Instance (Primary) Distributed storage volume AZ1 AZ2 AZ3 Reads Instance (Replica) Instance (Replica) Reads Writes Reads Containers Up to 30000 Up to 30000 Up to 30000 Connection Limits
  • 37. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Instance (Primary) Distributed storage volume AZ1 AZ2 AZ3 Reads Instance (Replica) Instance (Replica) Reads Writes Reads Containers Up to 4560 Up to 4560 Up to 4560 Cursor Limits
  • 38. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Scaling: Dynamic Read Preference Distributed storage volume AZ 1 AZ 2 AZ 3 Instance (primary) Reads Writes Instance (replica) Reads Instance (replica) Reads Application Override on each call (readPreference: primary) Default read preference (readPreference: secondaryPreferred)
  • 39. © 2023, Amazon Web Services, Inc. or its Affiliates. Scaling: Write Traffic Distributed storage volume AZ 1 AZ 2 AZ 3 Reads Writes Replica db.r6g.large Reads Replica db.r6g.large Reads Replica db.r6g.large Reads Primary db.r6g.4xlarge Reads Replica db.r6g.4xlarge Reads Replica db.r6g.4xlarge Writes
  • 40. © 2023, Amazon Web Services, Inc. or its Affiliates. Compute Storage Scaling: Storage and I/O Distributed storage volume Grows automatically from 10 GiB - 128 TiB AZ 1 AZ 2 AZ 3 Instance (replica) Reads Instance (primary) Reads Writes Instance (replica) Reads
  • 41. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Create billing alarms • 50% spend • 75% spend • Cost Allocation Tags Monitoring: Billing
  • 42. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. BufferCacheHitRatio IndexBufferCacheHitRatio DatabaseConnections DatabaseCursors FreeableMemory CPUUtilization Monitoring: Instance Metrics
  • 43. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. DBClusterReplicaLagMaximum DatabaseCursorsTimedOut VolumeWriteIOPs VolumeReadIOPs Opscounters Monitoring: Cluster Metrics
  • 44. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Auditing DDL events Auth events Role Grants Create alarms Profiling Slow queries Monitoring: Auditing and Profiling
  • 45. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 데이터베이스 로드를 측정하여 지난 시점의 시스템 활동 검토 • Average Active Sessions • Wait States • Operation level granularity Complementary to profiling Monitoring: Performance Insights
  • 46. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Indexes come with a cost • Constrain indexes to those necessary for common queries • 5 per collection max rule of thumb • 1% selectivity goal rs0:PRIMARY> db.collName.getIndexes() [ { "v":2, "key":{ "_id":1 }, "name":"_id_", "ns":"tournament.results" }, { "v":2, "key":{ "user_id":1 }, "name":"user_id_1", "ns":"tournament.results" } ] Indexing
  • 47. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Verify indexes fit in memory • Monitor IndexBufferCacheHitRatio rs0:PRIMARY> db.collName.stats() { "ns":"tournament.results", "count":39549, "size":7000173, "avgObjSize":177.303, "storageSize":8609792, "capped":false, "nindexes":2, "totalIndexSize":5472256, "indexSizes":{ "_id_":2760704, "user_id_1":2711552 }, "ok":1 } Indexing: Caching
  • 48. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Drop unused indexes where possible rs0:PRIMARY> db.collName.aggregate([{$indexStats:{}}]).pretty() { "name":"user_id_1", "key":{ "user_id":1 }, "host":"docdb2019.us-east-2.docdb.amazonaws.com:27017", "accesses":{ "ops":NumberLong(0), "since":ISODate("2020-01-15T06:57:38Z") } } Indexing: Unused Indexes
  • 49. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Stops for up to 7 days; cluster then restarts automatically • While Stopped : • No instance costs • Storage costs continue • Backup costs do not increase Cost Optimization: Start/Stop Cluster
  • 50. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Cost Optimization: I/O • 적절한 인스턴스 크기 선택 ▪ Working set and indices should fit in cache ▪ Monitor metrics to ensure cache is appropriately sized – BufferCacheHitRatio and IndexBufferCacheHitRatio – Should be >90% • Special Case : TTL 워크로드 ▪ TTL 인덱스는 데이터를 삭제하기 위해 I/O를 발생시킴 ▪ Instead use a collection per day – Query all collections for the data of interest – Drop entire collection when the data “expires” (No I/O cost to drop a collection)
  • 51. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Cost Optimization: Storage and Backup • 필요한 데이터만 저장 ▪ 미사용 인덱스 식별 ▪ 불필요한 데이터 식별 – 문서 내 불필요한 필드 – 불필요한 문서 • 필요한 백업만 유지 ▪ Snapshot 에 주의 – 더 이상 필요하지 않은 항목 제거 ▪ 복구 지점 목표 검토 – 백업 보존 기간을 적절하게 조정
  • 52. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Security group B VPC Security group A Application DocumentDB Cluster Security group B: • Inbound (min): TCP (27017) Security group A: • Outbound (min): TCP (27017) Security Groups
  • 53. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Role Scope Role Name Description Actions Database read Read any collection in a DB collStats, dbStats, find, listCollections, … Database readWrite Read and write any collection in a DB createCollection,, createIndex, insert, remove, update, … Cluster readAnyDatabase Read any collection in any DB listChangeStreams, listDatabases, [actions in read] Cluster readWriteAnyDatabase Read or write any collection in any DB listChangeStreams, listDatabases, [actions in readWrite] Cluster clusterMonitor Read access for monitoring tools listSessions, serverStatus, top, dbStats, … RBAC – Built-in Roles
  • 54. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. RBAC – User Defined Roles • Roles 은 사용자가 DB 리소스에서 수행할 수 있는 작업을 결정 • User-defined roles 은 조직의 요구 사항에 따라 RBAC 역할을 사용자 지정할 수 있는 유연성을 제공 • 세분화된 액세스 제어(일명 최소 권한 액세스)로 사용자를 생성할 수 있음 • 특정 작업/API에 대한 액세스를 제한하는 역할 생성 • 특정 컬렉션에 대한 액세스를 제한하는 역할 생성 • 기존 사용자 정의 역할에 기본 제공 역할 또는 작업에 대한 액세스를 추가할 수 있음
  • 55. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Use TLS in-transit • KMS-backed at-rest encryption Encryption
  • 56. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. AWS Secrets Manager Amazon DocumentDB Application Lambda Rotation Function Retrieve credentials Login with credentials Update credentials Trigger update Integration with AWS Secrets Manager
  • 57. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Data Modeling
  • 58. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. What is it ? 물리적 또는 논리적으로 고유하게 식별할 수 있는 추상화 개체 Entities for an e-commerce application Data modeling concepts - Entities
  • 59. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. ➢ One to one ➢ One to many ➢ Many to many Data modeling concepts - Relationships
  • 60. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Data modeling concepts – Normalized or Denormalized Embed model { "username": "john", "userId": 1234, "access": { "level": 2, "group": "dba" }, "contact":{ "phone": "123-24212", "email": "john@domain.tld" } } Embedded sub-doc Embedded sub-doc { "username": "john", "userId": 1234 } { "userId": 1234, "phone": "123-24212", "email": "john@domain.tld" } { "userId": 1234, "group": "dba", "level": 2 } User document Reference model Contact document Access document
  • 61. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. • Optimize the access patterns • Better document structure • Simplify queries • Less indexes What is it ? 다양한 사용 사례에 적용하고 재사용할 수 있는 데이터 모델링 기술 Data modeling concepts – Design pattern
  • 62. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Data modeling methodology
  • 63. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 응용 프로그램 요구 사항 설명 엔터티 및 관계 식별 디자인 패턴 적용 Schema model Methodology - Phases
  • 64. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. PHASE 1 워크로드 식별
  • 65. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 응용 프로그램 요구 사항 설명 INPUT • 요구사항 문서 • 시나리오 • 지표 및 로그 • 기존 NoSQL 모델 마이그레이션 또는 리팩터링 • 가정 • 어플리케이션 요구 사항 및 데이터 사용 방법 정의 • 액세스 패턴, 읽기vs 쓰기 식별 • 가장 중요한 쿼리 식별 • 데이터 크기 추정 • 오래된 데이터에 대한 일관성 요구 사항 및 허용 오차를 식별 Methodology – Identify workload
  • 66. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 시나리오 예제 : 온라인 블로그 웹 사이트에서 작성자는 모든 기사에 대한 기사 및 댓글을 게시하거나 읽을 수 있습니다. 각 기사에는 태그가 있을 수 있으며 하나 이상의 범주에 속할 수 있음 CRUD Operation Type Frequency (peak) Avg doc size Max Latency New blog added/updated Write 100/month 500 KB < 500ms New comment added Author added Write Write 5000/month 30/month 32 KB 2 KB < 150ms <100ms Blog views Read 10000/day/blog 5ms Author logs in Read 200/day 10ms 응용 프로그램 요구 사항 설명 Methodology – Identify operations
  • 67. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. PHASE 2 엔터티 및 관계 식별
  • 68. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. 엔터티 및 관계 식별 Embedding or Referencing ? Methodology – Identify relationships
  • 69. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Authors • id • name • email Blogs • id • title • date • text Categories • id • name Tags • id • name Comments • id • date • text Blogs • id • title • date • text Authors • id • name • email Categories • id • name Tags • id • name Comments • id • date • text Duplication of authors data Query by blogs Query by authors Methodology – Model by access pattern
  • 70. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. id Authors • • name • email Query by blogs and authors Authors 데이터 중복 방지 Blogs • id • title • date • text • author_id Categories • id • name Tags • id • name Comments • id • date • text Methodology – Model by access pattern
  • 71. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Blogs • id • title • date • text • author_id Categories • id • name Tags • id • name Comments • id • date • text Blogs -> Comments – one to many unbounded comments 를 다른 컬렉션으로 분리하고 여러 쪽에 참조를 유지. Blogs • id • title • date • text • author_id Categories • id • name Tags • id • name Comments • id • date • text • blog_id Methodology – Model by relationship type 1:M
  • 72. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Courses { ”course_id": <objectId>, "name": <string>, "instructors": [ List[inst_id] ] } Instructors { "inst_id": <objectId>, "name": <string>, "courses": [ List[course_id] ] } Two-way embedding Courses { ”course_id": <objectId>, "name": <string>, } Students { ”student_id": <objectId>, "name": <string>, "courses": [ List[course_id] ] } Many to many bounded Many to many unbounded Courses -> Instructors Courses -> Students Methodology – Model by relationship type N:M
  • 73. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Access pattern or relationship type Recommended model - Need all related data in one query - One to one relationship - One to many, where many is bounded Embedded - A portion of data is rarely accessed - Data that is frequently updated and growing - One to many potentially unbounded Reference - Many to many Combination of both Embedding vs. Referencing - How to choose ?
  • 74. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. PHASE 3 Identify and apply design patterns
  • 75. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. { "name": <string>, "price": <int>, "specs": [ {k:"size", v: <string>}, {k:"weight", v: <string>}, {k:"colour", v: <string>}, {k:"material", v: <string>} ] } Only one index needed: ➢ { "specs.k": 1, "specs.v": 1 } // Item document { "name": <string>, "price": <int>, "size": <string>, "weight": <string>, "colour": <string>, "material": <string> } 4 indexes needed: ➢ {"size": 1} ➢ {"weight": 1} ➢ {"colour": 1} ➢ {"material": 1} Attribute pattern Challenge: • Many similar fields • Fields present only in a subset of documents Use cases: • Catalogs, Inventory Methodology – Apply design pattern
  • 76. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. // Blogs collection { "id": <objectId>, "title": <string>, "date": <date>, "text": <string>, "author_id": <objectId>, "last_comments": [ List[Last 20 comments] ] } // Comments collection { "id": <objectId>, "date": <date>, "text": <string>, "blog_id": <objectId> } Subset pattern Challenge: • Documents too large • Working set doesn’t fit in RAM Use cases: • Whenever a significant data inside a document that is rarely needed Methodology – Apply design pattern
  • 77. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. // Items { "id": <objecId>, "name": <string>, "description": <string>, "specs": [ {"k": <string>, "v": <string> } ], "category": [ List[categories] ] } Counting items for each category will require to read all items and group per category “Cache” the count when a new item is inserted // items_category_count db.itemsitems_category_count.update( {_id: "books"}, {$inc: {count: 1}} ) Computed pattern Challenge: • Repeated calculations • Read intensive workload Use cases: • Catalogs, IoT, Mobile, Real time analysis Methodology – Apply design pattern
  • 78. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. // Invoices { "invoice_id": <objectId>, "customer_id": <objectId>, "customer_info": { "fullName": <string>, "street": <string>, "city": <string>, "zipcode": <string> } } // Customers { "customer_id": <objectId>, "fullName": <string>, "street": <string>, "city": <string>, "zipcode": <string>, "email": <string>, "phone": <string> } You need to manage duplication: • Duplicate only needed fields and that do not change often Extended reference Challenge: • Too many roundtrips to database or joins Use case: • Catalog, Mobile apps, E- commerce Methodology – Apply design pattern
  • 79. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Bucket pattern // SensorData { "device_id": 4523, "ts": ISODate("2023-03-10T10:00"), "temp": 20 }, { "device_id": 4523, "ts": ISODate("2023-03-10T10:01"), "temp": 20 }, { "device_id": 4523, "ts": ISODate("2023-03-10T10:02"), "temp": 21 } Bucket per hour Combine with computed pattern //SensorData "device "date": ISODate("2023-03-10T10"), "temp": [ {"ts": ISODate("2023-03-10T10:00"), "temp": 20}, {"ts": ISODate("2023-03-10T10:00"), "temp": 20}, {"ts": ISODate("2023-03-10T10:00"), "temp": 21}, ], "temp_count": 3, "temp_sum": 61 Challenge: • Large documents or too many documents Use cases: • IoT • Historical data • Lots of data associated with one entity Methodology – Apply design pattern
  • 80. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Current & Next
  • 81. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. A few highlights from recent releases 2019 2020 2021 2022 2023 Frankfurt Secrets Manager DDL auditing Aggregation operators Launch Sydney London Canada t3 instances Cross-region snapshot copy RBAC user-defined roles JDBC driver Geospatial Performance Insights (preview) Elastic Clusters Slow query logger Aggregation operators RBAC Free trial Aggregation operators MongoDB 4.0 Acid transactions Fast database cloning Per-second billing Tokyo Seoul Change streams Mumbai Paris Singapore Glue ETL Global clusters Milan DML auditing Decimal128 support Start/stop cluster Deletion protection Aggregation operators Increase cursor & connection limits Graviton2 AWS Backup Dynamic volume resizing MongoDB 5.0 Lambda ESM Client-side field level encryption
  • 82. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. db.foo.findOne() {“x”:1} Global replication: Up to 5 secondary regions Low replica lag: Typically < 1 sec Fast recovery: Typically < 1 min downtime Compatibility: Version 4.0 and later Global reader instances: Up to 90 db.foo.insertOne({“x”:1}) Reads Reads Writes Reads Replication Service (primary region) Ohio Reads Reads Replication Service (secondary region) Oregon Reads Reads Replication Service (secondary region) Tokyo Global Clusters
  • 83. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Elastic Cluster architecture db.foo.find( { order_id:1 }) { “order_id”:1, “name”:”Amazon” } db.foo.insert( { order_id: 2 }) {“inserted_id”:2} Shard-1 Compute capacity Writes Reads Distributed storage volume Shard-2 Compute capacity Writes Reads Distributed storage volume Shard-n Compute capacity Writes Reads Distributed storage volume Elastic Cluster Request Router and Service
  • 84. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. What’s Next? “Amazon DocumentDB resources” https://aws.amazon.com/documentdb/resources/ “Amazon DocumentDB immersion day workshop” https://documentdb-immersionday.workshop.aws/
  • 85. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Q&A
  • 86. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark. Thank you!