Atomic Absorption Spectroscopy
(AAS)
Principle, Instrumentation,
Interferences, and Applications
VISHAL PAWAR
MODERN PHARMACEUTICAL ANALYTICAL
TECHNIQUES (MPAT 101T)
Principle of Atomic Absorption
Spectroscopy
• Atomic Absorption Spectroscopy (AAS) is
based on the principle that free atoms in the
ground state absorb light of specific
wavelengths.
• Key Points:
• - Atoms absorb radiation at characteristic
wavelengths (resonance).
• - Absorbance is proportional to the analyte
concentration.
Instrumentation: Components of
AAS (1/2)
• 1. Radiation Source:
• - Hollow Cathode Lamp (HCL) emits light
specific to the analyte.
• 2. Atomizer:
• - Converts the sample into free atoms.
• - Types: Flame Atomizer and Graphite Furnace
Atomizer.
Instrumentation: Components of
AAS (2/2)
• 4. Monochromator:
• - Isolates the specific wavelength absorbed by
the analyte.
• 5. Detector:
• - Photomultiplier tube detects light intensity.
• - Converts light signals to electrical signals.
• 6. Signal Processor:
Interferences in Atomic Absorption
Spectroscopy
• 1. Spectral Interferences:
• - Overlapping absorption/emission lines.
• - Solution: Use a narrow-band
monochromator or background correction.
• 2. Chemical Interferences:
• - Formation of refractory compounds.
• - Solution: Add releasing agents or increase
flame temperature.
Applications of Atomic Absorption
Spectroscopy
• 1. Pharmaceutical Industry:
• - Analysis of trace metals in drugs and APIs.
• - Quality control and heavy metal detection.
• 2. Environmental Monitoring:
• - Detection of heavy metals in water, soil, and
air.
• 3. Clinical Applications:
Advantages and Limitations of AAS
• Advantages:
• - High sensitivity and specificity.
• - Fast and precise analysis for trace elements.
• - Cost-effective and versatile.
• Limitations:
• - Limited to metals and metalloids.
• - Requires separate lamps for each element.
• - Susceptible to matrix interferences.
References
• 1. Skoog, D. A., Holler, F. J., & Crouch, S. R.
(2007). Principles of Instrumental Analysis.
• 2. Willard, H. H., Merritt, L. L., Dean, J. A., &
Settle, F. A. (1981). Instrumental Methods of
Analysis.
• 3. ICH Q3D Guidelines on Elemental
Impurities.
• 4. Dasgupta, P. K., & Cullen, T. (2014).
Analytical Chemistry: A Modern Approach.

Atomic Absorption Spectroscopy AAS .pptx

  • 1.
    Atomic Absorption Spectroscopy (AAS) Principle,Instrumentation, Interferences, and Applications VISHAL PAWAR MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPAT 101T)
  • 2.
    Principle of AtomicAbsorption Spectroscopy • Atomic Absorption Spectroscopy (AAS) is based on the principle that free atoms in the ground state absorb light of specific wavelengths. • Key Points: • - Atoms absorb radiation at characteristic wavelengths (resonance). • - Absorbance is proportional to the analyte concentration.
  • 3.
    Instrumentation: Components of AAS(1/2) • 1. Radiation Source: • - Hollow Cathode Lamp (HCL) emits light specific to the analyte. • 2. Atomizer: • - Converts the sample into free atoms. • - Types: Flame Atomizer and Graphite Furnace Atomizer.
  • 4.
    Instrumentation: Components of AAS(2/2) • 4. Monochromator: • - Isolates the specific wavelength absorbed by the analyte. • 5. Detector: • - Photomultiplier tube detects light intensity. • - Converts light signals to electrical signals. • 6. Signal Processor:
  • 5.
    Interferences in AtomicAbsorption Spectroscopy • 1. Spectral Interferences: • - Overlapping absorption/emission lines. • - Solution: Use a narrow-band monochromator or background correction. • 2. Chemical Interferences: • - Formation of refractory compounds. • - Solution: Add releasing agents or increase flame temperature.
  • 6.
    Applications of AtomicAbsorption Spectroscopy • 1. Pharmaceutical Industry: • - Analysis of trace metals in drugs and APIs. • - Quality control and heavy metal detection. • 2. Environmental Monitoring: • - Detection of heavy metals in water, soil, and air. • 3. Clinical Applications:
  • 7.
    Advantages and Limitationsof AAS • Advantages: • - High sensitivity and specificity. • - Fast and precise analysis for trace elements. • - Cost-effective and versatile. • Limitations: • - Limited to metals and metalloids. • - Requires separate lamps for each element. • - Susceptible to matrix interferences.
  • 8.
    References • 1. Skoog,D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis. • 2. Willard, H. H., Merritt, L. L., Dean, J. A., & Settle, F. A. (1981). Instrumental Methods of Analysis. • 3. ICH Q3D Guidelines on Elemental Impurities. • 4. Dasgupta, P. K., & Cullen, T. (2014). Analytical Chemistry: A Modern Approach.