SlideShare a Scribd company logo
1	
  
	
  
Figure	
  1	
  -­‐	
  The	
  Plio-­Pleistocene	
  
lithostratigraphy	
  of	
  the	
  different	
  formations	
  of	
  
northeast	
  Rhodes.	
  The	
  samples	
  dealt	
  with	
  in	
  
this	
  article	
  are	
  from	
  the	
  Lindos	
  Bay	
  Clay	
  and	
  
Kolymbia	
  Limestone	
  facies.	
  Hanken	
  et	
  al.,	
  
1996.	
  
	
  
Brachiopods	
  from	
  the	
  Plio-­Pleistocene	
  sediments	
  of	
  northeast	
  
Rhodes,	
  Greece.	
  
	
  
Tara	
  Love	
  
Department	
  of	
  Earth	
  Sciences	
  
	
  
	
  
Introduction	
  
	
  
This	
   project	
   investigated	
   brachiopod	
   fossils	
  
from	
   the	
   Plio-­‐Pleistocene	
   sediments	
   from	
   the	
  
largest	
  of	
  Greece’s	
  Dodecanese	
  islands,	
  Rhodes.	
  
The	
   material	
   was	
   fully	
   sorted,	
   identified	
   and	
  
photographed.	
  
	
  
Geological	
  Background	
  
	
  
Each	
   brachiopod	
   species	
   has	
   a	
   preferred	
  
substrate	
   and	
   live	
   at	
   different	
   (bio-­‐)	
   depth	
  
zones.	
   	
   Within	
   these	
   sedimentary	
   rocks,	
  
brachiopods	
  (along	
  with	
  other	
  types	
  of	
  fossils)	
  	
  
can	
   be	
   used,	
   together	
   with	
   other	
   methods,	
   to	
  
interpret	
  palaeoenvironments.	
  	
  
	
  
	
  
The	
  brachiopods	
  collected	
  are	
  from	
  a	
  group	
  of	
  
coastal	
   basins	
   in	
   the	
   northeast	
   of	
   Rhodes	
   and	
  
this	
   is	
   where	
   Plio-­‐Pleistocene	
   sediments	
  
accumulated;	
   these	
   sections	
   have	
   superior	
  
preservation	
   where	
   they	
   were	
   protected	
   from	
  
erosion	
  by	
  headlands	
  or	
  	
  “islands	
  of	
  basement	
  
limestone”	
  (Hanken	
  et	
  al.,	
  1996).	
  
	
  
According	
   to	
   Hanken	
   et	
   al.	
   (1996),	
   these	
  
sediments	
   formed	
   “complex	
   facies	
   mosaics	
  
reflecting	
   several	
   cycles	
   of	
   regression	
   and	
  
transgressions”;	
   the	
   Rhodes	
   Formation	
   was	
  
formed	
  during	
  a	
  “major	
  phase	
  of	
  transgression”	
  
in	
   the	
   Late	
   Pliocene	
   and	
   a	
   forced	
   regression	
  
during	
  the	
  Lower	
  Pleistocene.	
  	
  
	
  
The	
   specimens	
   all	
   came	
   from	
   the	
   Lindos	
   Bay	
  
Clay	
   or	
   Kolymbia	
   Limestone	
   facies	
   within	
   the	
  
Rhodes	
  Formation	
  (as	
  seen	
  in	
  Fig.1).	
  According	
  
to	
  Hanken	
  et	
  al.	
  (1996),	
  their	
  ages	
  range	
  from	
  
the	
   Pliocene	
   to	
   the	
   Pleistocene;	
   the	
   Kolymbia	
  
Limestone	
   being	
   Late	
   Pliocene	
   (~5.33	
   Ma)	
   in	
  
age	
  and	
  the	
  Lindos	
  Bay	
  Clay	
  3	
  Ma	
  (Lovelie	
  et	
  al.,	
  
1989)	
  at	
  the	
  base	
  to	
  an	
  age	
  of	
  0.7	
  Ma	
  at	
  the	
  top.	
  	
  
	
  
Methods	
  
	
  
The	
  shells	
  size	
  ranged	
  from	
  1	
  mm	
  to	
  1.5	
  cm	
  in	
  
width,	
  and	
  a	
  microscope	
  was	
  often	
  required	
  to	
  
identify	
  most	
  of	
  the	
  fossils.	
  ‘Manuals’	
  were	
  used	
  
to	
  help	
  identify	
  species;	
  The	
  Brachiopods	
  of	
  the	
  
Mediterranean	
   Sea	
   (Logan.	
   1979)	
   was	
  
particularly	
  useful.	
  	
  
	
  
Identification	
   of	
   species	
   was	
   achieved	
   by	
  
observations	
   made	
   of	
   internal	
   and	
   external	
  
shell	
   characteristics	
   and	
   the	
   comparison	
   with	
  
the	
   ‘manuals’	
   at	
   my	
   disposal	
   and	
   with	
   that	
   of	
  
Davidson’s	
  Monograph.	
  	
  
	
  
	
  
2	
  
	
  
Figure	
  2	
  -­‐	
  A	
  summary	
  of	
  results	
  from	
  within	
  
the	
  Rhodes	
  Formation.	
  This	
  is	
  without	
  
differentiating	
  between	
  the	
  different	
  facies	
  
groups.	
  
	
  
Preliminary	
  Results	
  
	
  
The	
   brachiopods	
   identified	
   (all	
   from	
   the	
  
Rhodes	
   Formation)	
   appear	
   to	
   be	
   from	
   two	
  
depth	
  groups;	
  those	
  of	
  shallow	
  water	
  (down	
  to	
  
about	
   200	
   m)	
   and	
   the	
   eurybathic	
   species	
   (a	
  
depth	
  of	
  about	
  600	
  m)	
  (Logan	
  et	
  al.,	
  2004).	
  	
  	
  	
  
	
  
From	
  the	
  1248	
  shells	
  that	
  were	
  sorted,	
  13	
  	
  
brachiopod	
   species	
   were	
   identified.	
   12	
   of	
   the	
  
species	
   would	
   have	
   been	
   attached	
   to	
   either	
  
submarine	
   rocks	
   or	
   cave	
   walls	
   by	
   pedicle	
  
attachment,	
  whereas	
  Neocrania	
  anomala	
  would	
  
have	
  been	
  cemented	
  to	
  submarine	
  cave	
  walls	
  in	
  
the	
  Mediterranean	
  region.	
  
	
  
Within	
  the	
  Kolymbia	
  Limestone	
  the	
  eurybathic	
  
species,	
   Gryphus	
   vitreus,	
   was	
   dominant.	
   This	
  
species,	
   as	
   well	
   as	
   Megerlia	
   truncata	
   and	
  
Terebratulina	
   retusa	
   (as	
   seen	
   in	
   Figure	
   3),	
  
showed	
   signs	
   of	
   predation	
   in	
   the	
   form	
   of	
  
boreholes	
   (Fig.3.	
   B)	
   from	
   samples	
   in	
   both	
  
facies.	
  	
  	
  
	
  
The	
   majority	
   of	
   the	
   samples	
   came	
   from	
   the	
  
Lindos	
  Bay	
  Clay	
  facies;	
  a	
  calcareous,	
  silty	
  clay	
  
(Hanken	
  et	
  al.,	
  1996).	
  Due	
  to	
  the	
  high	
  numbers	
  
of	
   calcareous	
   microfossils,	
   the	
   clay	
   is	
  
carbonate-­‐rich	
   (Hanken	
   et	
   al.,	
   1996).	
   The	
  
dominant	
  species	
  in	
  this	
  facies	
  were	
  Megathiris	
  
detruncata,	
   Terebratulina	
   retusa	
   (Fig.3	
   A),	
  
Gryphus	
  vitreus	
  and	
  Megerlia	
  truncata	
  (Fig.3	
  B).	
  
	
  
There	
  were	
  a	
  number	
  of	
  samples	
  that	
  were	
  too	
  
fragmented,	
   or	
   had	
   no	
   useful	
   identifying	
  
features,	
   so	
   these	
   were	
   catalogued	
   separately	
  
and	
  not	
  included	
  in	
  the	
  Summary	
  of	
  Results.	
  I	
  
will	
   be	
   going	
   through	
   these	
   difficult	
   samples	
  
Formation	
   Species	
  
Number	
  
of	
  
species	
  
Rhodes	
  
Megerlia	
  
truncata	
   35	
  
Rhodes	
  
Megerlia	
  
echinata	
   6	
  
Rhodes	
  
Megathiris	
  
detruncata	
   478	
  
Rhodes	
  
Argyrotheca	
  
cuneata	
   62	
  
Rhodes	
  
Agyrotheca	
  
cistellula	
   16	
  
Rhodes	
  
Arygyrotheca	
  
cordata	
   50	
  
Rhodes	
  
Platidia	
  spp	
  
	
   54	
  
Rhodes	
   Platidia	
  anomala	
   2	
  
Rhodes	
  
Platidia	
  
anomoides	
   4	
  
Rhodes	
  
Platidia	
  
davidsoni	
   1	
  
Rhodes	
   Gryphus	
  vitreus	
   232	
  
Rhodes	
  
Terebratulina	
  
retusa	
   223	
  
Rhodes	
   Platidia	
  anomala	
   85	
  
Figure	
  3	
  -­‐	
  Examples	
  of	
  two	
  common	
  species	
  
from	
  the	
  Rhodes	
  samples.	
  A	
  -­	
  Terebratulina	
  
retusa.	
  B	
  -­	
  Megerlia	
  truncata.	
  The	
  specimen	
  on	
  
the	
  left	
  shows	
  an	
  example	
  of	
  bioerosion	
  that	
  
seems	
  common	
  to	
  this	
  species	
  from	
  the	
  Lindos	
  
Bay	
  Clay.	
  	
  
B	
  
A	
  
3	
  
	
  
and	
   double-­‐check	
   the	
   previous	
   identifiable	
  
ones	
  to	
  ensure	
  that	
  the	
  correct	
  species	
  names	
  
have	
  been	
  given	
  to	
  each	
  shell.	
  	
  
	
  
Acknowledgements	
  
	
  
Richard	
  G.	
  Bromley	
  kindly	
  left	
  the	
  majority	
  of	
  
the	
   fossils	
   and	
   the	
   final	
   samples	
   were	
   from	
  
Professor	
  David	
  A.T.	
  Harper’s	
  own	
  collection.	
  	
  
	
  
Many	
  thanks	
  to	
  Van	
  Mildert	
  College	
  for	
  support	
  
and	
   for	
   allowing	
   use	
   of	
   the	
   Postgraduate	
  
Rooms	
   and	
   to	
   the	
   Earth	
   Science	
   Department	
  
(Durham)	
  for	
  access	
  to	
  rooms	
  and	
  equipment.	
  	
  	
  
	
  
Special	
  thanks	
  must	
  go	
  to	
  Professor	
  David	
  A.T.	
  
Harper	
   for	
   his	
   supervision,	
   continued	
   advice	
  
and	
  support	
  and	
  to	
  Dr	
  Howard	
  Armstrong	
  for	
  
his	
  academic	
  advice.	
  	
  
	
  
References	
  
	
  
Benton,	
  M.,	
  &	
  Harper,	
  D.A.T.	
  2009.	
  Introduction	
  
to	
   Palaeobiology	
   and	
   the	
   Fossil	
   Record.	
  
Chichester:	
  Wiley-­‐Blackwell.	
  
	
  
Hanken,	
   N-­‐M.,	
   Bromley,	
   R.G.,	
   and	
   Miller,	
   J.	
  	
  
1996.	
  Plio-­‐Pleistocene	
  sedimentation	
  in	
  coastal	
  
grabens,	
  north-­‐east	
  Rhodes,	
  Greece.	
  Geological	
  
Journal,	
  31,	
  393-­‐418.	
  
	
  
Logan,	
   A.	
   1979.	
   The	
   Brachiopods	
   of	
   the	
  
Mediterranean	
   Sea.	
   	
   Bulletin	
   de	
   L’institut	
  
oceanographique,	
  Monaco,	
  vol	
  72,	
  no.	
  1434	
  
	
  
Logan,	
   A.,	
   Bianchi,	
   C.N.,	
   Morri,	
   C.,	
   and	
  
Zibrowius,	
   H.	
   2004.	
   The	
   Present-­‐day	
  
Mediterranean	
  brachiopod	
  fauna:	
  diversity,	
  life	
  
habits,	
   biogeography	
   and	
   plaeobiogeography.	
  
SCI.	
  MAR.,	
  68	
  (suppl.	
  1):	
  163-­‐170	
  
	
  
Lovelie,	
   R.,	
   Stole,	
   G.,	
   and	
   Spjeldnaes,	
   N.	
   1989.	
  
Magnetic	
   Polarity	
   stratigraphy	
   of	
   Pliocene-­‐
Pleistocene	
   marine	
   sediments	
   from	
   eastern	
  
Mediterranean.	
   Physics	
   of	
   the	
   Earth	
   and	
  
Planetary	
  Interiors	
  54,	
  340-­‐352.	
  

More Related Content

What's hot

Nanno planktons
Nanno planktonsNanno planktons
Nanno planktons
Pramoda Raj
 
Radiolarian micropalaeontology: morphology and taxonomy
Radiolarian micropalaeontology: morphology and taxonomyRadiolarian micropalaeontology: morphology and taxonomy
Radiolarian micropalaeontology: morphology and taxonomy
Prof Simon Haslett
 
Nano fossils
Nano fossilsNano fossils
Nano fossils
Pramoda Raj
 
Techniques in paleontology
Techniques in paleontologyTechniques in paleontology
Techniques in paleontology
Pramoda Raj
 
Morphology of foramnifera
Morphology of foramniferaMorphology of foramnifera
Morphology of foramnifera
Pramoda Raj
 
Foraminifera and its Applications
Foraminifera and its ApplicationsForaminifera and its Applications
Foraminifera and its Applications
Aditya Bhattacharya
 
Micropaleontology and foraminifera
Micropaleontology and foraminifera Micropaleontology and foraminifera
Micropaleontology and foraminifera
Amna Q.
 
Introduction of foraminifera in oil exploration
Introduction of foraminifera in oil explorationIntroduction of foraminifera in oil exploration
Introduction of foraminifera in oil exploration
PurvaPandey3
 
Calcareous microfossils by Rathinavel
Calcareous microfossils by RathinavelCalcareous microfossils by Rathinavel
Calcareous microfossils by Rathinavel
University Of Madras, Chennai
 
Paleoecology
Paleoecology Paleoecology
Paleoecology
Pramoda Raj
 
Plant fossils are good indicators of palaeo-climate
Plant fossils are good indicators of palaeo-climatePlant fossils are good indicators of palaeo-climate
Plant fossils are good indicators of palaeo-climate
Pramoda Raj
 
Nano fossils and it’s significance in nano geo-science
Nano fossils and it’s significance in nano geo-scienceNano fossils and it’s significance in nano geo-science
Nano fossils and it’s significance in nano geo-science
Pramoda Raj
 
Chitinozoa
ChitinozoaChitinozoa
Chitinozoa
Pramoda Raj
 
Application of microfossil in fossil fuel exploration
Application of microfossil in  fossil fuel explorationApplication of microfossil in  fossil fuel exploration
Application of microfossil in fossil fuel exploration
Pramoda Raj
 
CW Invert and 3D Thesis4 KLM
CW Invert and 3D Thesis4 KLMCW Invert and 3D Thesis4 KLM
CW Invert and 3D Thesis4 KLM
Christopher White
 
Nano minerals & their formation
Nano minerals & their formationNano minerals & their formation
Nano minerals & their formation
Pramoda Raj
 
India,the real jurassic park
India,the  real jurassic parkIndia,the  real jurassic park
India,the real jurassic park
Pramoda Raj
 
Paleontology review
Paleontology reviewPaleontology review
Paleontology review
Janelle Wilson
 
Groundwater geology-week-2-2-20101
Groundwater geology-week-2-2-20101Groundwater geology-week-2-2-20101
Groundwater geology-week-2-2-20101
Handry J
 
Chapter 13outlinept2
Chapter 13outlinept2Chapter 13outlinept2
Chapter 13outlinept2
jmchenry071
 

What's hot (20)

Nanno planktons
Nanno planktonsNanno planktons
Nanno planktons
 
Radiolarian micropalaeontology: morphology and taxonomy
Radiolarian micropalaeontology: morphology and taxonomyRadiolarian micropalaeontology: morphology and taxonomy
Radiolarian micropalaeontology: morphology and taxonomy
 
Nano fossils
Nano fossilsNano fossils
Nano fossils
 
Techniques in paleontology
Techniques in paleontologyTechniques in paleontology
Techniques in paleontology
 
Morphology of foramnifera
Morphology of foramniferaMorphology of foramnifera
Morphology of foramnifera
 
Foraminifera and its Applications
Foraminifera and its ApplicationsForaminifera and its Applications
Foraminifera and its Applications
 
Micropaleontology and foraminifera
Micropaleontology and foraminifera Micropaleontology and foraminifera
Micropaleontology and foraminifera
 
Introduction of foraminifera in oil exploration
Introduction of foraminifera in oil explorationIntroduction of foraminifera in oil exploration
Introduction of foraminifera in oil exploration
 
Calcareous microfossils by Rathinavel
Calcareous microfossils by RathinavelCalcareous microfossils by Rathinavel
Calcareous microfossils by Rathinavel
 
Paleoecology
Paleoecology Paleoecology
Paleoecology
 
Plant fossils are good indicators of palaeo-climate
Plant fossils are good indicators of palaeo-climatePlant fossils are good indicators of palaeo-climate
Plant fossils are good indicators of palaeo-climate
 
Nano fossils and it’s significance in nano geo-science
Nano fossils and it’s significance in nano geo-scienceNano fossils and it’s significance in nano geo-science
Nano fossils and it’s significance in nano geo-science
 
Chitinozoa
ChitinozoaChitinozoa
Chitinozoa
 
Application of microfossil in fossil fuel exploration
Application of microfossil in  fossil fuel explorationApplication of microfossil in  fossil fuel exploration
Application of microfossil in fossil fuel exploration
 
CW Invert and 3D Thesis4 KLM
CW Invert and 3D Thesis4 KLMCW Invert and 3D Thesis4 KLM
CW Invert and 3D Thesis4 KLM
 
Nano minerals & their formation
Nano minerals & their formationNano minerals & their formation
Nano minerals & their formation
 
India,the real jurassic park
India,the  real jurassic parkIndia,the  real jurassic park
India,the real jurassic park
 
Paleontology review
Paleontology reviewPaleontology review
Paleontology review
 
Groundwater geology-week-2-2-20101
Groundwater geology-week-2-2-20101Groundwater geology-week-2-2-20101
Groundwater geology-week-2-2-20101
 
Chapter 13outlinept2
Chapter 13outlinept2Chapter 13outlinept2
Chapter 13outlinept2
 

Similar to Article-Brachiopods from the Plio (4) (1)

(2013) - Santodomingo - Corals colombia.pdf
(2013) - Santodomingo - Corals colombia.pdf(2013) - Santodomingo - Corals colombia.pdf
(2013) - Santodomingo - Corals colombia.pdf
GloriaPatriciaMoranG
 
Morphology of foraminifera
Morphology of foraminiferaMorphology of foraminifera
Morphology of foraminifera
Pramoda Raj
 
Ehret et-al.-2012 carcharodon-hubbelli
Ehret et-al.-2012 carcharodon-hubbelliEhret et-al.-2012 carcharodon-hubbelli
Ehret et-al.-2012 carcharodon-hubbelli
1979aabb
 
Joel Christine_Bachelor's Thesis-FA2008
Joel Christine_Bachelor's Thesis-FA2008Joel Christine_Bachelor's Thesis-FA2008
Joel Christine_Bachelor's Thesis-FA2008
Joel Christine
 
modern diving gear and outboard motors
modern diving gear and outboard motorsmodern diving gear and outboard motors
modern diving gear and outboard motors
trickynurse9685
 
Hocknull_altri_2009.pdf
Hocknull_altri_2009.pdfHocknull_altri_2009.pdf
Hocknull_altri_2009.pdf
BraydenStoch2
 
The Characteristic Algal Mats and Flora of El-Timsah Lake
The Characteristic Algal Mats and Flora of El-Timsah LakeThe Characteristic Algal Mats and Flora of El-Timsah Lake
The Characteristic Algal Mats and Flora of El-Timsah Lake
the Egyptian Society for Environmental Sciences
 
Granados, camargo et al 2008
Granados, camargo et al 2008Granados, camargo et al 2008
Granados, camargo et al 2008
Carolina Camargo
 
G0343038043
G0343038043G0343038043
G0343038043
inventionjournals
 
Whanganui Basin Report 2015
Whanganui Basin Report 2015Whanganui Basin Report 2015
Whanganui Basin Report 2015
Harrison Corbett
 
Brachiopods by Paras khati.ppt
Brachiopods by Paras khati.pptBrachiopods by Paras khati.ppt
Brachiopods by Paras khati.ppt
ParasKhati1
 
Lab assignment
Lab assignmentLab assignment
Lab assignment
SaraJohnsen1
 
The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...
Ædel Aerospace GmbH
 
Grimaldo_et_al_2004
Grimaldo_et_al_2004Grimaldo_et_al_2004
Grimaldo_et_al_2004
Lenny Grimaldo
 
K-T BOUNDARY PROBLEM
K-T BOUNDARY PROBLEMK-T BOUNDARY PROBLEM
K-T BOUNDARY PROBLEM
parag sonwane
 
E.e. cupp. diatoms
E.e. cupp. diatomsE.e. cupp. diatoms
E.e. cupp. diatoms
guestb1774c
 
Heavy minerals full paper
Heavy minerals full paperHeavy minerals full paper
Heavy minerals full paper
Vadde Ramesh
 
Research Paper
Research PaperResearch Paper
Research Paper
Kevin Marino
 
Sunny jim's cave
Sunny jim's caveSunny jim's cave
Sunny jim's cave
bbolelli
 
Vaquita Presentation - Dr. Lorenzo Rojas Bracho
Vaquita Presentation - Dr. Lorenzo Rojas BrachoVaquita Presentation - Dr. Lorenzo Rojas Bracho
Vaquita Presentation - Dr. Lorenzo Rojas Bracho
Cheryl Butner
 

Similar to Article-Brachiopods from the Plio (4) (1) (20)

(2013) - Santodomingo - Corals colombia.pdf
(2013) - Santodomingo - Corals colombia.pdf(2013) - Santodomingo - Corals colombia.pdf
(2013) - Santodomingo - Corals colombia.pdf
 
Morphology of foraminifera
Morphology of foraminiferaMorphology of foraminifera
Morphology of foraminifera
 
Ehret et-al.-2012 carcharodon-hubbelli
Ehret et-al.-2012 carcharodon-hubbelliEhret et-al.-2012 carcharodon-hubbelli
Ehret et-al.-2012 carcharodon-hubbelli
 
Joel Christine_Bachelor's Thesis-FA2008
Joel Christine_Bachelor's Thesis-FA2008Joel Christine_Bachelor's Thesis-FA2008
Joel Christine_Bachelor's Thesis-FA2008
 
modern diving gear and outboard motors
modern diving gear and outboard motorsmodern diving gear and outboard motors
modern diving gear and outboard motors
 
Hocknull_altri_2009.pdf
Hocknull_altri_2009.pdfHocknull_altri_2009.pdf
Hocknull_altri_2009.pdf
 
The Characteristic Algal Mats and Flora of El-Timsah Lake
The Characteristic Algal Mats and Flora of El-Timsah LakeThe Characteristic Algal Mats and Flora of El-Timsah Lake
The Characteristic Algal Mats and Flora of El-Timsah Lake
 
Granados, camargo et al 2008
Granados, camargo et al 2008Granados, camargo et al 2008
Granados, camargo et al 2008
 
G0343038043
G0343038043G0343038043
G0343038043
 
Whanganui Basin Report 2015
Whanganui Basin Report 2015Whanganui Basin Report 2015
Whanganui Basin Report 2015
 
Brachiopods by Paras khati.ppt
Brachiopods by Paras khati.pptBrachiopods by Paras khati.ppt
Brachiopods by Paras khati.ppt
 
Lab assignment
Lab assignmentLab assignment
Lab assignment
 
The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...The CARCACE project deepwater platforms - modular designs for in situ experim...
The CARCACE project deepwater platforms - modular designs for in situ experim...
 
Grimaldo_et_al_2004
Grimaldo_et_al_2004Grimaldo_et_al_2004
Grimaldo_et_al_2004
 
K-T BOUNDARY PROBLEM
K-T BOUNDARY PROBLEMK-T BOUNDARY PROBLEM
K-T BOUNDARY PROBLEM
 
E.e. cupp. diatoms
E.e. cupp. diatomsE.e. cupp. diatoms
E.e. cupp. diatoms
 
Heavy minerals full paper
Heavy minerals full paperHeavy minerals full paper
Heavy minerals full paper
 
Research Paper
Research PaperResearch Paper
Research Paper
 
Sunny jim's cave
Sunny jim's caveSunny jim's cave
Sunny jim's cave
 
Vaquita Presentation - Dr. Lorenzo Rojas Bracho
Vaquita Presentation - Dr. Lorenzo Rojas BrachoVaquita Presentation - Dr. Lorenzo Rojas Bracho
Vaquita Presentation - Dr. Lorenzo Rojas Bracho
 

Article-Brachiopods from the Plio (4) (1)

  • 1. 1     Figure  1  -­‐  The  Plio-­Pleistocene   lithostratigraphy  of  the  different  formations  of   northeast  Rhodes.  The  samples  dealt  with  in   this  article  are  from  the  Lindos  Bay  Clay  and   Kolymbia  Limestone  facies.  Hanken  et  al.,   1996.     Brachiopods  from  the  Plio-­Pleistocene  sediments  of  northeast   Rhodes,  Greece.     Tara  Love   Department  of  Earth  Sciences       Introduction     This   project   investigated   brachiopod   fossils   from   the   Plio-­‐Pleistocene   sediments   from   the   largest  of  Greece’s  Dodecanese  islands,  Rhodes.   The   material   was   fully   sorted,   identified   and   photographed.     Geological  Background     Each   brachiopod   species   has   a   preferred   substrate   and   live   at   different   (bio-­‐)   depth   zones.     Within   these   sedimentary   rocks,   brachiopods  (along  with  other  types  of  fossils)     can   be   used,   together   with   other   methods,   to   interpret  palaeoenvironments.         The  brachiopods  collected  are  from  a  group  of   coastal   basins   in   the   northeast   of   Rhodes   and   this   is   where   Plio-­‐Pleistocene   sediments   accumulated;   these   sections   have   superior   preservation   where   they   were   protected   from   erosion  by  headlands  or    “islands  of  basement   limestone”  (Hanken  et  al.,  1996).     According   to   Hanken   et   al.   (1996),   these   sediments   formed   “complex   facies   mosaics   reflecting   several   cycles   of   regression   and   transgressions”;   the   Rhodes   Formation   was   formed  during  a  “major  phase  of  transgression”   in   the   Late   Pliocene   and   a   forced   regression   during  the  Lower  Pleistocene.       The   specimens   all   came   from   the   Lindos   Bay   Clay   or   Kolymbia   Limestone   facies   within   the   Rhodes  Formation  (as  seen  in  Fig.1).  According   to  Hanken  et  al.  (1996),  their  ages  range  from   the   Pliocene   to   the   Pleistocene;   the   Kolymbia   Limestone   being   Late   Pliocene   (~5.33   Ma)   in   age  and  the  Lindos  Bay  Clay  3  Ma  (Lovelie  et  al.,   1989)  at  the  base  to  an  age  of  0.7  Ma  at  the  top.       Methods     The  shells  size  ranged  from  1  mm  to  1.5  cm  in   width,  and  a  microscope  was  often  required  to   identify  most  of  the  fossils.  ‘Manuals’  were  used   to  help  identify  species;  The  Brachiopods  of  the   Mediterranean   Sea   (Logan.   1979)   was   particularly  useful.       Identification   of   species   was   achieved   by   observations   made   of   internal   and   external   shell   characteristics   and   the   comparison   with   the   ‘manuals’   at   my   disposal   and   with   that   of   Davidson’s  Monograph.        
  • 2. 2     Figure  2  -­‐  A  summary  of  results  from  within   the  Rhodes  Formation.  This  is  without   differentiating  between  the  different  facies   groups.     Preliminary  Results     The   brachiopods   identified   (all   from   the   Rhodes   Formation)   appear   to   be   from   two   depth  groups;  those  of  shallow  water  (down  to   about   200   m)   and   the   eurybathic   species   (a   depth  of  about  600  m)  (Logan  et  al.,  2004).           From  the  1248  shells  that  were  sorted,  13     brachiopod   species   were   identified.   12   of   the   species   would   have   been   attached   to   either   submarine   rocks   or   cave   walls   by   pedicle   attachment,  whereas  Neocrania  anomala  would   have  been  cemented  to  submarine  cave  walls  in   the  Mediterranean  region.     Within  the  Kolymbia  Limestone  the  eurybathic   species,   Gryphus   vitreus,   was   dominant.   This   species,   as   well   as   Megerlia   truncata   and   Terebratulina   retusa   (as   seen   in   Figure   3),   showed   signs   of   predation   in   the   form   of   boreholes   (Fig.3.   B)   from   samples   in   both   facies.         The   majority   of   the   samples   came   from   the   Lindos  Bay  Clay  facies;  a  calcareous,  silty  clay   (Hanken  et  al.,  1996).  Due  to  the  high  numbers   of   calcareous   microfossils,   the   clay   is   carbonate-­‐rich   (Hanken   et   al.,   1996).   The   dominant  species  in  this  facies  were  Megathiris   detruncata,   Terebratulina   retusa   (Fig.3   A),   Gryphus  vitreus  and  Megerlia  truncata  (Fig.3  B).     There  were  a  number  of  samples  that  were  too   fragmented,   or   had   no   useful   identifying   features,   so   these   were   catalogued   separately   and  not  included  in  the  Summary  of  Results.  I   will   be   going   through   these   difficult   samples   Formation   Species   Number   of   species   Rhodes   Megerlia   truncata   35   Rhodes   Megerlia   echinata   6   Rhodes   Megathiris   detruncata   478   Rhodes   Argyrotheca   cuneata   62   Rhodes   Agyrotheca   cistellula   16   Rhodes   Arygyrotheca   cordata   50   Rhodes   Platidia  spp     54   Rhodes   Platidia  anomala   2   Rhodes   Platidia   anomoides   4   Rhodes   Platidia   davidsoni   1   Rhodes   Gryphus  vitreus   232   Rhodes   Terebratulina   retusa   223   Rhodes   Platidia  anomala   85   Figure  3  -­‐  Examples  of  two  common  species   from  the  Rhodes  samples.  A  -­  Terebratulina   retusa.  B  -­  Megerlia  truncata.  The  specimen  on   the  left  shows  an  example  of  bioerosion  that   seems  common  to  this  species  from  the  Lindos   Bay  Clay.     B   A  
  • 3. 3     and   double-­‐check   the   previous   identifiable   ones  to  ensure  that  the  correct  species  names   have  been  given  to  each  shell.       Acknowledgements     Richard  G.  Bromley  kindly  left  the  majority  of   the   fossils   and   the   final   samples   were   from   Professor  David  A.T.  Harper’s  own  collection.       Many  thanks  to  Van  Mildert  College  for  support   and   for   allowing   use   of   the   Postgraduate   Rooms   and   to   the   Earth   Science   Department   (Durham)  for  access  to  rooms  and  equipment.         Special  thanks  must  go  to  Professor  David  A.T.   Harper   for   his   supervision,   continued   advice   and  support  and  to  Dr  Howard  Armstrong  for   his  academic  advice.       References     Benton,  M.,  &  Harper,  D.A.T.  2009.  Introduction   to   Palaeobiology   and   the   Fossil   Record.   Chichester:  Wiley-­‐Blackwell.     Hanken,   N-­‐M.,   Bromley,   R.G.,   and   Miller,   J.     1996.  Plio-­‐Pleistocene  sedimentation  in  coastal   grabens,  north-­‐east  Rhodes,  Greece.  Geological   Journal,  31,  393-­‐418.     Logan,   A.   1979.   The   Brachiopods   of   the   Mediterranean   Sea.     Bulletin   de   L’institut   oceanographique,  Monaco,  vol  72,  no.  1434     Logan,   A.,   Bianchi,   C.N.,   Morri,   C.,   and   Zibrowius,   H.   2004.   The   Present-­‐day   Mediterranean  brachiopod  fauna:  diversity,  life   habits,   biogeography   and   plaeobiogeography.   SCI.  MAR.,  68  (suppl.  1):  163-­‐170     Lovelie,   R.,   Stole,   G.,   and   Spjeldnaes,   N.   1989.   Magnetic   Polarity   stratigraphy   of   Pliocene-­‐ Pleistocene   marine   sediments   from   eastern   Mediterranean.   Physics   of   the   Earth   and   Planetary  Interiors  54,  340-­‐352.