SlideShare a Scribd company logo
Rev. 3-4-09
Screw Thread Design
Screw Thread Fundamentals
A screw thread is defined as a ridge of uniform section in the form of a helix on either the external
or internal surface of a cylinder. Internal threads refer to those on nuts and tapped holes, while
external threads are those on bolts, studs, or screws.
The thread form is the configuration of the thread in an axial
plane; or more simply, it is the profile of the thread, composed
of the crest, root, and flanks. At the top of the threads are the
crests, at the bottom the roots, and joining them are the
flanks. The triangle formed when the thread profile is
extended to a point at both crests and roots, is the
fundamental triangle. The height of the fundamental triangle is the distance, radially measured,
between sharp crest and sharp root diameters.
The distance measured parallel to
the thread axis, between
corresponding points on adjacent
threads, is the thread pitch.
Unified screw threads are
designated in threads per inch.
This is the number of complete threads occurring in one inch of threaded length. Metric thread pitch is
designated as the distance between threads (pitch) in millimeters.
On an internal thread, the minor diameter occurs at the crests and the major diameter occurs at
the roots. On an external thread, the major diameter is at the thread crests, and the minor diameter
is at the thread roots.
The flank angle is the angle between a flank and the
perpendicular thread axis. Flank angles are sometimes
termed “half-angle” of the thread, but this is only true
when neighboring flanks have identical angles; that is,
the threads are symmetrical. Unified screw threads
have a 30º flank angle and are symmetrical. This is
why they are commonly referred to as 60º degree
threads.
Pitch diameter is the diameter of a theoretical cylinder that passes through the threads in such a
way that the distance between the thread crests and thread roots is equal. In an ideal product, these
widths would each equal one-half of the thread pitch.
Threads Per Inch Thread Pitch
Rev. 3-4-09
An intentional clearance is created between mating threads when the nut and bolt are manufactured.
This clearance is known as the allowance. Having an allowance ensures that when the threads are
manufactured there will be a positive space between them. For fasteners, the allowance is generally
applied to the external thread. Tolerances are specified amounts by which dimensions are
permitted to vary for convenience of manufacturing. The tolerance is the difference between the
maximum and minimum permitted limits.
Thread Fit
Thread fit is a combination of allowances and tolerances and a measure of tightness or looseness
between them. A clearance fit is one that provides a free running assembly and an interference fit
is one that has a positive interference thus requiring tools for the initial run-down of the nut.
For Unified inch screw threads there are six standard classes of fit: 1B, 2B, and 3B for internal
threads; and 1A, 2A, and 3A for external threads. All are considered clearance fits. That is, they
assemble without interference. The higher the class number, the tighter the fit. The ‘A’ designates
an external thread, and ‘B’ designates an internal thread.
• Classes 1A and 1B are considered an extremely loose tolerance thread fit. This class is
suited for quick and easy assembly and disassembly. Outside of low-carbon threaded rod or
machine screws, this thread fit is rarely specified.
• Classes 2A and 2B offer optimum thread fit that balances fastener performance,
manufacturing, economy, and convenience. Nearly 90% of all commercial and industrial
fasteners use this class of thread fit.
• Classes 3A and 3B are suited for close tolerance fasteners. These fasteners are intended for
service where safety is a critical design consideration. This class of fit has restrictive
tolerances and no allowance. Socket products generally have a 3A thread fit.
The following illustration demonstrates the
pitch diameter allowances on a ¾-10 bolt and
nut.
The axial distance through which the fully
formed threads of both the nut and bolt are in
contact is called the length of thread
engagement. The depth of thread
engagement is the distance the threads overlap
in a radial direction. The length of thread
engagement is one of the key strength aspects
and one of the few which the designer may be
able to control.
Rev. 3-4-09
Per the acceptance requirements of ASME B1.3, System 21, the allowance
specified for the Class 2A external threads is used to accommodate the
plating thickness. The plain finished parts (or plated parts prior to plating)
would be tested for adherence to these tolerances with a 2A Go/No-Go
thread gauge. The 2A Go gauge would ensure the pitch diameter falls
below the maximum requirement; the No-Go gauge would verify that the
pitch diameter is above the minimum requirement. A standard electro-zinc
plated 2A part would be gauged with the Class 3A Go (due to the plating
metal thickness) and 2A No-Go gauge after plating.
Thread damages such as dents, scrapes,
nicks, or gouges and plating build-up are
not cause for rejections unless they
impair function and usability. Threads
that do not freely accept the appropriate
Go ring gauge shall be inspected by
allowing the screwing of the gauge with
maximum allowable torque value of:
Torque = 145 x d3
(for inch series), where Torque is in-lbs. and d is
diameter in inches- IFI 166
Torque = 0.001 x d3
(for metric series), where Torque is Nm and d is diameter in mm- IFI 566
Thread Series
There are three standard thread series in the Unified screw thread system that are highly important
for fasteners: UNC (coarse), UNF (fine), and 8-UN (8 thread). A chart listing the standards sizes
and thread pitches with their respective thread stress areas is listed in the Fastenal Technical
Reference Guide, along with a special series designated UNS.
Below are some of the aspects of fine and coarse threads.
Go and No-Go Gauges are
threaded rings that are tapped
in such a way that they ensure
proper tolerancing of parts.
Similar devices are available
for internally threaded
fasteners. Minor thread nicking on external
threads may still be found
acceptable.
Rev. 3-4-09
Fine Thread
• Since they have larger stress
areas the bolts are stronger
in tension
• Their larger minor
diameters develop higher
torsional and transverse
shear strengths
• They can tap better in thin-
walled members
• With their smaller helix
angle, they permit closer
adjustment accuracy
Coarse Thread
• Stripping strengths are greater
for the same length of
engagement
• Improved fatigue resistance
• Less likely to cross thread
• Quicker assembly and
disassembly
• Tap better in brittle materials
• Larger thread allowances
allow for thicker platings and
coatings
Numerous arguments have been made for using either fine or coarse threads; however, with the
increase in automated assembly processes, bias towards the coarse thread series has developed.
UNR Threads
The UNR thread is a modified version of a standard UN thread. The single difference is a
mandatory root radius with limits of 0.108 to 0.144 times the thread pitch. When first introduced
decades ago, it was necessary to specify UNR (rounded root) threads. Today, all fasteners that are
roll threaded should have a UNR thread because thread rolling dies with rounded crests are now the
standard method for manufacturing most threads.
UNJ Threads
UNJ thread is a thread form having root radius limits of 0.150 to 0.180 times the thread pitch.
With these enlarged radii, minor diameters of external thread increase and intrude beyond the basic
profile of the UN and UNR thread forms. Consequently, to offset the possibility of interference
between mating threads, the minor diameters of the UNJ internal threads had to be increased.
3A/3B thread tolerances are the standard for UNJ threads. UNJ threads are now the standard for
aerospace fasteners and have some usage in highly specialized industrial applications.
UNJ bolts are like UNR, but the curve of the thread root is gentler which requires that it be
shallower. In fact, the thread root is so shallow that the bolt thread cannot mate with a UN nut, so
there is a UNJ nut specification as well.
Thread ProductionThread ProductionThread ProductionThread Production
Threads can be produced by either cutting or rolling operations. The shank of a blank designed for
cut threading will be full-size from the fillet under the head to the end of the bolt. Producing cut
Rev. 3-4-09
threads involves removing the material from a bolt blank with a cutting die or lathe in order to
produce the thread. This interrupts the grain flow of the material.
Rolled threads are formed by rolling the reduced diameter (approximately equal to the pitch
diameter) portion of the shank between two reciprocating serrated dies. The dies apply pressure,
compressing the minor diameter (thread roots) and forcing that material up to form the major
diameter (thread crests). Imagine squeezing a balloon with your hand; you compress with your
fingers to form the valley, while allowing part of the balloon to expand between your fingers. This is
the concept behind roll threading. Rolled threads have several advantages: more accurate and
uniform thread dimension, smoother thread surface, and generally greater thread strength
(particularly fatigue and shear strength).
Thread cutting requires the least amount of tooling costs. It is generally only used for large diameter
or non-standard externally threaded fasteners. Thread cutting is still the most commonly used
method for internal threads.
Thread Strength
Two fundamentals must be considered when designing a threaded connection.
1. Ensure that the threaded fasteners were manufactured to a current ASTM, ANSI, DIN, ISO or
other recognized standard.
2. Ensure that the design promotes bolts to break in tension prior to the female and/or male
threads stripping. A broken bolt is an obvious failure. However, when the threads strip prior to
the bolt breaking, the failure may go unnoticed until after the fastener is put in service.
Rev. 3-4-09
The strength of bolts loaded in tension can be
easily determined by the ultimate tensile
strength. To determine the amount of force
required to break a bolt, multiply its ultimate
tensile strength by its tensile stress area, As
Determining the strength of the threads is more complicated. Since the male threads pull past the
female threads, or vice-versa, the threads fail in shear and not in tension. Therefore, the stripping
strength of an assembly depends on the shear strength of the nut and bolt materials.
To determine the force required to strip the threads, multiply the shear strength by the cross
sectional area being sheared. The difficulty lies in determining the
cross sectional area in which the shear will occur. Here are three
possible scenarios for this type of failure.
1. The nut material is stronger than the bolt material. In this
example, the nut threads will shear out the bolt threads. The
failure will occur at the root of the bolt threads.
2. The bolt material is stronger than the nut material. In this
scenario, the bolt threads will shear out the nut threads. The
failure will occur at the root of the nut threads.
3. The nut and bolt are the same strength. In this scenario, both
threads will strip simultaneously. This failure will occur at the
pitch line.
The tensile strength of most fasteners is usually specified, whereas
shear strength is not. In order to avoid shearing the threads, ensure
that the length of engagement between the internal and external thread is long enough to provide
adequate cross-sectional thread area.
Failure scenarios #1 and #3 can typically be avoided by ensuring proper thread engagement. With
proper engagement, those scenarios would result in a tensile failure of the bolt rather than thread
stripping.
Internal Thread Strength Formula
F = Su * Ats
Su = shear strength of the nut or tapped material
Ats = cross-sectional area through which the shear occurs
Formula for Ats (when shear occurs at the roots of the thread)
Ats = n Le Dsmin[1/(2n) + 0.57735 (Dsmin – Enmax)]
Dsmin = min major dia.
of external threads
Enmax = max pitch
dia. of internal threads
n = thread per
inch
Le = length of thread
engagement
Taking proper precautions during
the design phase is vital to
avoiding thread failure. Once the
first engaged thread begins to
shear, the threads behind it will
also shear in rapid succession.
Rev. 3-4-09
Generally the hardness and the actual material strength of a nut
is less than the bolt. For example, if you look at the hardness of
an SAE J995 Grade 8 nut (HRC 24-32 up to 5/8-in diameter), it
is likely to be less than the SAE J429 Grade 8 bolt (HRC 33-39).
This is designed to yield the nut threads to ensure the load is not
carried solely by the first thread. As the thread yields, the load is
further distributed to the next five threads. Even with the load
distribution, the first engaged thread still takes the majority of
the load. In a typical 7/8-9 Grade 8 nut, the first engaged
thread carries 34% of the load. Using internally threaded materials with higher strengths and
hardness can often result in fatigue and/or loosening.
The strength capacities of standard nuts are listed as the nut’s proof stress. This should not be
confused with the proof strength of the bolts. Proof stress is the ultimate load the nut can support
without thread failure. For design purposes, the most important aspect of choosing the appropriate
nut is to select a nut with a proof stress equal to or greater than the ultimate tensile strength of the
bolt.
Caution: It appears that one could theoretically increase the thread strength by increasing the length
of engagement. However, as illustrated in the Load Distribution chart above, the first thread will be
taking the majority of the applied load. For carbon steel fasteners (including tapped holes) the
length of engagement would be limited to approximately one nominal diameter (approximately 1-
1/2 times the diameter for aluminum). After that, there is no appreciable increase in strength. Once
the applied load has exceeded the first thread’s capacity, it will fail and subsequently cause the
remaining threads to fail in succession.
Returning to the discussion of fundamentals in thread connection design, the nut or tapped hole
should support more load than the bolt. Thus, the design criteria for threaded connections also
leads to nut selection criteria which help the designer ensure functionality in the joint. The
following are the basic rules:
1. Ensure that the nut adheres to a specification which is
compatible with the specification of the bolt (ASTM
A193 and ASTM A194, SAE J429 and SAE J995, etc.)
Ensure that the selected nut has a proof stress greater than
or equal to the tensile strength of the bolt.
If the nut proof stress does not exceed the
proof strength of the bolt, stripping failure
is very likely.

More Related Content

What's hot

Tipos de tornillos y clasificación
Tipos de tornillos y clasificaciónTipos de tornillos y clasificación
Tipos de tornillos y clasificación
danielrvas
 
Thread making
Thread makingThread making
Thread making
DENNY OTTARACKAL
 
Fasteners & fastening
Fasteners & fasteningFasteners & fastening
Fasteners & fasteningAbrish Gebru
 
Fasteners
FastenersFasteners
Limits, fits, tolerance
Limits, fits, toleranceLimits, fits, tolerance
Limits, fits, tolerance
Vinod Thombre Patil
 
Lathe accessories
Lathe accessoriesLathe accessories
Lathe accessories
Kunj Thummar
 
Elementos de fixação e molas
Elementos de fixação e molasElementos de fixação e molas
Elementos de fixação e molas
Clodoaldo Araujo ,Técnico Mecânico
 
Fasteners
FastenersFasteners
Fastenersswapsk
 
Ch 8.2 screw thread manufacturing
Ch 8.2 screw thread manufacturingCh 8.2 screw thread manufacturing
Ch 8.2 screw thread manufacturing
Nandan Choudhary
 
Types of nuts and bolts
Types of nuts and boltsTypes of nuts and bolts
Types of nuts and bolts
Rayon Johnson
 
Sae -j744-1996
Sae -j744-1996Sae -j744-1996
Sae -j744-1996
punekumar
 
Workshop Practice.pdf
Workshop Practice.pdfWorkshop Practice.pdf
Workshop Practice.pdf
NahomMeles
 
sheet metal shop.pptx
sheet metal shop.pptxsheet metal shop.pptx
sheet metal shop.pptx
BtechCse4
 
Lecture 8 drilling machine
Lecture 8 drilling machineLecture 8 drilling machine
Lecture 8 drilling machine
Rania Atia
 
Fasteners po 2
Fasteners po 2Fasteners po 2
Fasteners po 2
kalyana sreenivasan
 
Jigs and fixtures imp
Jigs and fixtures impJigs and fixtures imp
Jigs and fixtures imp
Bhagyashri Dhage
 
Tornillos , chavetas, pasadores, roscas
Tornillos , chavetas, pasadores, roscasTornillos , chavetas, pasadores, roscas
Tornillos , chavetas, pasadores, roscasingmunozgabriel
 
Montaje sellos mecanicos
Montaje sellos mecanicosMontaje sellos mecanicos
Montaje sellos mecanicos
Edgar Poma
 

What's hot (20)

Tipos de tornillos y clasificación
Tipos de tornillos y clasificaciónTipos de tornillos y clasificación
Tipos de tornillos y clasificación
 
Thread making
Thread makingThread making
Thread making
 
Fasteners & fastening
Fasteners & fasteningFasteners & fastening
Fasteners & fastening
 
Fasteners
FastenersFasteners
Fasteners
 
Limits, fits, tolerance
Limits, fits, toleranceLimits, fits, tolerance
Limits, fits, tolerance
 
Lathe accessories
Lathe accessoriesLathe accessories
Lathe accessories
 
Elementos de fixação e molas
Elementos de fixação e molasElementos de fixação e molas
Elementos de fixação e molas
 
Fasteners
FastenersFasteners
Fasteners
 
Ch 8.2 screw thread manufacturing
Ch 8.2 screw thread manufacturingCh 8.2 screw thread manufacturing
Ch 8.2 screw thread manufacturing
 
Screw Threads
Screw ThreadsScrew Threads
Screw Threads
 
Types of nuts and bolts
Types of nuts and boltsTypes of nuts and bolts
Types of nuts and bolts
 
Sae -j744-1996
Sae -j744-1996Sae -j744-1996
Sae -j744-1996
 
Engrenagens i
Engrenagens iEngrenagens i
Engrenagens i
 
Workshop Practice.pdf
Workshop Practice.pdfWorkshop Practice.pdf
Workshop Practice.pdf
 
sheet metal shop.pptx
sheet metal shop.pptxsheet metal shop.pptx
sheet metal shop.pptx
 
Lecture 8 drilling machine
Lecture 8 drilling machineLecture 8 drilling machine
Lecture 8 drilling machine
 
Fasteners po 2
Fasteners po 2Fasteners po 2
Fasteners po 2
 
Jigs and fixtures imp
Jigs and fixtures impJigs and fixtures imp
Jigs and fixtures imp
 
Tornillos , chavetas, pasadores, roscas
Tornillos , chavetas, pasadores, roscasTornillos , chavetas, pasadores, roscas
Tornillos , chavetas, pasadores, roscas
 
Montaje sellos mecanicos
Montaje sellos mecanicosMontaje sellos mecanicos
Montaje sellos mecanicos
 

Viewers also liked

Screw thread measurements and Gear measurement
Screw thread measurements and Gear measurementScrew thread measurements and Gear measurement
Screw thread measurements and Gear measurement
Hareesha N Gowda, Dayananda Sagar College of Engg, Bangalore
 
Valve
ValveValve
Valve
K0042
 
Screw press and its performance
Screw press and its performanceScrew press and its performance
Screw press and its performancePragati Singham
 
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...R&B Plastics Machinery
 
Power Screw and its application
Power Screw and its applicationPower Screw and its application
Power Screw and its application
Mohammed Limdiwala
 
Things Your Extruder Screw Designer Never Told You About Screws - Slideshow
Things Your Extruder Screw Designer Never Told You About Screws - SlideshowThings Your Extruder Screw Designer Never Told You About Screws - Slideshow
Things Your Extruder Screw Designer Never Told You About Screws - SlideshowR&B Plastics Machinery
 

Viewers also liked (8)

Screw thread measurements and Gear measurement
Screw thread measurements and Gear measurementScrew thread measurements and Gear measurement
Screw thread measurements and Gear measurement
 
Valve
ValveValve
Valve
 
Screw thread :yks
Screw thread :yksScrew thread :yks
Screw thread :yks
 
008 threading
008 threading008 threading
008 threading
 
Screw press and its performance
Screw press and its performanceScrew press and its performance
Screw press and its performance
 
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...
Basic Screw Geometry: Things Your Extruder Screw Designer Never Told You Abou...
 
Power Screw and its application
Power Screw and its applicationPower Screw and its application
Power Screw and its application
 
Things Your Extruder Screw Designer Never Told You About Screws - Slideshow
Things Your Extruder Screw Designer Never Told You About Screws - SlideshowThings Your Extruder Screw Designer Never Told You About Screws - Slideshow
Things Your Extruder Screw Designer Never Told You About Screws - Slideshow
 

Similar to Article screw threads design

nuts-and-bolts-1.pptx
nuts-and-bolts-1.pptxnuts-and-bolts-1.pptx
nuts-and-bolts-1.pptx
rajmohonsarkar
 
Threads and thread_cutting
Threads and thread_cuttingThreads and thread_cutting
Threads and thread_cuttingVJTI Production
 
Screw Thread Measurement -Matrix.pptx
Screw Thread Measurement -Matrix.pptxScrew Thread Measurement -Matrix.pptx
Screw Thread Measurement -Matrix.pptx
matzulk
 
Fasteners.pdf
Fasteners.pdfFasteners.pdf
Fasteners.pdf
SanjayDwivedi45
 
Mechanical Fasteners and Joining Methods
Mechanical Fasteners and Joining MethodsMechanical Fasteners and Joining Methods
Mechanical Fasteners and Joining Methods
MrNikhilMohanShinde
 
SCREWED FASTENERS for mechanical Drawing.pptx
SCREWED FASTENERS for mechanical Drawing.pptxSCREWED FASTENERS for mechanical Drawing.pptx
SCREWED FASTENERS for mechanical Drawing.pptx
dewipuspita370928
 
unit 3.pptx
unit 3.pptxunit 3.pptx
unit 3.pptx
PalakNaik6
 
5.1 Screwed Fasteners.pptx
5.1 Screwed Fasteners.pptx5.1 Screwed Fasteners.pptx
5.1 Screwed Fasteners.pptx
tilahunyeshiye
 
Fastners Final.pptx
Fastners Final.pptxFastners Final.pptx
Fastners Final.pptx
MrNikhilMohanShinde
 
Chapter 08
Chapter 08Chapter 08
Chapter 08mcfalltj
 
Chapter 08
Chapter 08Chapter 08
Chapter 08mcfalltj
 
Design of Fasteners.pdf
Design of Fasteners.pdfDesign of Fasteners.pdf
Design of Fasteners.pdf
KuRatheesh1
 
Bolt Screw
Bolt ScrewBolt Screw
Bolt Screw
robert220191
 
Engr ma 4_threads&fasteners_powerpoint
Engr ma 4_threads&fasteners_powerpointEngr ma 4_threads&fasteners_powerpoint
Engr ma 4_threads&fasteners_powerpoint
kalyana sreenivasan
 
Engr ma 4_threads&fasteners_powerpoint (1)
Engr ma 4_threads&fasteners_powerpoint (1)Engr ma 4_threads&fasteners_powerpoint (1)
Engr ma 4_threads&fasteners_powerpoint (1)
kalyana sreenivasan
 
Chapter 11 - SCREW THREADS sllides.pdf .
Chapter 11 - SCREW THREADS sllides.pdf       .Chapter 11 - SCREW THREADS sllides.pdf       .
Chapter 11 - SCREW THREADS sllides.pdf .
happycocoman
 
Form Metrology: screw thread measurement.ppt
Form Metrology: screw thread measurement.pptForm Metrology: screw thread measurement.ppt
Form Metrology: screw thread measurement.ppt
Bikash Choudhuri
 
Design of connections
Design of connectionsDesign of connections
Design of connections
Valmik Mahajan
 
Screw threadreport
Screw threadreportScrew threadreport
Screw threadreport
ajitsss
 

Similar to Article screw threads design (20)

nuts-and-bolts-1.pptx
nuts-and-bolts-1.pptxnuts-and-bolts-1.pptx
nuts-and-bolts-1.pptx
 
Threads and thread_cutting
Threads and thread_cuttingThreads and thread_cutting
Threads and thread_cutting
 
Screw Thread Measurement -Matrix.pptx
Screw Thread Measurement -Matrix.pptxScrew Thread Measurement -Matrix.pptx
Screw Thread Measurement -Matrix.pptx
 
Fasteners.pdf
Fasteners.pdfFasteners.pdf
Fasteners.pdf
 
Mechanical Fasteners and Joining Methods
Mechanical Fasteners and Joining MethodsMechanical Fasteners and Joining Methods
Mechanical Fasteners and Joining Methods
 
SCREWED FASTENERS for mechanical Drawing.pptx
SCREWED FASTENERS for mechanical Drawing.pptxSCREWED FASTENERS for mechanical Drawing.pptx
SCREWED FASTENERS for mechanical Drawing.pptx
 
unit 3.pptx
unit 3.pptxunit 3.pptx
unit 3.pptx
 
5.1 Screwed Fasteners.pptx
5.1 Screwed Fasteners.pptx5.1 Screwed Fasteners.pptx
5.1 Screwed Fasteners.pptx
 
Fastners Final.pptx
Fastners Final.pptxFastners Final.pptx
Fastners Final.pptx
 
Sheet metal operations1class
Sheet metal operations1class Sheet metal operations1class
Sheet metal operations1class
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Design of Fasteners.pdf
Design of Fasteners.pdfDesign of Fasteners.pdf
Design of Fasteners.pdf
 
Bolt Screw
Bolt ScrewBolt Screw
Bolt Screw
 
Engr ma 4_threads&fasteners_powerpoint
Engr ma 4_threads&fasteners_powerpointEngr ma 4_threads&fasteners_powerpoint
Engr ma 4_threads&fasteners_powerpoint
 
Engr ma 4_threads&fasteners_powerpoint (1)
Engr ma 4_threads&fasteners_powerpoint (1)Engr ma 4_threads&fasteners_powerpoint (1)
Engr ma 4_threads&fasteners_powerpoint (1)
 
Chapter 11 - SCREW THREADS sllides.pdf .
Chapter 11 - SCREW THREADS sllides.pdf       .Chapter 11 - SCREW THREADS sllides.pdf       .
Chapter 11 - SCREW THREADS sllides.pdf .
 
Form Metrology: screw thread measurement.ppt
Form Metrology: screw thread measurement.pptForm Metrology: screw thread measurement.ppt
Form Metrology: screw thread measurement.ppt
 
Design of connections
Design of connectionsDesign of connections
Design of connections
 
Screw threadreport
Screw threadreportScrew threadreport
Screw threadreport
 

Recently uploaded

5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
Bertini's German Motors
 
Renal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffffRenal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffff
RehanRustam2
 
Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?
jennifermiller8137
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
coc7987515756
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
ahmedendrise81
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Masters European & Gapanese Auto Repair
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
mymwpc
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
Hyundai Motor Group
 
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to TellWondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Vic Auto Collision & Repair
 
TRANSFORMER OIL classifications and specifications
TRANSFORMER OIL classifications and specificationsTRANSFORMER OIL classifications and specifications
TRANSFORMER OIL classifications and specifications
vishnup11
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Precious Mvulane CA (SA),RA
 
Regeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in AutomobileRegeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in Automobile
AtanuGhosh62
 
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
eygkup
 
Why Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release CommandsWhy Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release Commands
Dart Auto
 
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
Fifth Gear Automotive Argyle
 
One compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdfOne compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdf
RehanRustam2
 
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
Fifth Gear Automotive Cross Roads
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
Antique Plastic Traders
 
Skoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda PerthSkoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda Perth
Perth City Skoda
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
European Service Center
 

Recently uploaded (20)

5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
5 Warning Signs Your BMW's Intelligent Battery Sensor Needs Attention
 
Renal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffffRenal elimination.pdf fffffffffffffffffffff
Renal elimination.pdf fffffffffffffffffffff
 
Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?Digital Fleet Management - Why Your Business Need It?
Digital Fleet Management - Why Your Business Need It?
 
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptxStatistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
Statistics5,c.xz,c.;c.;d.c;d;ssssss.pptx
 
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
欧洲杯比赛投注官网-欧洲杯比赛投注官网网站-欧洲杯比赛投注官网|【​网址​🎉ac123.net🎉​】
 
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out HereWhy Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
Why Isn't Your BMW X5's Comfort Access Functioning Properly Find Out Here
 
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
一比一原版(AUT毕业证)奥克兰理工大学毕业证成绩单如何办理
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
 
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to TellWondering if Your Mercedes EIS is at Fault Here’s How to Tell
Wondering if Your Mercedes EIS is at Fault Here’s How to Tell
 
TRANSFORMER OIL classifications and specifications
TRANSFORMER OIL classifications and specificationsTRANSFORMER OIL classifications and specifications
TRANSFORMER OIL classifications and specifications
 
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs  Consulting SMEs.pptxEmpowering Limpopo Entrepreneurs  Consulting SMEs.pptx
Empowering Limpopo Entrepreneurs Consulting SMEs.pptx
 
Regeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in AutomobileRegeneration of Diesel Particulate Filter in Automobile
Regeneration of Diesel Particulate Filter in Automobile
 
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
一比一原版(AIS毕业证)奥克兰商学院毕业证成绩单如何办理
 
Why Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release CommandsWhy Is Your BMW X3 Hood Not Responding To Release Commands
Why Is Your BMW X3 Hood Not Responding To Release Commands
 
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
5 Warning Signs Your Mercedes Exhaust Back Pressure Sensor Is Failing
 
One compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdfOne compartment Model Deliverdddddded.pdf
One compartment Model Deliverdddddded.pdf
 
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
5 Red Flags Your VW Camshaft Position Sensor Might Be Failing
 
Antique Plastic Traders Company Profile
Antique Plastic Traders Company ProfileAntique Plastic Traders Company Profile
Antique Plastic Traders Company Profile
 
Skoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda PerthSkoda Octavia Rs for Sale Perth | Skoda Perth
Skoda Octavia Rs for Sale Perth | Skoda Perth
 
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
What Causes 'Trans Failsafe Prog' to Trigger in BMW X5
 

Article screw threads design

  • 1. Rev. 3-4-09 Screw Thread Design Screw Thread Fundamentals A screw thread is defined as a ridge of uniform section in the form of a helix on either the external or internal surface of a cylinder. Internal threads refer to those on nuts and tapped holes, while external threads are those on bolts, studs, or screws. The thread form is the configuration of the thread in an axial plane; or more simply, it is the profile of the thread, composed of the crest, root, and flanks. At the top of the threads are the crests, at the bottom the roots, and joining them are the flanks. The triangle formed when the thread profile is extended to a point at both crests and roots, is the fundamental triangle. The height of the fundamental triangle is the distance, radially measured, between sharp crest and sharp root diameters. The distance measured parallel to the thread axis, between corresponding points on adjacent threads, is the thread pitch. Unified screw threads are designated in threads per inch. This is the number of complete threads occurring in one inch of threaded length. Metric thread pitch is designated as the distance between threads (pitch) in millimeters. On an internal thread, the minor diameter occurs at the crests and the major diameter occurs at the roots. On an external thread, the major diameter is at the thread crests, and the minor diameter is at the thread roots. The flank angle is the angle between a flank and the perpendicular thread axis. Flank angles are sometimes termed “half-angle” of the thread, but this is only true when neighboring flanks have identical angles; that is, the threads are symmetrical. Unified screw threads have a 30º flank angle and are symmetrical. This is why they are commonly referred to as 60º degree threads. Pitch diameter is the diameter of a theoretical cylinder that passes through the threads in such a way that the distance between the thread crests and thread roots is equal. In an ideal product, these widths would each equal one-half of the thread pitch. Threads Per Inch Thread Pitch
  • 2. Rev. 3-4-09 An intentional clearance is created between mating threads when the nut and bolt are manufactured. This clearance is known as the allowance. Having an allowance ensures that when the threads are manufactured there will be a positive space between them. For fasteners, the allowance is generally applied to the external thread. Tolerances are specified amounts by which dimensions are permitted to vary for convenience of manufacturing. The tolerance is the difference between the maximum and minimum permitted limits. Thread Fit Thread fit is a combination of allowances and tolerances and a measure of tightness or looseness between them. A clearance fit is one that provides a free running assembly and an interference fit is one that has a positive interference thus requiring tools for the initial run-down of the nut. For Unified inch screw threads there are six standard classes of fit: 1B, 2B, and 3B for internal threads; and 1A, 2A, and 3A for external threads. All are considered clearance fits. That is, they assemble without interference. The higher the class number, the tighter the fit. The ‘A’ designates an external thread, and ‘B’ designates an internal thread. • Classes 1A and 1B are considered an extremely loose tolerance thread fit. This class is suited for quick and easy assembly and disassembly. Outside of low-carbon threaded rod or machine screws, this thread fit is rarely specified. • Classes 2A and 2B offer optimum thread fit that balances fastener performance, manufacturing, economy, and convenience. Nearly 90% of all commercial and industrial fasteners use this class of thread fit. • Classes 3A and 3B are suited for close tolerance fasteners. These fasteners are intended for service where safety is a critical design consideration. This class of fit has restrictive tolerances and no allowance. Socket products generally have a 3A thread fit. The following illustration demonstrates the pitch diameter allowances on a ¾-10 bolt and nut. The axial distance through which the fully formed threads of both the nut and bolt are in contact is called the length of thread engagement. The depth of thread engagement is the distance the threads overlap in a radial direction. The length of thread engagement is one of the key strength aspects and one of the few which the designer may be able to control.
  • 3. Rev. 3-4-09 Per the acceptance requirements of ASME B1.3, System 21, the allowance specified for the Class 2A external threads is used to accommodate the plating thickness. The plain finished parts (or plated parts prior to plating) would be tested for adherence to these tolerances with a 2A Go/No-Go thread gauge. The 2A Go gauge would ensure the pitch diameter falls below the maximum requirement; the No-Go gauge would verify that the pitch diameter is above the minimum requirement. A standard electro-zinc plated 2A part would be gauged with the Class 3A Go (due to the plating metal thickness) and 2A No-Go gauge after plating. Thread damages such as dents, scrapes, nicks, or gouges and plating build-up are not cause for rejections unless they impair function and usability. Threads that do not freely accept the appropriate Go ring gauge shall be inspected by allowing the screwing of the gauge with maximum allowable torque value of: Torque = 145 x d3 (for inch series), where Torque is in-lbs. and d is diameter in inches- IFI 166 Torque = 0.001 x d3 (for metric series), where Torque is Nm and d is diameter in mm- IFI 566 Thread Series There are three standard thread series in the Unified screw thread system that are highly important for fasteners: UNC (coarse), UNF (fine), and 8-UN (8 thread). A chart listing the standards sizes and thread pitches with their respective thread stress areas is listed in the Fastenal Technical Reference Guide, along with a special series designated UNS. Below are some of the aspects of fine and coarse threads. Go and No-Go Gauges are threaded rings that are tapped in such a way that they ensure proper tolerancing of parts. Similar devices are available for internally threaded fasteners. Minor thread nicking on external threads may still be found acceptable.
  • 4. Rev. 3-4-09 Fine Thread • Since they have larger stress areas the bolts are stronger in tension • Their larger minor diameters develop higher torsional and transverse shear strengths • They can tap better in thin- walled members • With their smaller helix angle, they permit closer adjustment accuracy Coarse Thread • Stripping strengths are greater for the same length of engagement • Improved fatigue resistance • Less likely to cross thread • Quicker assembly and disassembly • Tap better in brittle materials • Larger thread allowances allow for thicker platings and coatings Numerous arguments have been made for using either fine or coarse threads; however, with the increase in automated assembly processes, bias towards the coarse thread series has developed. UNR Threads The UNR thread is a modified version of a standard UN thread. The single difference is a mandatory root radius with limits of 0.108 to 0.144 times the thread pitch. When first introduced decades ago, it was necessary to specify UNR (rounded root) threads. Today, all fasteners that are roll threaded should have a UNR thread because thread rolling dies with rounded crests are now the standard method for manufacturing most threads. UNJ Threads UNJ thread is a thread form having root radius limits of 0.150 to 0.180 times the thread pitch. With these enlarged radii, minor diameters of external thread increase and intrude beyond the basic profile of the UN and UNR thread forms. Consequently, to offset the possibility of interference between mating threads, the minor diameters of the UNJ internal threads had to be increased. 3A/3B thread tolerances are the standard for UNJ threads. UNJ threads are now the standard for aerospace fasteners and have some usage in highly specialized industrial applications. UNJ bolts are like UNR, but the curve of the thread root is gentler which requires that it be shallower. In fact, the thread root is so shallow that the bolt thread cannot mate with a UN nut, so there is a UNJ nut specification as well. Thread ProductionThread ProductionThread ProductionThread Production Threads can be produced by either cutting or rolling operations. The shank of a blank designed for cut threading will be full-size from the fillet under the head to the end of the bolt. Producing cut
  • 5. Rev. 3-4-09 threads involves removing the material from a bolt blank with a cutting die or lathe in order to produce the thread. This interrupts the grain flow of the material. Rolled threads are formed by rolling the reduced diameter (approximately equal to the pitch diameter) portion of the shank between two reciprocating serrated dies. The dies apply pressure, compressing the minor diameter (thread roots) and forcing that material up to form the major diameter (thread crests). Imagine squeezing a balloon with your hand; you compress with your fingers to form the valley, while allowing part of the balloon to expand between your fingers. This is the concept behind roll threading. Rolled threads have several advantages: more accurate and uniform thread dimension, smoother thread surface, and generally greater thread strength (particularly fatigue and shear strength). Thread cutting requires the least amount of tooling costs. It is generally only used for large diameter or non-standard externally threaded fasteners. Thread cutting is still the most commonly used method for internal threads. Thread Strength Two fundamentals must be considered when designing a threaded connection. 1. Ensure that the threaded fasteners were manufactured to a current ASTM, ANSI, DIN, ISO or other recognized standard. 2. Ensure that the design promotes bolts to break in tension prior to the female and/or male threads stripping. A broken bolt is an obvious failure. However, when the threads strip prior to the bolt breaking, the failure may go unnoticed until after the fastener is put in service.
  • 6. Rev. 3-4-09 The strength of bolts loaded in tension can be easily determined by the ultimate tensile strength. To determine the amount of force required to break a bolt, multiply its ultimate tensile strength by its tensile stress area, As Determining the strength of the threads is more complicated. Since the male threads pull past the female threads, or vice-versa, the threads fail in shear and not in tension. Therefore, the stripping strength of an assembly depends on the shear strength of the nut and bolt materials. To determine the force required to strip the threads, multiply the shear strength by the cross sectional area being sheared. The difficulty lies in determining the cross sectional area in which the shear will occur. Here are three possible scenarios for this type of failure. 1. The nut material is stronger than the bolt material. In this example, the nut threads will shear out the bolt threads. The failure will occur at the root of the bolt threads. 2. The bolt material is stronger than the nut material. In this scenario, the bolt threads will shear out the nut threads. The failure will occur at the root of the nut threads. 3. The nut and bolt are the same strength. In this scenario, both threads will strip simultaneously. This failure will occur at the pitch line. The tensile strength of most fasteners is usually specified, whereas shear strength is not. In order to avoid shearing the threads, ensure that the length of engagement between the internal and external thread is long enough to provide adequate cross-sectional thread area. Failure scenarios #1 and #3 can typically be avoided by ensuring proper thread engagement. With proper engagement, those scenarios would result in a tensile failure of the bolt rather than thread stripping. Internal Thread Strength Formula F = Su * Ats Su = shear strength of the nut or tapped material Ats = cross-sectional area through which the shear occurs Formula for Ats (when shear occurs at the roots of the thread) Ats = n Le Dsmin[1/(2n) + 0.57735 (Dsmin – Enmax)] Dsmin = min major dia. of external threads Enmax = max pitch dia. of internal threads n = thread per inch Le = length of thread engagement Taking proper precautions during the design phase is vital to avoiding thread failure. Once the first engaged thread begins to shear, the threads behind it will also shear in rapid succession.
  • 7. Rev. 3-4-09 Generally the hardness and the actual material strength of a nut is less than the bolt. For example, if you look at the hardness of an SAE J995 Grade 8 nut (HRC 24-32 up to 5/8-in diameter), it is likely to be less than the SAE J429 Grade 8 bolt (HRC 33-39). This is designed to yield the nut threads to ensure the load is not carried solely by the first thread. As the thread yields, the load is further distributed to the next five threads. Even with the load distribution, the first engaged thread still takes the majority of the load. In a typical 7/8-9 Grade 8 nut, the first engaged thread carries 34% of the load. Using internally threaded materials with higher strengths and hardness can often result in fatigue and/or loosening. The strength capacities of standard nuts are listed as the nut’s proof stress. This should not be confused with the proof strength of the bolts. Proof stress is the ultimate load the nut can support without thread failure. For design purposes, the most important aspect of choosing the appropriate nut is to select a nut with a proof stress equal to or greater than the ultimate tensile strength of the bolt. Caution: It appears that one could theoretically increase the thread strength by increasing the length of engagement. However, as illustrated in the Load Distribution chart above, the first thread will be taking the majority of the applied load. For carbon steel fasteners (including tapped holes) the length of engagement would be limited to approximately one nominal diameter (approximately 1- 1/2 times the diameter for aluminum). After that, there is no appreciable increase in strength. Once the applied load has exceeded the first thread’s capacity, it will fail and subsequently cause the remaining threads to fail in succession. Returning to the discussion of fundamentals in thread connection design, the nut or tapped hole should support more load than the bolt. Thus, the design criteria for threaded connections also leads to nut selection criteria which help the designer ensure functionality in the joint. The following are the basic rules: 1. Ensure that the nut adheres to a specification which is compatible with the specification of the bolt (ASTM A193 and ASTM A194, SAE J429 and SAE J995, etc.) Ensure that the selected nut has a proof stress greater than or equal to the tensile strength of the bolt. If the nut proof stress does not exceed the proof strength of the bolt, stripping failure is very likely.