SlideShare a Scribd company logo
Approccio sistemico per la sicurezza
delle gallerie in caso di incendio
e problemi strutturali specifici
Prof. Ing. Franco Bontempi
Ordinario di Tecnica delle Costruzioni
Facoltà di Ingegneria Civile e Industriale
Università degli Studi di Roma La Sapienza
Progettazione Strutturale Antincendio
Roma, 14 dicembre 2019
1
Scopo della presentazione
• Far vedere gli aspetti piu’ generali della
progettazione strutturale antincendio:
❑Complessita’ del problema;
❑Approccio sistemico;
❑Natura accidentale dell’azione incendio;
❑Progettazione prestazionale/prescrittiva;
❑Aspetti specifici delle gallerie stradali.
2
OGGETTO
Caratteristiche delle gallerie
Geometrie
Impianti
1
3
GEOMETRIE
4
Tipo A - autostrade
5
6
Tipo B – extraurbane principali
7
Tipo C – extraurbane secondarie
8
9
10
11
12
13
14
15
16
Sistema vs Struttura
Opera
Morta
Opera
Viva
17
IMPIANTI VENTILAZIONE
18
19
Piston effect
• Is the result of natural induced draft caused by
free-flowing traffic (> 50 km/h) in uni-directional
tunnel thus providing natural ventilation.
20
Mechanical ventilation
• “forced” ventilation is required where piston
effect is not sufficient such as in
– congested traffic situations;
– bi-directional tunnels (piston effect is neutralized by
flow of traffic in two opposite directions);
– long tunnels with high traffic volumes.
21
Longitudinal ventilation system
• Employs jet fans suspended under tunnel roof;
in normal operation fresh air is introduced via
tunnel entering portal and polluted air is
discharged from tunnel leaving portal.
22
23
24
Semi-transverse ventilation system
• Employs ceiling plenum connected to central fan
room equipped with axial fans; in normal
operation fresh air is introduced along the tunnel
trough openings in the ventilation plenum while
polluted air is discharged via tunnel portals.
25
Transverse ventilation system
• Employs double supply and exhaust plenums
connected to central fan rooms equipped with
axial fans; in normal operation fresh air is
introduced and exhausted via openings in
double ventilation plenums.
26
27
28
29
Attachments
• Dispersion stack and fan room combined with
longitudinal ventilation: may be required in order
to reduce adverse effect on environment of
discharge of polluted air from tunnel, where
buildings are located in proximity (< 100m) to
tunnel leaving portal.
30
31
Ventilation unit
Air extraction
Ventilation unit
Supply of fresh air
32
33
COMPLESSITA’
Approccio prestazionale
Modellazione
Sicurezza
2
34
LOOSEcouplingsTIGHT
LINEAR interactions NONLINEAR
System Complexity (Perrow)
35
APPROCCIO PRESTAZIONALE
36
37
Prescrittivo (1)
APPROCCIO
PRESCRITTIVO
1) BASI DEL PROGETTO,
2) LIVELLI DI SCUREZZA,
3) PRESTAZIONI ATTESE
NON ESPLICITATI
1) REGOLE DI
CALCOLO E
2) COMPONENTI
MATERIALI
SPECIFICATI E
DETTAGLIATI
QUALITA' ED AFFIDABILITA'
STRUTTURALI
ASSICURATI IN MODO
INDIRETTO
GARANZIA DIRETTA DELLE PRESTAZIONI
E DELLA SICUREZZA STRUTURALI
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #3
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #1
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #2
OBIETTIVI
PRESTAZIONALI E
LIVELLI DI
SICUREZZA
ESPLICITATI
APPROCCIO
PRESTAZIONALE
NUMERICAL
MODELING
38
Prescrittivo (2)
39
Prestazionale (1)
APPROCCIO
PRESCRITTIVO
1) BASI DEL PROGETTO,
2) LIVELLI DI SCUREZZA,
3) PRESTAZIONI ATTESE
NON ESPLICITATI
1) REGOLE DI
CALCOLO E
2) COMPONENTI
MATERIALI
SPECIFICATI E
DETTAGLIATI
QUALITA' ED AFFIDABILITA'
STRUTTURALI
ASSICURATI IN MODO
INDIRETTO
GARANZIA DIRETTA DELLE PRESTAZIONI
E DELLA SICUREZZA STRUTURALI
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #3
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #1
INSIEME DI
STRUMENTI
LOGICI E
MATERIALI #2
OBIETTIVI
PRESTAZIONALI E
LIVELLI DI
SICUREZZA
ESPLICITATI
APPROCCIO
PRESTAZIONALE
NUMERICAL
MODELING
40
Prestazionale (2)
41
START
APPLICAZIONE
DI
REGOLE
PRESTABILITE
E
TECNICHE
PREDEFINITE
END
START
END
DEFINIZIONE E DISANIMA
DEGLI OBIETTIVI
INDIVIDUAZIONE DELLE
SOLUZIONI ATTE A
RAGGIUNGERE GLI
OBIETTIVI
ATTIVITA' DI
MODELLAZIONE E MISURA
GIUDIZIO DELLE
PRESTAZIONI
RISULTANTI
No
Yes
42
43
44
MODELLI
NUMERICI
MODELLI
FISICI
RISPETTO DI
PRESCRIZIONI
livello
1
OBIETTIVI
livello
3
DEFINIZIONE
DELLA
SOLUZIONE
STRUTTURALE
livello
4
VERIFICA
DELLE
CAPACITA'
PRESTAZIONALI
LIMITI DELLA
PERFORMANCE i-esima
CRITERIO (QUANTITA')
CHE MISURA
LA PERFORMANCE i-esima
DEFINIZIONE DELLA
PERFORMANCE i-esima
livello
2
ESPLICITAZIONE DEGLI
OBIETTIVI ATTRAVERSO
L'INDIVIDUAZIONE DI n
PRESTAZIONI;
ordinatamente, per ciascuna di
esse, i =1,..n:
ESITO
NO
SI'
A
C
B
45
MODELLI
NUMERICI
MODELLI
FISICI
RISPETTO DI
PRESCRIZIONI
livello
1
OBIETTIVI
livello
3
DEFINIZIONE
DELLA
SOLUZIONE
STRUTTURALE
livello
4
VERIFICA
DELLE
CAPACITA'
PRESTAZIONALI
LIMITI DELLA
PERFORMANCE i-esima
CRITERIO (QUANTITA')
CHE MISURA
LA PERFORMANCE i-esima
DEFINIZIONE DELLA
PERFORMANCE i-esima
livello
2
ESPLICITAZIONE DEGLI
OBIETTIVI ATTRAVERSO
L'INDIVIDUAZIONE DI n
PRESTAZIONI;
ordinatamente, per ciascuna di
esse, i =1,..n:
ESITO
NO
SI'
A
C
B
46
Esempio di struttura
soggetta a incendio:
hangar
Prof. Ing. Franco Bontempi
Ordinario di Tecnica delle Costruzioni
Facolta’ di Ingegneria Civile e Industriale
Universita’ degli Studi di Roma “La Sapienza”
franco.bontempi@uniroma1.it
47
MODELLAZIONE
48
Analysis Strategy #1:
Sensitivity governance of priorities
49
Analysis Strategy #2:
Bounding behavior governance
p
(p)

p
(p)

50
Super
Controllore
Problema Risultato
Solutore #1
Solutore #2
Voting System
Analysis Strategy #3:
Redundancy Governance
51
NUMERICAL
MODELING
52
Factors for Coupling
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
INFORMATION
FLOW DIRECTION
time
tK
53
Fully Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
54
Staggered Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
55
Temperature Driven Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
56
Scheme With No Memory
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
57
58
59
60
61
6262
SICUREZZA
63
ATTRIBUTES
THREATS
MEANS
RELIABILITY
FAILURE
ERROR
FAULT
FAULT TOLERANT
DESIGN
FAULT DETECTION
FAULT DIAGNOSIS
FAULT MANAGING
DEPENDABILITY
of
STRUCTURAL
SYSTEMS
AVAILABILITY
SAFETY
MAINTAINABILITY
permanent interruption of a system ability
to perform a required function
under specified operating conditions
the system is in an incorrect state:
it may or may not cause failure
it is a defect and represents a
potential cause of error, active or dormant
INTEGRITY
ways to increase
the dependability of a system
An understanding of the things
that can affect the dependability
of a system
A way to assess
the dependability of a system
the trustworthiness
of a system which allows
reliance to be justifiably placed
on the service it delivers
SECURITY
High level / active
performance
Low level / passive
performance
Visions, I., Laprie, J.C., Randell, B.,
Dependability and its threats:
a taxonomy,
18th IFIP
World Computer Congress,
Toulouse (France) 2004.
64
Nota: minacce
• generica causa negativa che fa degradare l’integrità
strutturale dalla configurazione nominale: queste
cause possono essere viste come minacce e
possono essere suddivise in:
• a) difetto (fault): è una mancanza e rappresenta
una potenziale causa, attiva o dormiente, di danno;
• b) assetto sbagliato (error): il sistema è in uno stato
errato che può o non può causare un fallimento;
• c) rottura (failure): interruzione permanente di
un'abilità di sistema per eseguire una funzione
richiesta in condizioni operative specifiche.
65
damage tolerance
• proprietà di un dispositivo o di una macchina in relazione
alla sua capacità di sostenere i difetti in modo sicuro fino
a quando la riparazione può essere eseguita.
• L'approccio alla progettazione per tenere conto della
tolleranza al danno presuppone l’esistenza di difetti in
qualsiasi struttura e che tali difetti si propaghino con
l'uso. Un dispositivo o una macchina sono considerati
resistenti al danno se è possibile attuare un programma
di manutenzione sostenibile che comporti il rilevamento
e la riparazione di danni accidentali, corrosione e
fessurazioni da fatica, prima che tali danni riducano la
resistenza residua della struttura sotto un limite non più
accettabile. 66
graceful degradation
• capacità di un computer, di un sistema elettronico o di
una rete di mantenere comunque una certa funzionalità
anche quando gran parte di essi è stata distrutta o resa
inattiva. Lo scopo del degrado aggraziato è prevenire il
fallimento catastrofico. Idealmente, anche la perdita
simultanea di più componenti non causa tempi di
inattività in un sistema con questa proprietà. In un
degrado aggraziato, quindi, l'efficienza operativa
diminuisce gradualmente man mano che un numero
crescente di componenti fallisce.
67
ATTRIBUTES
RELIABILITY
AVAILABILITY
SAFETY
MAINTAINABILITY
INTEGRITY
SECURITY
FAILURE
ERROR
FAULT
permanent interruption of a system ability
to perform a required function
under specified operating conditions
the system is in an incorrect state:
it may or may not cause failure
it is a defect and represents a
potential cause of error, active or dormant
THREATS
Structural Robustness (1)
68
68
Structural Robustness (2)
• Capacity of a construction to show a
regular decrease of its structural quality
due to negative causes. It implies:
a) some smoothness of the decrease of
structural performance due to
negative events (intensive feature);
b) some limited spatial spread of the
rupture (extensive feature).
69
Levels of Structural Crisis
UsualULS&SLS
VerificationFormat
Structural Robustness
Assessment
1st level:
Material
Point
2nd level:
Element
Section
3rd level:
Structural
Element
4th level:
Structural
System 70
Bad vs Good Collapses
STRUCTURE
& LOADS
Collapse
Mechanism
NO SWAY
“IMPLOSION”
OF THE
STRUCTURE
“EXPLOSION”
OF THE
STRUCTURE
is a process in which
objects are destroyed by
collapsing on themselves
is a process
NOT CONFINED
SWAY
71
Design Strategy #1: Continuity
72
Design Strategy #2: Segmentation
73
AZIONE
Natura dell’azione incendio
Carattere accidentale
Carattere estensivo
Carattere intensivo
3
74
Aspetti caratteristici dell’incendio
• Carattere estensivo
(diffusione nello spazio):
1.wildfire
2.urbanfire
3.all’esterno di una costruzione
4.all’interno di una costruzione
• Carattere intensivo
(andamento nel tempo).
• Natura accidentale.
75
Carattere intensivo
76
ISO 13387: Example of Design Fire
77
78
flashover
STRATEGIE
ATTIVE
(approccio
sistemico)
STRATEGIE
PASSIVE
(approccio
strutturale)
Tempo t
TemperaturaT(t)
andamento di T(t) a
seguito del successo
delle strategie attive
flashover
STRATEGIE
ATTIVE
(approccio
sistemico)
STRATEGIE
PASSIVE
(approccio
strutturale)
Tempo t
TemperaturaT(t)
andamento di T(t) a
seguito del successo
delle strategie attive
Strategie
79
F
L
A
S
H
O
V
E
R
passive
▪ Create fire
compartments
▪ Prevent damage
in the elements
▪ Prevent loss of
functionality in
the building
active
▪ Detection measures
(smoke, heat, flame
detectors)
▪ Suppression
measures (sprinklers,
fire extinguisher,
standpipes, firemen)
▪ Smoke and heat
evacuation system
prevention protection robustness
▪ Limit ignition
sources
▪ Limit hazardous
human behavior
▪ Emergency
procedure and
evacuation
▪ Prevent the
propagation of
collapse, once
local damages
occurred (e.g.
redundancy)
Fire Safety Strategies
systemic structural 80
active
protection
passive
protection
no
failures
doesn’t
trigger
Y
N
Y
N
spreads
extinguishes
damages
Y
N
robustness
no
collapse
collapse
Y
N
triggers
prevention1 42 3
Fire Safety Strategies
81
82
83
SnakeFighter
84
Carattere estensivo
85
The Great Fire of Chicago, Oct. 7-10, 1871
86
87
88
89
90
Windsor Hotel Madrid
91
Natura accidentale
92
Situazioni HPLC
High Probability Low Consequences
93
LPHC events
Low Probability High Consequences
94
HPLC
High Probability
Low
Consequences
LPHC
Low Probability
High
Consequences
release of energy SMALL LARGE
numbers of breakdown SMALL LARGE
people involved FEW MANY
nonlinearity WEAK STRONG
interactions WEAK STRONG
uncertainty WEAK STRONG
decomposability HIGH LOW
course predictability HIGH LOW
HPLC vs LPHC events
95
Approcci di analisi
HPLC
Eventi Frequenti con
Conseguenze Limitate
LPHC
Eventi Rari con
Conseguenze Elevate
Complessità:
Aspetti non lineari e
Meccanismi di interazioni
Impostazione
del problema:
DETERMINISTICA
STOCASTICA
ANALISI
QUALITATIVA
DETERMINISTICA
ANALISI
QUANTITATIVA
PROBABILISTICA
ANALISI
PRAGMATICA
CON SCENARI
96
CAPITOLO 2:
SICUREZZA
E
PRESTAZONI
ATTESE
QUALITA’
CAPITOLO 3:
AZIONI
AMBIENTALI
CAPITOLO 6:
AZIONI
ANTROPICHE
CAPITOLO 4:
AZIONI
ACCIDENTALI
DOMANDA
CAPITOLO 5:
NORME
SULLE
COSTRUZIONI
CAPITOLO 7:
NORME PER LE
OPERE
INTERAGENTI
CON I TERRENI E
CON LE ROCCE,
PER GLI
INTERVENTI NEI
TERRENI E PER
LA SICUREZZA
DEI PENDII
CAPITOLO 9:
NORME
SULLE
COSTRUZIONI
ESISTENTI
PRODOTTO
CAPITOLO 11:
MATERIALI
E
PRODOTTI
PER USO
STRUTTURALE
CAPITOLO 10:
NORME PER LA
REDAZIONI DEI
PROGETTI
ESECUTIVI
CAPITOLO 8:
COLLAUDO
STATICO
CONTROLLO
Italian Code for Constructions
D.M. 14 settembre 2005
97
Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni,
deve individuare le possibili situazioni contingenti in cui le azioni possono
cimentare l’opera stessa. A tal fine, è definito:
• lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera
potrà trovarsi durante la vita utile di progetto;
• lo scenario di carico: un insieme organizzato e realistico di azioni che
cimentano la struttura;
• lo scenario di contingenza: l’identificazione di uno stato plausibile e
coerente per l’opera, in cui un insieme di azioni (scenario di carico) è
applicato su una configurazione strutturale.
Per ciascuno stato limite considerato devono essere individuati scenari di carico
(ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che
rappresentino le combinazioni delle azioni realisticamente possibili e
verosimilmente più restrittive.
Scenari (D.M. 14 settembre 2005)
98
Determine geometry,
construction and
use of the building
Establish maximum likely
fuel loads
Estimate maximum likely
number of occupants
and their locations
Assume certain fire protection
features
Carry out fire engineering
analysis
Acceptable
performance
Accept
design
Modify fire
protection
features
Establish
performance
requirements
No Yes
Buchanan,2002
99
100
SVILUPPO
Dinamica degli incendi in galleria
Effetti della ventilazione
4
101
FIRE DYNAMICS IN TUNNELS
102
Tunnel Fires vs Compartment Fires (0)
103
Tunnel Fires Progression (1)
104
105
106
Tunnel Fires Progression (2)
107
Effects of ventilation
108
Temperature development
109
Smoke development
• A smoke layer may be created in tunnels at the early stages
of a fire with essentially no longitudinal ventilation. However,
the smoke layer will gradually descend further from the fire.
• If the tunnel is very long, the smoke layer may descend to the
tunnel surface at a specific distance from the fire depending
on the fire size, tunnel type, and the perimeter and height of
the tunnel cross section.
• When the longitudinal ventilation is gradually increased, the
stratified layer will gradually dissolve.
• A backlayering of smoke is created on the upstream side of
the fire.
• Downstream from the fire there is a degree of stratification of
the smoke that is governed by the heat losses to the
surrounding walls and by the turbulent mixing between the
buoyant smoke layers and the normally opposite moving cold
layer.
110
Backlayering
111
112
Maximum gas temperatures in the ceiling area of
the tunnel during tests with road vehicles
113
Maximum gas temperatures in the ceiling area of
the tunnel during tests with road vehicles
114
Maximum gas temperatures in the cross section
of the tunnel during tests with road vehicles
115
EMERGENCY VENTILATION
116
Smoke stratification
117
Natural smoke venting
• It can be sufficient in short, level tunnels
where smoke stratification allows for
escape in clear/tenable conditions.
118
Smoke filling long tunnel
119
Emergency ventilation with
longitudinal system
• It can be employed in unidirectional, medium length
tunnels, with free flowing traffic conditions. Smoke is
mechanically exhausted in direction of traffic circulation,
clear tenable conditions for escape are obtained on
upstream side of fire.
120
121
122
k size factor for HGV fire
123
k size factor for small pool fire
124
Emergency ventilation with semi-
transverse “point extraction” system
• Smoke is mechanically exhausted from single ceiling
opening (reverse mode) leaving clear tenable escape
conditions on both sides of fire.
125
126
Observation: goal
• The purpose of controlling the spread of smoke
is to keep people as long as possible in a
smoke-free environment.
• This means that the smoke stratification must be
kept intact, leaving a more or less clear and
breathable air underneath the smoke layer.
• The stratified smoke is taken out of the tunnel
through exhaust openings located in the ceiling
or at the top of the sidewalls.
127
Observation: longitudinal velocity
• With practically zero longitudinal air velocity, the
smoke layer expands to both sides of the fire.
The smoke spreads in a stratified way for up to
10 min.
• After this initial phase, smoke begins to mix over
the entire cross section, unless by this time the
extraction is in full operation.
• The longitudinal velocity of the tunnel air must
be below 2 m/s in the vicinity of the fire
incidence zone. With higher velocities, the
vertical turbulence in the shear layer between
smoke and fresh air quickly cools the upper
layer and the smoke then mixes over the entire
cross section. 128
Observations: turbulence
• With an air velocity of around 2 m/s, most of the
smoke of a medium-size fire spreads to one side
of the fire (limited backlayering) and starts
mixing over the whole cross section at a
distance of 400 to 600 m downstream of the fire
site. This mixing over the cross section can also
be prevented if the smoke extraction is activated
early enough.
• Vehicles standing in the longitudinal air flow
increase strongly the vertical turbulence and
encourage the vertical mixing of the smoke. 129
Observation: fresh air
• In a transverse ventilation system, the fresh air
jets entering the tunnel at the floor level induce a
rotation of the longitudinal airflow, which tends to
bring the smoke layer down to the road.
• No fresh air is to be injected from the ceiling in a
zone with smoke because this increases the
amount of smoke and tends to suppress the
stratification.
130
Observation: smoke extraction
• In reversible semi-transverse ventilation with the
duct at the ceiling, the fresh air is added through
ceiling openings in normal ventilation operation.
• If a fire occurs, as long as fresh air is supplied
through ceiling openings, the smoke quantity
increases by this amount and strong jets tend to
bring the smoke down to the road surface. The
conversion of the duct from supply to extraction
must be done as quickly as possible.
131
Observation: traffic conditions
• For a tunnel with one-way traffic, designed for
queues (an urban area), the ventilation design
must take into consideration that cars can likely
stand to both sides of the fire because of the
traffic. In urban areas it is usual to find stop-and-
go traffic situations.
• For a tunnel with two-way traffic, where the
vehicles run in both directions, it must be taken
into consideration that in the event of a fire
vehicles will generally be trapped on both sides
of the fire.
132
Strategies
133
Smoke extraction
• Continuous extraction into a return air duct is
needed to remove a stratified smoke layer out of
the tunnel without disturbing the stratification.
• The traditional way to extract smoke is to use
small ceiling openings distributed at short
intervals throughout the tunnel.
• Another efficient way to remove smoke quickly
out of the traffic space is to install large openings
with remotely controlled dampers. They are
normally in an open position where equal
extraction is taking place over the whole tunnel
length.
134
Tunnel with a single-point
extraction system
❑The usual way to control the longitudinal velocity is to provide several
independent ventilation sections.
❑When a tunnel has several ventilation sections, a certain longitudinal
velocity in the fire section can be maintained by a suitable operation of the
individual air ducts.
❑By reversing the fan operation in the exhaust air duct, this duct can be
used to supply air and vice versa.
135
FIRE MODELING
136
137
Levels
1D
138
1D
139
2D (zone model)
140
2D (zone model)
141
142
FDS Simulation
3D (ventilation)
143
FDS Simulation
3D (fire)
144
3D (traffic)
145
146
Multiscale
147
Multiscale (ventilation)
148
Multiscale (fire)
149
Multiscale (structural)
150
Multiscale (structural)
151
PROGETTO
Basis
Failure path
Risk
5
152
BASIS
www.francobontempi.org
Str
o N
GER
153
Design Process - ISO 13387
A. Design constraints and possibilities
(blue),
B. Action definition and development
(red),
C. Passive system and active response
(yellow),
D. Safety and performance
(purple).
3/22/2011
154
SS0a
PRESCRIBED
DESIGN
PARAMETERS
SS0b
ESTIMATED
DESIGN
PARAMETERS
SS1
initiation and
development
of fire and
fire efluent
SS2
movement of
fire effluent
SS3
structural response
and fire spread
beyond enclosure
of origin
SS4
detection,
activitation and
suppression
SS5
life safety:
occupant behavior,
location and
condition
SS6
property
loss
SS7
business
interruption
SS8
contamination
of
environment
SS9
destruction
of
heritage
(0)
DESIGN
CONSTRAINTS
AND
POSSIBILITIES
(1+2)
ACTION
DEFINITION
AND
DEVELOPMENT
(3+4)
SYSTEM
PASSIVE
AND ACTIVE
RESPONSE
BUSOFINFORMATION
RESULTS
DESIGN
ACTION
RESPONSE
SAFETY&PERFORMANCE
FSE
155
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
structural
characteristics
threats
FIRE DETECTION
& SUPPRESSION
No
Yes
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
STRUCTURAL
SYSTEM
CHARACTERISTICS
STRUCTURAL
SYSTEM
WEAKNESS
156
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
structural
characteristics
threats
No
Yes
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
structural
characteristics
threats
FIRE DETECTION
& SUPPRESSION
No
Yes
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
157
FIRE DETECTION
& SUPPRESSION
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yespassive
structural
characteristics
threats
FIRE DETECTION
& SUPPRESSION
No
Yes
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
3/22/2011 158
PROGETTAZIONE STRUTTURALE
ANTINCENDIO
158
Fire fighting timeline
159
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
STRUCTURAL
MATERIAL
& PARTS
FIRE DETECTION
& SUPPRESSION
ORGANIZATION &
FIREFIGHTERS
MAINTENANCE
& USE
CRISIS 160
HAZARD
IN-DEPTH
DEFENCE
HOLES DUE TO
ACTIVE ERRORS
HOLES DUE TO
FAILURE PATH
161
Controlled vs. Uncontrolled Events
162
Controlled vs. Uncontrolled Events
163
Fire safety concepts tree (NFPA)
1
2
3
4
5
6
7
8
9
Buchanan,2002
Strategie per
la gestione
dell'incendio
1
Prevenzione
2
Gestione
dell'evento
3
Gestione
dell'incendio
4
Gestione delle
persone e
dei beni
15
Difesa sul posto
16
Spostamento
17
Disposibilità
delle vie
di fuga
18
Far avvenire
il deflusso
19
Controllo
della quantità
di
combustibile
5
Soppressione
dell'incendio
10
Controllo
dell'incendio
attraverso il
progetto
13
Automatica
11
Manuale
12
Controllo dei
materiali
presenti
6
Controllo
del movimento
dell'incendio
7
Resistenza e
stabilità
strutturale
14
Contenimento
9
Ventilazione
8
164
1
2
3
4
5
6
7
8
9
Strategie per
la gestione
dell'incendio
1
Prevenzione
2
Gestione
dell'evento
3
Gestione
dell'incendio
4
Gestione delle
persone e
dei beni
15
Difesa sul posto
16
Spostamento
17
Disposibilità
delle vie
di fuga
18
Far avvenire
il deflusso
19
Controllo
della quantità
di
combustibile
5
Soppressione
dell'incendio
10
Controllo
dell'incendio
attraverso il
progetto
13
Automatica
11
Manuale
12
Controllo dei
materiali
presenti
6
Controllo
del movimento
dell'incendio
7
Resistenza e
stabilità
strutturale
14
Contenimento
9
Ventilazione
8
Fire safety concepts tree (NFPA)
Buchanan,2002
165
Basis of tunnel fire safety design
• The first priority identified in the literature for fire
design of all tunnels is to ensure:
1. Prevention of critical events that may endanger
human life, the environment, and the tunnel structure
and installations.
2. Self-rescue of people present in the tunnel at time of
the fire.
3. Effective action by the rescue forces.
4. Protection of the environment.
5. Limitation of the material and structural damage.
• Furthermore, part of the objective is to reduce
the consequences and minimize the economic
loss caused by fires. 166
167
RISK CONCERN
168
Risk treatment
169
Option 1 Risk avoidance, which usually means not
proceeding to continue with the system; this is not
always a feasible option, but may be the only
course of action if the hazard or their probability of
occurrence or both are particularly serious;
Option 2 Risk reduction, either through (a) reducing the
probability of occurrence of some events, or (b)
through reduction in the severity of the
consequences, such as downsizing the system, or
(c) putting in place control measures;
Option 3 Risk transfer, where insurance or other financial
mechanisms can be put in place to share or
completely transfer the financial risk to other
parties; this is not a feasible option where the
primary consequences are not financial;
Option 4 Risk acceptance, even when it exceeds the criteria,
but perhaps only for a limited time until other
measures can be taken.
170
Quantitative Risk Analysis
Luur,2002
171
Risk Analysis, Assessment, Management
(IEC 1995)
172
RISK CONCERNS
DEFINE CONTEXT
(social, individual,
political, organizational,
technological)
RSK ANALYSIS
(for the system are defined organization,
scenarios, and consequences of
occurences)
RISK ASSESSMENT
(compare risks
against criteria)
RISK TREATMENT
option 1 - avoidance
option 2 - reduction
option 3 - transfer
option 4 - acceptance
MONITOR
AND
REVIEW
RISK
MANAGEMENT
RISK
ANALYSIS
RISK
ASSESSMENT
173
174
SCENARIOS
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZARD SCENARIO ANALYSIS
(what can go wrong?
how can it happen?
waht controls exist?)
ESTIMATE
CONSEQUENCES
(magnitude)
ESTIMATE
PROBABILITIES
(of occurrences)
DEFINE
RISK SCENARIOS
SENSITIVITY
ANALYSIS
RISK
ANALYSIS
FIRE
EVENT 175
ISHIKAWA DIAGRAM
176
EVENT TREE
Triggering
event
Fire
ignition
1. Fire
extinguished
by personnel
2. Intrusion of
fire fighters
Arson
Explosion
Short
circuit
Cigarette
fire
YES (P1)
NO (1-P1) YES (P2)
NO (1-P2)
Scenario
Other
A1
A2
A3
A4
A5
3. Fire
suppression
YES (P3)
NO (1-P3)
YES (P3)
NO (1-P3)
Fire
location
AREA A
(PA)
YES (P1)
NO (1-P1) YES (P2)
NO (1-P2)
B1
B2
B3
B4
B5
YES (P3)
NO (1-P3)
YES (P3)
NO (1-P3)
AREA B
(PB)
YES (P1)
NO (1-P1) YES (P2)
NO (1-P2)
C1
C2
C3
C4
C5
YES (P3)
NO (1-P3)
YES (P3)
NO (1-P3)
AREA C
(PC)
177
INCUBAZIONE EVOLUZIONE
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZARD SCENARIO ANALYSIS
(what can go wrong?
how can it happen?
waht controls exist?)
ESTIMATE
CONSEQUENCES
(magnitude)
ESTIMATE
PROBABILITIES
(of occurrences)
DEFINE
RISK SCENARIOS
SENSITIVITY
ANALYSIS
RISK
ANALYSIS
NUMERICAL
MODELING
SIMULATIONS
178
179
180
181
F (frequency) – N (number of fatalities) curve
• An F–N curve is an alternative way of describing
the risk associated with loss of lives.
• An F–N curve shows the frequency (i.e. the
expected number) of accident events with at
least N fatalities, where the axes normally are
logarithmic.
• The F–N curve describes risk related to large-
scale accidents, and is thus especially suited for
characterizing societal risk.
182
FN-curves UK Road Rail Aviation Transport, 67-01
183
Persson, M. Quantitative Risk Analysis Procedure for
the Fire Evacuation of a Road Tunnel - An Illustrative
Example. Lund, 2002
184
Risk acceptance – ALARP (1)
RISK MAGNITUDE
INTOLERABLE
REGION
As
Low
As
Reasonably
Practicable
BROADLY ACCEPTABLE
REGION
Risk cannot be justified
in any circumstances
Tolerable only if risk
reduction is impracticable
or if its cost is greatly
disproportionate to the
improvement gained
Tolerable if cost of
reduction would exceed
the improvements gained
Necessary to maintain
assurance that the risk
remains at this level
As
Low
As
Reasonably
Achievable
RISK MAGNITUDE
INTOLERABLE
REGION
As
Low
As
Reasonably
Practicable
BROADLY ACCEPTABLE
REGION
Risk cannot be justified
in any circumstances
Tolerable only if risk
reduction is impracticable
or if its cost is greatly
disproportionate to the
improvement gained
Tolerable if cost of
reduction would exceed
the improvements gained
Necessary to maintain
assurance that the risk
remains at this level
As
Low
As
Reasonably
Achievable
185
Risk acceptance – ALARP (2)
186
187
Risk reduction by design
188
Monetary values – cost of human life (!)
What is the maximum amount the society (or the
decisionmaker) is willing to pay to reduce
the expected number of fatalities by 1?
Typical numbers for the value of a statistical life used in
cost-benefit analysis are 1–10 million euros.
189
RESISTENZA
6
190
The burnt out interior
of the Mont Blanc Tunnel
191
Curve temperatura - tempo
192
Types of fire exposure
for tunnel analysis
193
Cellulosic curve
• Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN
4102, AS 1530 etc.
• This curve is the lowest used in normal practice.
• It is based on the burning rate of the materials found in general building
materials.
194
Hydrocarbon (HC) curve
• Although the cellulosic curve has been in use for many years, it soon became
apparent that the burning rates for certain materials e.g. petrol gas, chemicals
etc, were well in excess of the rate at which for instance, timber would burn.
• The hydrocarbon curve is applicable where small petroleum fires might occur,
i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc.
195
Hydrocarbon mod. (HCM) curve
• Increased version of the hydrocarbon curve, prescribed by the French
regulations.
• The maximum temperature of the HCM curve is 1300ºC instead of the
1100ºC, standard HC curve.
• However, the temperature gradient in the first few minutes of the HCM fire is
as severe as all hydrocarbon based fires possibly causing a temperature
shock to the surrounding concrete structure and concrete spalling as a result
of it.
196
RABT ZTV curves
• The RABT curve was developed in Germany as a result of a series of test
programs such as the EUREKA project. In the RABT curve, the temperature
rise is very rapid up to 1200°C within 5 minutes.
• The failure criteria for specimens exposed to the RABT-ZTV time-temperature
curve is that the temperature of the reinforcement should not exceed 300°C.
There is no requirement for a maximum interface temperature.
RABT-ZTV (train)
Time (minutes) T (°C)
0 15
5 1200
60 1200
170 15
RABT-ZTV (car)
Time (minutes) T (°C)
0 15
5 1200
30 1200
140 15
197
RWS (Rijkswaterstaat) curve
• The RWS curve was developed by the Ministry of Transport in the
Netherlands. This curve is based on the assumption that in a worst case
scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could
occur, lasting up to 120 minutes.
• The failure criteria for specimens is that the temperature of the interface
between the concrete and the fire protective lining should not exceed 380°C
and the temperature on the reinforcement should not exceed 250°C.
RWS, RijksWaterStaat
Time
(minutes)
T
(°C)
0 20
3 890
5 1140
10 1200
30 1300
60 1350
90 1300
120 1200
180 1200
198
199
200
Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar
tunnel – gas temperature and Radiation”,
Proceedings of the International Seminar on Catastrophic Tunnel Fires,
Borås, Sweden, 20-21 November 2003.
201
202
Fire Scenario Recommendation
203
Verifiche
204
Mechanical Analysis
• The mechanical analysis shall be performed for the
same duration as used in the temperature analysis.
• Verification of fire resistance should be in:
– in the strength domain: Rfi,d,t ≥ Efi,requ,t
(resistance at time t ≥ load effects at time t);
– in the time domain: tfi,d ≥ tfi,requ
(design value of time fire resistance ≥
time required)
– In the temperature domain: Td ≤ Tcr
(design value of the material temperature ≤
critical material temperature);
205
Verification of fire resistance (3D)
R = structural resistance
T = temperature
t = time
T=T(t)
R=R(t,T)=R(t,T(t))=R(t)
206
Verification of fire resistance (R-safe)
R = structural resistance
T = temperature
t = time
Rfi,d,t
Efi,requ,t
207
Verification of fire resistance (R-fail)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
208
Verification of fire resistance (t)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
tfi,d ≥ tfi,requ
209
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td ≤ Tcr
210
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td ≤ Tcr
211
212
213
CONCLUSIONI
Conceptual design
Resilience
7
214
Conceptual Design
215
Conceptual Design
MULTI-HAZARD
BLACK-SWAN
DISASTER CHAIN
216
Flow chart
Tabella dotazioni Frejùs
Forensic Engineering
217
218
Resilience
Resilience
• Resilience is defined as “the positive
ability of a system or company to adapt
itself to the consequences of a
catastrophic failure caused by power
outage, a fire, a bomb or similar” event or
as "the ability of a system to cope with
change".
219
RESILIENCE
220
221
222
222

More Related Content

Similar to Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici

SPAM_CDR_Presentation
SPAM_CDR_PresentationSPAM_CDR_Presentation
SPAM_CDR_Presentation
Erick Chewakin
 
Esempio di struttura soggetta a incendio: hangar
Esempio di struttura soggetta a incendio: hangarEsempio di struttura soggetta a incendio: hangar
Esempio di struttura soggetta a incendio: hangar
Franco Bontempi
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Franco Bontempi Org Didattica
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendioApproccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Franco Bontempi
 
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET Journal
 
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge DeckIRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
IRJET Journal
 
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
IRJET Journal
 
INTEGRATION OF SENSORS WITH KUKA ROBOT
INTEGRATION OF SENSORS WITH KUKA ROBOTINTEGRATION OF SENSORS WITH KUKA ROBOT
INTEGRATION OF SENSORS WITH KUKA ROBOT
Kirtimaan Srivastava
 
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
Prashanth Ramachandran
 
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
ProSIM R & D Pvt. Ltd.
 
Earthquake resistant design of nuclear power plant- S.m.ingole
Earthquake resistant design of nuclear power plant- S.m.ingole Earthquake resistant design of nuclear power plant- S.m.ingole
Earthquake resistant design of nuclear power plant- S.m.ingole
ProSIM R & D Pvt. Ltd.
 
Using smart plant technology to support engineering and radiation survey for ...
Using smart plant technology to support engineering and radiation survey for ...Using smart plant technology to support engineering and radiation survey for ...
Using smart plant technology to support engineering and radiation survey for ...
Neolant
 
SMI SkillMart Academy
SMI  SkillMart AcademySMI  SkillMart Academy
SMI SkillMart Academy
Mohan Kamath
 
EarthQuake Reistant Building
EarthQuake Reistant BuildingEarthQuake Reistant Building
EarthQuake Reistant Building
Hemant Srivastava
 
AC 434 DESIGN CRITERIA - RUREDIL
AC 434 DESIGN CRITERIA - RUREDILAC 434 DESIGN CRITERIA - RUREDIL
AC 434 DESIGN CRITERIA - RUREDIL
Patrick J. Morrissey
 
Condition monitoring-through-non-destructive-technique
Condition monitoring-through-non-destructive-techniqueCondition monitoring-through-non-destructive-technique
Condition monitoring-through-non-destructive-technique
Mustafa Khan
 
design analysis and reliability of electronic packages
design analysis and reliability of electronic packagesdesign analysis and reliability of electronic packages
design analysis and reliability of electronic packages
Padmanabhan Krishnan
 
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Franco Bontempi Org Didattica
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
StroNGER2012
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Franco Bontempi
 

Similar to Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici (20)

SPAM_CDR_Presentation
SPAM_CDR_PresentationSPAM_CDR_Presentation
SPAM_CDR_Presentation
 
Esempio di struttura soggetta a incendio: hangar
Esempio di struttura soggetta a incendio: hangarEsempio di struttura soggetta a incendio: hangar
Esempio di struttura soggetta a incendio: hangar
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendioApproccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
 
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge DeckIRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
IRJET- Reliability Analysis of Prestressed Concrete Box Girder Bridge Deck
 
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
IRJET- Comparative Study of Zone 2 and Zone 3 for Equivalent Static Method, R...
 
INTEGRATION OF SENSORS WITH KUKA ROBOT
INTEGRATION OF SENSORS WITH KUKA ROBOTINTEGRATION OF SENSORS WITH KUKA ROBOT
INTEGRATION OF SENSORS WITH KUKA ROBOT
 
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
JOB PORTFOLIO_PRASHANTH_2015 [Compatibility Mode]
 
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
Overview of structural Integrity Requirements for SSCs of Nuclear Power plant...
 
Earthquake resistant design of nuclear power plant- S.m.ingole
Earthquake resistant design of nuclear power plant- S.m.ingole Earthquake resistant design of nuclear power plant- S.m.ingole
Earthquake resistant design of nuclear power plant- S.m.ingole
 
Using smart plant technology to support engineering and radiation survey for ...
Using smart plant technology to support engineering and radiation survey for ...Using smart plant technology to support engineering and radiation survey for ...
Using smart plant technology to support engineering and radiation survey for ...
 
SMI SkillMart Academy
SMI  SkillMart AcademySMI  SkillMart Academy
SMI SkillMart Academy
 
EarthQuake Reistant Building
EarthQuake Reistant BuildingEarthQuake Reistant Building
EarthQuake Reistant Building
 
AC 434 DESIGN CRITERIA - RUREDIL
AC 434 DESIGN CRITERIA - RUREDILAC 434 DESIGN CRITERIA - RUREDIL
AC 434 DESIGN CRITERIA - RUREDIL
 
Condition monitoring-through-non-destructive-technique
Condition monitoring-through-non-destructive-techniqueCondition monitoring-through-non-destructive-technique
Condition monitoring-through-non-destructive-technique
 
design analysis and reliability of electronic packages
design analysis and reliability of electronic packagesdesign analysis and reliability of electronic packages
design analysis and reliability of electronic packages
 
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strall...
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
 
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
Corso di dottorato in Ottimizzazione Strutturale: applicazione mensola strall...
 

More from Franco Bontempi Org Didattica

50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf
Franco Bontempi Org Didattica
 
4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf
Franco Bontempi Org Didattica
 
Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7
Franco Bontempi Org Didattica
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
Franco Bontempi Org Didattica
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
Franco Bontempi Org Didattica
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Franco Bontempi Org Didattica
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoring
Franco Bontempi Org Didattica
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systems
Franco Bontempi Org Didattica
 
Elenco studenti esaminandi
Elenco studenti esaminandiElenco studenti esaminandi
Elenco studenti esaminandi
Franco Bontempi Org Didattica
 
Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.
Franco Bontempi Org Didattica
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
Franco Bontempi Org Didattica
 
Costruzione di Ponti - Ceradini
Costruzione di Ponti - CeradiniCostruzione di Ponti - Ceradini
Costruzione di Ponti - Ceradini
Franco Bontempi Org Didattica
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structures
Franco Bontempi Org Didattica
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...
Franco Bontempi Org Didattica
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Franco Bontempi Org Didattica
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Franco Bontempi Org Didattica
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
Franco Bontempi Org Didattica
 
Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.
Franco Bontempi Org Didattica
 
Tdc prova 2022 01-26
Tdc prova 2022 01-26Tdc prova 2022 01-26
Tdc prova 2022 01-26
Franco Bontempi Org Didattica
 
Risultati
RisultatiRisultati

More from Franco Bontempi Org Didattica (20)

50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf
 
4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf
 
Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoring
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systems
 
Elenco studenti esaminandi
Elenco studenti esaminandiElenco studenti esaminandi
Elenco studenti esaminandi
 
Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
Costruzione di Ponti - Ceradini
Costruzione di Ponti - CeradiniCostruzione di Ponti - Ceradini
Costruzione di Ponti - Ceradini
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structures
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
 
Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.
 
Tdc prova 2022 01-26
Tdc prova 2022 01-26Tdc prova 2022 01-26
Tdc prova 2022 01-26
 
Risultati
RisultatiRisultati
Risultati
 

Recently uploaded

Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
IJCNCJournal
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
pvpriya2
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
PreethaV16
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
Pallavi Sharma
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
PreethaV16
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
paper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdfpaper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdf
ShurooqTaib
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
DharmaBanothu
 
Literature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptxLiterature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptx
LokerXu2
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
vmspraneeth
 
This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...
DharmaBanothu
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
Indrajeet sahu
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
Kamal Acharya
 
Butterfly Valves Manufacturer (LBF Series).pdf
Butterfly Valves Manufacturer (LBF Series).pdfButterfly Valves Manufacturer (LBF Series).pdf
Butterfly Valves Manufacturer (LBF Series).pdf
Lubi Valves
 
SMT process how to making and defects finding
SMT process how to making and defects findingSMT process how to making and defects finding
SMT process how to making and defects finding
rameshqapcba
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
wafawafa52
 
Northrop Grumman - Aerospace Structures Overvi.pdf
Northrop Grumman - Aerospace Structures Overvi.pdfNorthrop Grumman - Aerospace Structures Overvi.pdf
Northrop Grumman - Aerospace Structures Overvi.pdf
takipo7507
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
Kamal Acharya
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 

Recently uploaded (20)

Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
 
FULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back EndFULL STACK PROGRAMMING - Both Front End and Back End
FULL STACK PROGRAMMING - Both Front End and Back End
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
paper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdfpaper relate Chozhavendhan et al. 2020.pdf
paper relate Chozhavendhan et al. 2020.pdf
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
 
Literature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptxLiterature review for prompt engineering of ChatGPT.pptx
Literature review for prompt engineering of ChatGPT.pptx
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
 
This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...This study Examines the Effectiveness of Talent Procurement through the Imple...
This study Examines the Effectiveness of Talent Procurement through the Imple...
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
 
Butterfly Valves Manufacturer (LBF Series).pdf
Butterfly Valves Manufacturer (LBF Series).pdfButterfly Valves Manufacturer (LBF Series).pdf
Butterfly Valves Manufacturer (LBF Series).pdf
 
SMT process how to making and defects finding
SMT process how to making and defects findingSMT process how to making and defects finding
SMT process how to making and defects finding
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
 
Northrop Grumman - Aerospace Structures Overvi.pdf
Northrop Grumman - Aerospace Structures Overvi.pdfNorthrop Grumman - Aerospace Structures Overvi.pdf
Northrop Grumman - Aerospace Structures Overvi.pdf
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 

Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici

  • 1. Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici Prof. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facoltà di Ingegneria Civile e Industriale Università degli Studi di Roma La Sapienza Progettazione Strutturale Antincendio Roma, 14 dicembre 2019 1
  • 2. Scopo della presentazione • Far vedere gli aspetti piu’ generali della progettazione strutturale antincendio: ❑Complessita’ del problema; ❑Approccio sistemico; ❑Natura accidentale dell’azione incendio; ❑Progettazione prestazionale/prescrittiva; ❑Aspetti specifici delle gallerie stradali. 2
  • 5. Tipo A - autostrade 5
  • 6. 6
  • 7. Tipo B – extraurbane principali 7
  • 8. Tipo C – extraurbane secondarie 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16
  • 19. 19
  • 20. Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. 20
  • 21. Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in – congested traffic situations; – bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); – long tunnels with high traffic volumes. 21
  • 22. Longitudinal ventilation system • Employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. 22
  • 23. 23
  • 24. 24
  • 25. Semi-transverse ventilation system • Employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. 25
  • 26. Transverse ventilation system • Employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. 26
  • 27. 27
  • 28. 28
  • 29. 29
  • 30. Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. 30
  • 31. 31
  • 32. Ventilation unit Air extraction Ventilation unit Supply of fresh air 32
  • 33. 33
  • 37. 37
  • 38. Prescrittivo (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE NUMERICAL MODELING 38
  • 40. Prestazionale (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE NUMERICAL MODELING 40
  • 42. START APPLICAZIONE DI REGOLE PRESTABILITE E TECNICHE PREDEFINITE END START END DEFINIZIONE E DISANIMA DEGLI OBIETTIVI INDIVIDUAZIONE DELLE SOLUZIONI ATTE A RAGGIUNGERE GLI OBIETTIVI ATTIVITA' DI MODELLAZIONE E MISURA GIUDIZIO DELLE PRESTAZIONI RISULTANTI No Yes 42
  • 43. 43
  • 44. 44
  • 45. MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B 45
  • 46. MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B 46
  • 47. Esempio di struttura soggetta a incendio: hangar Prof. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Universita’ degli Studi di Roma “La Sapienza” franco.bontempi@uniroma1.it 47
  • 49. Analysis Strategy #1: Sensitivity governance of priorities 49
  • 50. Analysis Strategy #2: Bounding behavior governance p (p)  p (p)  50
  • 51. Super Controllore Problema Risultato Solutore #1 Solutore #2 Voting System Analysis Strategy #3: Redundancy Governance 51
  • 53. Factors for Coupling MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) INFORMATION FLOW DIRECTION time tK 53
  • 54. Fully Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 54
  • 55. Staggered Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 55
  • 56. Temperature Driven Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 56
  • 57. Scheme With No Memory time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 57
  • 58. 58
  • 59. 59
  • 60. 60
  • 61. 61
  • 62. 6262
  • 64. ATTRIBUTES THREATS MEANS RELIABILITY FAILURE ERROR FAULT FAULT TOLERANT DESIGN FAULT DETECTION FAULT DIAGNOSIS FAULT MANAGING DEPENDABILITY of STRUCTURAL SYSTEMS AVAILABILITY SAFETY MAINTAINABILITY permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant INTEGRITY ways to increase the dependability of a system An understanding of the things that can affect the dependability of a system A way to assess the dependability of a system the trustworthiness of a system which allows reliance to be justifiably placed on the service it delivers SECURITY High level / active performance Low level / passive performance Visions, I., Laprie, J.C., Randell, B., Dependability and its threats: a taxonomy, 18th IFIP World Computer Congress, Toulouse (France) 2004. 64
  • 65. Nota: minacce • generica causa negativa che fa degradare l’integrità strutturale dalla configurazione nominale: queste cause possono essere viste come minacce e possono essere suddivise in: • a) difetto (fault): è una mancanza e rappresenta una potenziale causa, attiva o dormiente, di danno; • b) assetto sbagliato (error): il sistema è in uno stato errato che può o non può causare un fallimento; • c) rottura (failure): interruzione permanente di un'abilità di sistema per eseguire una funzione richiesta in condizioni operative specifiche. 65
  • 66. damage tolerance • proprietà di un dispositivo o di una macchina in relazione alla sua capacità di sostenere i difetti in modo sicuro fino a quando la riparazione può essere eseguita. • L'approccio alla progettazione per tenere conto della tolleranza al danno presuppone l’esistenza di difetti in qualsiasi struttura e che tali difetti si propaghino con l'uso. Un dispositivo o una macchina sono considerati resistenti al danno se è possibile attuare un programma di manutenzione sostenibile che comporti il rilevamento e la riparazione di danni accidentali, corrosione e fessurazioni da fatica, prima che tali danni riducano la resistenza residua della struttura sotto un limite non più accettabile. 66
  • 67. graceful degradation • capacità di un computer, di un sistema elettronico o di una rete di mantenere comunque una certa funzionalità anche quando gran parte di essi è stata distrutta o resa inattiva. Lo scopo del degrado aggraziato è prevenire il fallimento catastrofico. Idealmente, anche la perdita simultanea di più componenti non causa tempi di inattività in un sistema con questa proprietà. In un degrado aggraziato, quindi, l'efficienza operativa diminuisce gradualmente man mano che un numero crescente di componenti fallisce. 67
  • 68. ATTRIBUTES RELIABILITY AVAILABILITY SAFETY MAINTAINABILITY INTEGRITY SECURITY FAILURE ERROR FAULT permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant THREATS Structural Robustness (1) 68 68
  • 69. Structural Robustness (2) • Capacity of a construction to show a regular decrease of its structural quality due to negative causes. It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). 69
  • 70. Levels of Structural Crisis UsualULS&SLS VerificationFormat Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System 70
  • 71. Bad vs Good Collapses STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY 71
  • 72. Design Strategy #1: Continuity 72
  • 73. Design Strategy #2: Segmentation 73
  • 74. AZIONE Natura dell’azione incendio Carattere accidentale Carattere estensivo Carattere intensivo 3 74
  • 75. Aspetti caratteristici dell’incendio • Carattere estensivo (diffusione nello spazio): 1.wildfire 2.urbanfire 3.all’esterno di una costruzione 4.all’interno di una costruzione • Carattere intensivo (andamento nel tempo). • Natura accidentale. 75
  • 77. ISO 13387: Example of Design Fire 77
  • 78. 78
  • 79. flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive Strategie 79
  • 80. F L A S H O V E R passive ▪ Create fire compartments ▪ Prevent damage in the elements ▪ Prevent loss of functionality in the building active ▪ Detection measures (smoke, heat, flame detectors) ▪ Suppression measures (sprinklers, fire extinguisher, standpipes, firemen) ▪ Smoke and heat evacuation system prevention protection robustness ▪ Limit ignition sources ▪ Limit hazardous human behavior ▪ Emergency procedure and evacuation ▪ Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) Fire Safety Strategies systemic structural 80
  • 82. 82
  • 83. 83
  • 86. The Great Fire of Chicago, Oct. 7-10, 1871 86
  • 87. 87
  • 88. 88
  • 89. 89
  • 90. 90
  • 93. Situazioni HPLC High Probability Low Consequences 93
  • 94. LPHC events Low Probability High Consequences 94
  • 95. HPLC High Probability Low Consequences LPHC Low Probability High Consequences release of energy SMALL LARGE numbers of breakdown SMALL LARGE people involved FEW MANY nonlinearity WEAK STRONG interactions WEAK STRONG uncertainty WEAK STRONG decomposability HIGH LOW course predictability HIGH LOW HPLC vs LPHC events 95
  • 96. Approcci di analisi HPLC Eventi Frequenti con Conseguenze Limitate LPHC Eventi Rari con Conseguenze Elevate Complessità: Aspetti non lineari e Meccanismi di interazioni Impostazione del problema: DETERMINISTICA STOCASTICA ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA ANALISI PRAGMATICA CON SCENARI 96
  • 97. CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE QUALITA’ CAPITOLO 3: AZIONI AMBIENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 4: AZIONI ACCIDENTALI DOMANDA CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI PRODOTTO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI CAPITOLO 8: COLLAUDO STATICO CONTROLLO Italian Code for Constructions D.M. 14 settembre 2005 97
  • 98. Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito: • lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto; • lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura; • lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. Scenari (D.M. 14 settembre 2005) 98
  • 99. Determine geometry, construction and use of the building Establish maximum likely fuel loads Estimate maximum likely number of occupants and their locations Assume certain fire protection features Carry out fire engineering analysis Acceptable performance Accept design Modify fire protection features Establish performance requirements No Yes Buchanan,2002 99
  • 100. 100
  • 101. SVILUPPO Dinamica degli incendi in galleria Effetti della ventilazione 4 101
  • 102. FIRE DYNAMICS IN TUNNELS 102
  • 103. Tunnel Fires vs Compartment Fires (0) 103
  • 105. 105
  • 106. 106
  • 110. Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. 110
  • 112. 112
  • 113. Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 113
  • 114. Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 114
  • 115. Maximum gas temperatures in the cross section of the tunnel during tests with road vehicles 115
  • 118. Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. 118
  • 119. Smoke filling long tunnel 119
  • 120. Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. 120
  • 121. 121
  • 122. 122
  • 123. k size factor for HGV fire 123
  • 124. k size factor for small pool fire 124
  • 125. Emergency ventilation with semi- transverse “point extraction” system • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. 125
  • 126. 126
  • 127. Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. 127
  • 128. Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire cross section. 128
  • 129. Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. 129
  • 130. Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. 130
  • 131. Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. 131
  • 132. Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-and- go traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. 132
  • 134. Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. 134
  • 135. Tunnel with a single-point extraction system ❑The usual way to control the longitudinal velocity is to provide several independent ventilation sections. ❑When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. ❑By reversing the fan operation in the exhaust air duct, this duct can be used to supply air and vice versa. 135
  • 138. 1D 138
  • 139. 1D 139
  • 142. 142
  • 146. 146
  • 154. Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 3/22/2011 154
  • 155. SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS SS1 initiation and development of fire and fire efluent SS2 movement of fire effluent SS3 structural response and fire spread beyond enclosure of origin SS4 detection, activitation and suppression SS5 life safety: occupant behavior, location and condition SS6 property loss SS7 business interruption SS8 contamination of environment SS9 destruction of heritage (0) DESIGN CONSTRAINTS AND POSSIBILITIES (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE BUSOFINFORMATION RESULTS DESIGN ACTION RESPONSE SAFETY&PERFORMANCE FSE 155
  • 156. STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL SYSTEM CHARACTERISTICS STRUCTURAL SYSTEM WEAKNESS 156
  • 158. FIRE DETECTION & SUPPRESSION active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes 3/22/2011 158 PROGETTAZIONE STRUTTURALE ANTINCENDIO 158
  • 160. STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY STRUCTURAL MATERIAL & PARTS FIRE DETECTION & SUPPRESSION ORGANIZATION & FIREFIGHTERS MAINTENANCE & USE CRISIS 160
  • 161. HAZARD IN-DEPTH DEFENCE HOLES DUE TO ACTIVE ERRORS HOLES DUE TO FAILURE PATH 161
  • 164. Fire safety concepts tree (NFPA) 1 2 3 4 5 6 7 8 9 Buchanan,2002 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 164
  • 165. 1 2 3 4 5 6 7 8 9 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 Fire safety concepts tree (NFPA) Buchanan,2002 165
  • 166. Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. 166
  • 167. 167
  • 170. Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other measures can be taken. 170
  • 172. Risk Analysis, Assessment, Management (IEC 1995) 172
  • 173. RISK CONCERNS DEFINE CONTEXT (social, individual, political, organizational, technological) RSK ANALYSIS (for the system are defined organization, scenarios, and consequences of occurences) RISK ASSESSMENT (compare risks against criteria) RISK TREATMENT option 1 - avoidance option 2 - reduction option 3 - transfer option 4 - acceptance MONITOR AND REVIEW RISK MANAGEMENT RISK ANALYSIS RISK ASSESSMENT 173
  • 174. 174
  • 175. SCENARIOS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS FIRE EVENT 175
  • 177. EVENT TREE Triggering event Fire ignition 1. Fire extinguished by personnel 2. Intrusion of fire fighters Arson Explosion Short circuit Cigarette fire YES (P1) NO (1-P1) YES (P2) NO (1-P2) Scenario Other A1 A2 A3 A4 A5 3. Fire suppression YES (P3) NO (1-P3) YES (P3) NO (1-P3) Fire location AREA A (PA) YES (P1) NO (1-P1) YES (P2) NO (1-P2) B1 B2 B3 B4 B5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA B (PB) YES (P1) NO (1-P1) YES (P2) NO (1-P2) C1 C2 C3 C4 C5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA C (PC) 177 INCUBAZIONE EVOLUZIONE
  • 178. DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS NUMERICAL MODELING SIMULATIONS 178
  • 179. 179
  • 180. 180
  • 181. 181
  • 182. F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to large- scale accidents, and is thus especially suited for characterizing societal risk. 182
  • 183. FN-curves UK Road Rail Aviation Transport, 67-01 183
  • 184. Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 184
  • 185. Risk acceptance – ALARP (1) RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable 185
  • 186. Risk acceptance – ALARP (2) 186
  • 187. 187
  • 188. Risk reduction by design 188
  • 189. Monetary values – cost of human life (!) What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. 189
  • 191. The burnt out interior of the Mont Blanc Tunnel 191
  • 192. Curve temperatura - tempo 192
  • 193. Types of fire exposure for tunnel analysis 193
  • 194. Cellulosic curve • Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building materials. 194
  • 195. Hydrocarbon (HC) curve • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials e.g. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. 195
  • 196. Hydrocarbon mod. (HCM) curve • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result of it. 196
  • 197. RABT ZTV curves • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 197
  • 198. RWS (Rijkswaterstaat) curve • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C and the temperature on the reinforcement should not exceed 250°C. RWS, RijksWaterStaat Time (minutes) T (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 198
  • 199. 199
  • 200. 200
  • 201. Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. 201
  • 202. 202
  • 205. Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: – in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); – in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) – In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); 205
  • 206. Verification of fire resistance (3D) R = structural resistance T = temperature t = time T=T(t) R=R(t,T)=R(t,T(t))=R(t) 206
  • 207. Verification of fire resistance (R-safe) R = structural resistance T = temperature t = time Rfi,d,t Efi,requ,t 207
  • 208. Verification of fire resistance (R-fail) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! 208
  • 209. Verification of fire resistance (t) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! tfi,d ≥ tfi,requ 209
  • 210. Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr 210
  • 211. Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr 211
  • 212. 212
  • 213. 213
  • 217. Flow chart Tabella dotazioni Frejùs Forensic Engineering 217
  • 219. Resilience • Resilience is defined as “the positive ability of a system or company to adapt itself to the consequences of a catastrophic failure caused by power outage, a fire, a bomb or similar” event or as "the ability of a system to cope with change". 219
  • 221. 221