SlideShare a Scribd company logo
1 of 4
Download to read offline
The International Journal Of Engineering And Science (IJES)
|| Volume || 5 || Issue || 11 || Pages || PP 34-37 || 2016 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805
www.theijes.com The IJES Page 34
Analysis of the skill of a world-class alpine ski racer by using a 3D
CAD system
Soichiro Suzuki1,a
, Daichi Taguchi2,b
, Yohei Hoshino1,c
, Cao Ying1,d
and
Lianlian Yang1,e
1
Department of Mechanical Engineering, Kitami Institute of Technology,
165 Koen-cho, Kitami, Hokkaido, 090-8507 Japan
2
Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507
Japan
--------------------------------------------------------ABSTRACT-------------------------------------------------------------
Heavy snow areas account for about 50% of the total land area of Japan. Extension of healthy life expectancy is
an important issue for residents of heavy snow areas because most of these areas in Japan are depopulated
areas. Skiing is a possible lifelong sport in heavy snow areas because gravity rather than muscular power is
mainly utilized in skiing. However, in Japan, the number of skiers has declined to 30% of the peak number.
This study was conducted with the aim of recovery of the popularity of skiing, and establishing skiing as lifelong
winter sport. World-level success of Japanese alpine ski racers is an important factor for the recovery of the
popularity of skiing. In this study, the skill of an alpine ski racer was investigated by using a 3D CAD model of a
skier with focus on joint work and energy balance in the turn motion.
Keywords: Alpine ski racing, Skill analysis, Energy balance, Bending motion, Stretching motion, 3D CAD
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 17 May 2016 Date of Accepted: 12 November 2016
--------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
In Japan, the aging rate, which is the ratio of the population aged 65 years and older to the total
population is more than 25%, which is higher than that of any other country in the world. Therefore, extension of
healthy life expectancy is an important issue in Japan. Making lifelong sports more popular would be one
effective way to extend the healthy life expectancy. Skiing is popular winter sports in many countries, and elderly
people can also do skiing because gravity rather than muscular power is mainly utilized. However, in Japan, the
number of skiers has recently declined to 30% of the peak number in the bubble economy period. As a result,
37% of the ski fields in Japan have been closed [1], and 56% of the closed ski fields are small-scale ski fields and
are managed by the local government of Japan [1]. Therefore, most elderly people who live in cold regions
cannot easily do skiing.
This study was carried out with the aim of recovery of the popularity of skiing and establishing skiing as
a lifelong winter sport in Japan. The world-level success of Japanese alpine ski racers is an important factor for
the recovery of popularity of skiing. However, no Japanese ski racer has won an alpine ski race at the Olympics
or world championships. The turning technique of the world’s top skiers in alpine ski races might therefore be
quite different from that of Japanese skiers. In this study, the skill of an alpine ski racer was examined by
focusing on energy balance in the turn motion. Many researches have examined the physical characteristics of
alpine ski racers or kinematics of the skier [2-5] and the optimum trajectory of skiing in an alpine ski race [6,7].
However, the kinetics of the skill of an alpine ski racer has not been examined because it is experimentally
difficult to extract the characteristics of the skill of the world’s top level turning technique in a varied and
changeable downhill course. Therefore, in this study, the skill of an alpine ski racer based on energy balance of
the skier was analyzed by using 3D CAD in order to extract the characteristics of a skillful turning technique from
only broadcasted images of the race without conducting an experiment.
Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system
www.theijes.com The IJES Page 35
II. COMPONENTS OF TURN MOTION
Fig. 1 shows components of the turn motion of a skier. The turn motion is composed of three parts
including two distinctive positions. The first half of the turn motion in which a skier increases the lean angle of
his/her lower limb is called the downhill turn. The latter half of the turn motion in which a skier decreases the
lean angle is called the uphill turn. Between these two parts, there is a switching zone of the turn direction that
includes a neutral position when skis become flat against the slope. At the final stage of the downhill turn, a skier
takes a maximum position when the lean angle of the lower leg becomes maximum. As shown in Fig. 2(a) and
(b), the motion of a skier at the start of switching the turn direction is classified into two patterns according to
knee and hip joint movements. One is called bending motion in which a skier bends his/her knee and hip joints
after the maximum position, and the other is called stretching motion.
III. ANALYSIS OF SKILL BASED ON JOINT WORK
3.1 Energy generation
In alpine ski races, the racers glide down the course by utilizing potential energy caused by the
difference between the altitude values of the start and finish points and simultaneously transforming this energy
into kinetic energy. Therefore, it is expected that the winner has generated the most kinetic energy by joint work
with the least dissipation energy caused by negative work of cutting resistance of snow by the ski edge, air
resistance of the skier, friction between the ski sole and snow and viscous resistance of the joints of the skier.
3.2 Joint work
The so called bending motion, which is the knee and hip joint movements of a skier at the start of
switching the turn direction, may consume energy because viscous resistance occurs during bending of the joints.
Therefore, it is expected that there is close relationship between the finishing time of the race and the number of
bending motions of the skier from the start to finish. Fig. 3(a) and (b) show the relationship between the number
of bending motions and the official record of finishing time for 10 racers in World Cup slalom races held in
Kranjska Gora and Wengen, respectively. These 10 racers ranked top 30th in the World Cup and did not make a
large mistake in the races. A very strong correlation was found between the number of bending motions and the
official record of finishing time, suggesting that only the number of bending motions determines victory among
high-ranking World Cup racers and that there is no difference in the energy consumption of one bending motion,
cutting resistance of the snow, air resistance or friction of the ski sole among the world’s top-level skiers. It was
clarified that one bending motion caused a loss of over 0.1[s] in finishing time judging from the inclination of a
linear approximation of the plot in Fig. 3. Consequently, execution of less bending motions and more stretching
motions in the race is the most important skill for alpine ski World Cup racers.
IV. FINISHING TIME ESTIMATION BASED ON ENERGY BALANCE
4.1 Formulation of energy balance during the downhill descent
It was demonstrated that the number of bending motions from the start to finish strongly affected the
finishing time of high-ranking World Cup racers with no large mistake in the race. This means that decrease of
the energy consumption caused by the bending motion and increase of joint work by the stretching motion are the
most important factors to shorten the finishing time for top-level World Cup racers. The energy balance of a racer
during the downhill descent is expressed as
where m[kg] is weight of the skier, v[m/s] is downhill velocity and h[m] is altitude difference between
the start point L1 and present position of the skier L2. A.Loss [J], B.Loss [J] and C.Loss [J] are dissipation energy
caused by air resistance, bending motion and negative work of cutting resistance of the snow in one turn,
respectively. Wj [J] is work of the knee joint and hip joint, Nr is the total number of turns from the start to the
present position, which is equal to the sum of the number of bending motions Nb and the number of stretching
motions Ns.
Assuming that there is no great difference in A.Loss and C.Loss among high-ranking World Cup racers, the
difference in kinetic energy among the racers Δmv2
/2 [J] is
whereΔNb and ΔNs are the differences in the number of bending motions and the number of stretching motions
among the racers, respectively.
Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system
www.theijes.com The IJES Page 36
4.2 Estimation of viscoelasticity of the joints
Estimation of the finishing time using Eq. 2 verifies the skill of lower limb movement of a top-level
alpine ski racer. In this estimation, it is necessary to determine the change in joint angles and viscoelasticity of the
joints. In order to identify these characteristics, jumping motions of three ski racers wearing ski boots were
recorded. When the changes in joint angles at the moment of jumping up and landing and also the height of the
jumping motion are measured, viscoelasticity can be estimated by using the statistical mass distribution of the
subject. The jumping motions of three top-level Japanese ski racers were recorded. Table 1 and Table 2 show the
average values of changes in joint angles and viscoelasticity measured three times in the experiment, respectively.
4.3 Finishing time estimation
Table 3: shows the dissipation energy and work that were calculated by estimated viscoelasticity of the joints.
Dissipation energy in
bending motion [J]
Joint work in stretching
motion [J]
Hip 4.68 05.19
Knee 8.95 10.55
Total 13.63 15.74
c1 [N・m・s/rad] c2 [N・m・s/rad] k1 [N・m/rad] k2 [N・m/rad]
35.0 57.6 249.3 613.7
Bending [deg] Stretching [deg]
Hip Knee Hip Knee
-7.87 -9.26 10.97 10.79
By inserting these values for B.Loss and Wj into Eq. 2, the difference in average values of downhill
velocity Δv [m/s] is calculated. Consequently, the finishing time of each racer can be estimated by Eq. 3 on the
basis of the fastest official finishing time of the winner.
(3)
whereΔt [s] is the difference in finishing time from the winner, t1 [s] is the official finish time of the winner, and
L [m] is the distance of the downhill course of the race that is calculated by the finishing time and Δv. Fig. 4
shows a comparison of the finishing time according to the official record and the estimated value in the same race
as shown in Fig. 3(a). It was demonstrated that the finishing time was accurately estimated and that energy
balance of the joint movement of the lower limb is important to shorten the finish time.
V. ACCURATE ESTIMATION OF FINISHING TIME
5.1 Motion capture by a 3D CAD model
It was clarified that the finishing time of the world’s top-level racers could be accurately estimated by
the energy balance of lower limb movement. However, if there is great difference in joint movement among the
racers, the estimation time will have a large error. If joint movements of the racers in the same turn are different
or the racers have different levels of skill, accurate measurement of joint movement will be required for the
estimation. However, it is difficult to invite top-level skiers as experimental subjects to analyze their skill.
Therefore, a method that can capture joint movement from broadcasted images of an alpine ski race is needed. At
the beginning of this investigation, a 3D CAD model of a skier based on the statistical mass distribution of a
young athlete’s body
Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system
www.theijes.com The IJES Page 37
was constructed as shown in Fig. 5. For capturing joint movement from an image, expansion or
reduction, 3D rotation and changing the joint angle of the CAD model by manual adjustment are required. The
accuracy of this motion capture method was compared with that of the VICON 460 system as shown in Fig. 6 (a)
and (b). The average error of joint movement captured by 3D CAD was under 0.5% as shown in Table 4. It was
clarified that the motion capture method using 3D CAD was sufficiently accurate to analyze the skill of a skier.
5.2 Estimation of finishing time using the 3D CAD model
Work of the stretching motion and dissipation energy of the bending motion in every turn were
calculated for each racer using joint movement captured by the 3D CAD model. Fig.7 shows the results of
estimation of finishing time in the 2014 Levi Slalom World Cup based on the assumption that all racers have the
same joint movement. Fig. 8 shows the results of estimation by using the 3D CAD model. A comparison of the
results showed that finishing time could be accurately estimated by the motion capture method using the 3D CAD
model.
Trial
No.
Error [deg] Ratio for the angle change
[%]
Average Maximum Average Maximum
1 0.2 0.3 0.3 0.5
2 0.2 0.5 0.3 0.6
3 0.3 0.6 0.5 0.8
The results suggested that the motion capture method is useful for analyzing the skill of a top-level skier.
VI. SUMMARY
In this study, the skill of a World Cup alpine ski racer was investigated by using a 3D CAD model of a
skier with focus on joint work and energy balance in the turn motion with the aim of recovery of the popularity
of skiing as a leisure sport and the establishing of skiing as a lifelong winter sport in Japan. It was
demonstrated that there was a very strong correlation between finishing time of the race and number of bending
motions at the time of switching the direction of the turn. In addition, work of the hip joint and knee joint was
calculated by using a 3D CAD model of the skier matched to the scene of the turn from the broadcasted images
of World Cup alpine ski races. It was clarified that the finishing time of each ski racer could be accurately
estimated by energy balance of the joint work even if ski racers had different joint movements during the turn
motion. The results suggest that the proposed motion capture method is useful for analyzing the skill of a top-
level skier without conductiong an experiment on the snow.
ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI (Multi-year Fund) Grant Number (26420191).
REFERENCES
Reference an article:
[1]. M. Kureha, Regional pattern of lost and closed ski fields in Japan, J. Ski Science. Vol.11 No.1 (2014) 43-50.
[2]. T. Sato, K. Sakuraba, Y. Tsuchiya, S. Maruyama, E. Ochi, Seasonal variation of bone metabolism and bone mineral density in male
alpine skiers, J. Ski Science. Vol.11 No.1 (2014) 43-50.
[3]. Y. Kondo, T. Takeda, J. Kawaguchi, Structure of qualitative development of techniques and division of the skill level in giant
slalom of alpine skiing competition, J. Ski Science. Vol.9 No.1 (2012) 1-23.
[4]. G. Neumayr, H. Hoertnagl, R.Pfister, A. Koller, G.Eibl, E. Raas, Physical and Physiological Factors Associated with Success in
Professional Alpine Skiing, Int.
[5]. J. Sports Med. 24 (2003) 571-575.
[6]. E. M. Haymes, A. L. Dickinson, Characteristics of elite male and female ski racers, Medicine and science in sports and exercise. 12
(1980) 153-158.
[7]. Y. Hirano, Quickest descent line during alpine ski racing, Sports engineering. 9 (2006) 221-228.
[8]. F. Seifriz, J. Mester, Measurement and computer simulation of trajectories in alpine skiing, Science and skiingⅡ(2000) 155-164.
[9]. A. Koga, S. Suzuki, S. Hayashi, Y. Hoshino, D. Taguchi, Skill analysis of turn technique focused on viscoelasticity of joints in
alpine ski race, Proceedings of SOBIM 2014 (2014) 179-182.
[10]. S. Suzuki, S. Hayashi, D. Taguchi, A. Koga, R. Ishibashi, Y. Hoshino, Skill analysis of alpine ski racer focused on viscoelasticity
characteristics of joints, Proceedings of MECJ-15 (2015) in CD.

More Related Content

What's hot

The fourth discipline of triathlon
The fourth discipline of triathlonThe fourth discipline of triathlon
The fourth discipline of triathlonMax Icardi
 
Batang pinoy lecture leyte copy
Batang pinoy lecture   leyte copyBatang pinoy lecture   leyte copy
Batang pinoy lecture leyte copyEnzo Williams
 
All possible questions - KINEMATICS OF MACHINERY / UNIT – I
All possible questions - KINEMATICS OF MACHINERY / UNIT – IAll possible questions - KINEMATICS OF MACHINERY / UNIT – I
All possible questions - KINEMATICS OF MACHINERY / UNIT – ISenthil Kumar
 
Tom tellez sprinting a biomechanical approach
Tom tellez sprinting   a biomechanical approachTom tellez sprinting   a biomechanical approach
Tom tellez sprinting a biomechanical approachFlavio Clesio
 
Rowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and consRowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and consRebecca Caroe
 
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...John Noonan
 
The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7Satoshi Kajiyama
 
Recent advances on motion analysis in sports
Recent advances on motion analysis  in sportsRecent advances on motion analysis  in sports
Recent advances on motion analysis in sportspunita85
 
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUEUniversidad de Extremadura
 
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...IJRTEMJOURNAL
 
Coaching Sprint Mechanics. What to look for. What to say.
Coaching Sprint Mechanics. What to look for. What to say. Coaching Sprint Mechanics. What to look for. What to say.
Coaching Sprint Mechanics. What to look for. What to say. Mike Young
 
Upper Body Structural Balance
Upper Body Structural BalanceUpper Body Structural Balance
Upper Body Structural BalanceMark McKean
 
kinematics of machines-VTU Notes
kinematics of machines-VTU Noteskinematics of machines-VTU Notes
kinematics of machines-VTU NotesSantosh Goudar
 
Design and Analysis of a Rocker Arm
Design and Analysis of a Rocker ArmDesign and Analysis of a Rocker Arm
Design and Analysis of a Rocker Armijceronline
 
Km229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicleKm229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicle1000kv technologies
 
Mass Properties and Automotive Braking, Rev b
Mass Properties and Automotive Braking, Rev bMass Properties and Automotive Braking, Rev b
Mass Properties and Automotive Braking, Rev bBrian Wiegand
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Pulling Exercises: Analyzing the Deadlift
Pulling Exercises: Analyzing the DeadliftPulling Exercises: Analyzing the Deadlift
Pulling Exercises: Analyzing the DeadliftJohn Cissik
 

What's hot (20)

Sprint power point
Sprint power pointSprint power point
Sprint power point
 
The fourth discipline of triathlon
The fourth discipline of triathlonThe fourth discipline of triathlon
The fourth discipline of triathlon
 
Batang pinoy lecture leyte copy
Batang pinoy lecture   leyte copyBatang pinoy lecture   leyte copy
Batang pinoy lecture leyte copy
 
All possible questions - KINEMATICS OF MACHINERY / UNIT – I
All possible questions - KINEMATICS OF MACHINERY / UNIT – IAll possible questions - KINEMATICS OF MACHINERY / UNIT – I
All possible questions - KINEMATICS OF MACHINERY / UNIT – I
 
Tom tellez sprinting a biomechanical approach
Tom tellez sprinting   a biomechanical approachTom tellez sprinting   a biomechanical approach
Tom tellez sprinting a biomechanical approach
 
Rowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and consRowing ergometers as an aide to on-water training pros and cons
Rowing ergometers as an aide to on-water training pros and cons
 
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...
The biomechanical demands of elite freestyle snowboard athletes - MPhil prese...
 
The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7
 
Recent advances on motion analysis in sports
Recent advances on motion analysis  in sportsRecent advances on motion analysis  in sports
Recent advances on motion analysis in sports
 
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE
3D KINEMATICS APPLIED TO THE STUDY OF INDIVIDUAL BMX GATE START TECHNIQUE
 
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...
Analysis of Lower Limb Bilateral Force Asymmetries by Different Vertical Jump...
 
Coaching Sprint Mechanics. What to look for. What to say.
Coaching Sprint Mechanics. What to look for. What to say. Coaching Sprint Mechanics. What to look for. What to say.
Coaching Sprint Mechanics. What to look for. What to say.
 
Upper Body Structural Balance
Upper Body Structural BalanceUpper Body Structural Balance
Upper Body Structural Balance
 
kinematics of machines-VTU Notes
kinematics of machines-VTU Noteskinematics of machines-VTU Notes
kinematics of machines-VTU Notes
 
Teaching athletics skills, part 1
Teaching athletics skills, part 1Teaching athletics skills, part 1
Teaching athletics skills, part 1
 
Design and Analysis of a Rocker Arm
Design and Analysis of a Rocker ArmDesign and Analysis of a Rocker Arm
Design and Analysis of a Rocker Arm
 
Km229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicleKm229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicle
 
Mass Properties and Automotive Braking, Rev b
Mass Properties and Automotive Braking, Rev bMass Properties and Automotive Braking, Rev b
Mass Properties and Automotive Braking, Rev b
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Pulling Exercises: Analyzing the Deadlift
Pulling Exercises: Analyzing the DeadliftPulling Exercises: Analyzing the Deadlift
Pulling Exercises: Analyzing the Deadlift
 

Viewers also liked (11)

Turma
TurmaTurma
Turma
 
IT@SCHOOL AND ITS FUNCTIONS
IT@SCHOOL AND ITS FUNCTIONSIT@SCHOOL AND ITS FUNCTIONS
IT@SCHOOL AND ITS FUNCTIONS
 
TP3 - Educación y Salud - Lucero Lasbaina
TP3 - Educación y Salud - Lucero LasbainaTP3 - Educación y Salud - Lucero Lasbaina
TP3 - Educación y Salud - Lucero Lasbaina
 
Docker mentor week intro - cluj-napoca
Docker mentor week   intro - cluj-napocaDocker mentor week   intro - cluj-napoca
Docker mentor week intro - cluj-napoca
 
Cardapio region
Cardapio regionCardapio region
Cardapio region
 
ePortafolios
ePortafoliosePortafolios
ePortafolios
 
Mapa gina
Mapa ginaMapa gina
Mapa gina
 
Desafios da profissionalização docente frente à singularidade tecnológica no ...
Desafios da profissionalização docente frente à singularidade tecnológica no ...Desafios da profissionalização docente frente à singularidade tecnológica no ...
Desafios da profissionalização docente frente à singularidade tecnológica no ...
 
Nutrientes 05
Nutrientes 05Nutrientes 05
Nutrientes 05
 
La pirateria de sofware
La pirateria de sofwareLa pirateria de sofware
La pirateria de sofware
 
Antologia de haicais clássicos
Antologia de haicais clássicosAntologia de haicais clássicos
Antologia de haicais clássicos
 

Similar to Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system

IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum Pump
IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum PumpIRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum Pump
IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum PumpIRJET Journal
 
Stress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraftStress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircrafteSAT Journals
 
IRJET- Design and Analysis of Single Sided Swing ARM for Modified Bike
IRJET- Design and Analysis of Single Sided Swing ARM for Modified BikeIRJET- Design and Analysis of Single Sided Swing ARM for Modified Bike
IRJET- Design and Analysis of Single Sided Swing ARM for Modified BikeIRJET Journal
 
Development of improved dual purpose fitness bike for electricity generation
Development of improved dual purpose fitness bike for electricity generationDevelopment of improved dual purpose fitness bike for electricity generation
Development of improved dual purpose fitness bike for electricity generationAlexander Decker
 
IRJET-Design and Development of Three Link Suspension System for a Quad Bike
IRJET-Design and Development of Three Link Suspension System for a Quad BikeIRJET-Design and Development of Three Link Suspension System for a Quad Bike
IRJET-Design and Development of Three Link Suspension System for a Quad BikeIRJET Journal
 
Design and Analysis of Centrifugal Governor: A Review
Design and Analysis of Centrifugal Governor: A ReviewDesign and Analysis of Centrifugal Governor: A Review
Design and Analysis of Centrifugal Governor: A ReviewIRJET Journal
 
A study on plastic hinge formation in rc frame by nonlinear static analysis
A study on plastic hinge formation in rc frame by nonlinear static analysisA study on plastic hinge formation in rc frame by nonlinear static analysis
A study on plastic hinge formation in rc frame by nonlinear static analysiseSAT Journals
 
Review of shaft failure in Coil Car Assembly
Review of shaft failure in Coil Car AssemblyReview of shaft failure in Coil Car Assembly
Review of shaft failure in Coil Car AssemblyIRJET Journal
 
Static Structural Analysis of Vented and Non Vented Disc Brake
Static Structural Analysis of Vented and Non Vented Disc BrakeStatic Structural Analysis of Vented and Non Vented Disc Brake
Static Structural Analysis of Vented and Non Vented Disc Brakeijtsrd
 
Manufacturing And Development Of Tricycle Drive
Manufacturing And Development Of Tricycle DriveManufacturing And Development Of Tricycle Drive
Manufacturing And Development Of Tricycle DriveIRJET Journal
 
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil Spring
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil SpringIRJET- Design and Analysis of a two Wheeler Shock Absorber Coil Spring
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil SpringIRJET Journal
 
IRJET - Optimization of Crankshaft by Modification in Design and Material
IRJET - Optimization of Crankshaft by Modification in Design and MaterialIRJET - Optimization of Crankshaft by Modification in Design and Material
IRJET - Optimization of Crankshaft by Modification in Design and MaterialIRJET Journal
 
To study Magnus Effect on Flettner Rotor
To study Magnus Effect on Flettner RotorTo study Magnus Effect on Flettner Rotor
To study Magnus Effect on Flettner RotorIRJET Journal
 
Design analysis of double wishbone suspension
Design analysis of double wishbone suspensionDesign analysis of double wishbone suspension
Design analysis of double wishbone suspensioneSAT Publishing House
 
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROW
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROWMODULATION AND SIMULATION IN THROWS FOR DISCUSS THROW
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROWIRJET Journal
 
Design and Construction of Pedal Operated Water Pump
Design and Construction of Pedal Operated Water PumpDesign and Construction of Pedal Operated Water Pump
Design and Construction of Pedal Operated Water Pumpijtsrd
 
IRJET- Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...
IRJET-  	  Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...IRJET-  	  Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...
IRJET- Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...IRJET Journal
 

Similar to Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system (20)

IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum Pump
IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum PumpIRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum Pump
IRJET- Rotor Dynamic Analysis of Driving Shaft of Dry Screw Vacuum Pump
 
Stress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraftStress and fatigue analysis of landing gear axle of a trainer aircraft
Stress and fatigue analysis of landing gear axle of a trainer aircraft
 
IRJET- Design and Analysis of Single Sided Swing ARM for Modified Bike
IRJET- Design and Analysis of Single Sided Swing ARM for Modified BikeIRJET- Design and Analysis of Single Sided Swing ARM for Modified Bike
IRJET- Design and Analysis of Single Sided Swing ARM for Modified Bike
 
Development of improved dual purpose fitness bike for electricity generation
Development of improved dual purpose fitness bike for electricity generationDevelopment of improved dual purpose fitness bike for electricity generation
Development of improved dual purpose fitness bike for electricity generation
 
IRJET-Design and Development of Three Link Suspension System for a Quad Bike
IRJET-Design and Development of Three Link Suspension System for a Quad BikeIRJET-Design and Development of Three Link Suspension System for a Quad Bike
IRJET-Design and Development of Three Link Suspension System for a Quad Bike
 
Ijmet 06 10_013
Ijmet 06 10_013Ijmet 06 10_013
Ijmet 06 10_013
 
Design and Analysis of Centrifugal Governor: A Review
Design and Analysis of Centrifugal Governor: A ReviewDesign and Analysis of Centrifugal Governor: A Review
Design and Analysis of Centrifugal Governor: A Review
 
A study on plastic hinge formation in rc frame by nonlinear static analysis
A study on plastic hinge formation in rc frame by nonlinear static analysisA study on plastic hinge formation in rc frame by nonlinear static analysis
A study on plastic hinge formation in rc frame by nonlinear static analysis
 
Review of shaft failure in Coil Car Assembly
Review of shaft failure in Coil Car AssemblyReview of shaft failure in Coil Car Assembly
Review of shaft failure in Coil Car Assembly
 
CONTINIOUS BRIDGE.pptx
CONTINIOUS BRIDGE.pptxCONTINIOUS BRIDGE.pptx
CONTINIOUS BRIDGE.pptx
 
FORCES AND DEFLECTION OF COIL SPRINGS
FORCES AND DEFLECTION OF COIL SPRINGSFORCES AND DEFLECTION OF COIL SPRINGS
FORCES AND DEFLECTION OF COIL SPRINGS
 
Static Structural Analysis of Vented and Non Vented Disc Brake
Static Structural Analysis of Vented and Non Vented Disc BrakeStatic Structural Analysis of Vented and Non Vented Disc Brake
Static Structural Analysis of Vented and Non Vented Disc Brake
 
Manufacturing And Development Of Tricycle Drive
Manufacturing And Development Of Tricycle DriveManufacturing And Development Of Tricycle Drive
Manufacturing And Development Of Tricycle Drive
 
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil Spring
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil SpringIRJET- Design and Analysis of a two Wheeler Shock Absorber Coil Spring
IRJET- Design and Analysis of a two Wheeler Shock Absorber Coil Spring
 
IRJET - Optimization of Crankshaft by Modification in Design and Material
IRJET - Optimization of Crankshaft by Modification in Design and MaterialIRJET - Optimization of Crankshaft by Modification in Design and Material
IRJET - Optimization of Crankshaft by Modification in Design and Material
 
To study Magnus Effect on Flettner Rotor
To study Magnus Effect on Flettner RotorTo study Magnus Effect on Flettner Rotor
To study Magnus Effect on Flettner Rotor
 
Design analysis of double wishbone suspension
Design analysis of double wishbone suspensionDesign analysis of double wishbone suspension
Design analysis of double wishbone suspension
 
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROW
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROWMODULATION AND SIMULATION IN THROWS FOR DISCUSS THROW
MODULATION AND SIMULATION IN THROWS FOR DISCUSS THROW
 
Design and Construction of Pedal Operated Water Pump
Design and Construction of Pedal Operated Water PumpDesign and Construction of Pedal Operated Water Pump
Design and Construction of Pedal Operated Water Pump
 
IRJET- Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...
IRJET-  	  Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...IRJET-  	  Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...
IRJET- Comparative Analysis and 3D Printing of Rocker ARM of 4 Cylinder E...
 

Recently uploaded

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 

Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system

  • 1. The International Journal Of Engineering And Science (IJES) || Volume || 5 || Issue || 11 || Pages || PP 34-37 || 2016 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 www.theijes.com The IJES Page 34 Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system Soichiro Suzuki1,a , Daichi Taguchi2,b , Yohei Hoshino1,c , Cao Ying1,d and Lianlian Yang1,e 1 Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507 Japan 2 Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507 Japan --------------------------------------------------------ABSTRACT------------------------------------------------------------- Heavy snow areas account for about 50% of the total land area of Japan. Extension of healthy life expectancy is an important issue for residents of heavy snow areas because most of these areas in Japan are depopulated areas. Skiing is a possible lifelong sport in heavy snow areas because gravity rather than muscular power is mainly utilized in skiing. However, in Japan, the number of skiers has declined to 30% of the peak number. This study was conducted with the aim of recovery of the popularity of skiing, and establishing skiing as lifelong winter sport. World-level success of Japanese alpine ski racers is an important factor for the recovery of the popularity of skiing. In this study, the skill of an alpine ski racer was investigated by using a 3D CAD model of a skier with focus on joint work and energy balance in the turn motion. Keywords: Alpine ski racing, Skill analysis, Energy balance, Bending motion, Stretching motion, 3D CAD --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 17 May 2016 Date of Accepted: 12 November 2016 -------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION In Japan, the aging rate, which is the ratio of the population aged 65 years and older to the total population is more than 25%, which is higher than that of any other country in the world. Therefore, extension of healthy life expectancy is an important issue in Japan. Making lifelong sports more popular would be one effective way to extend the healthy life expectancy. Skiing is popular winter sports in many countries, and elderly people can also do skiing because gravity rather than muscular power is mainly utilized. However, in Japan, the number of skiers has recently declined to 30% of the peak number in the bubble economy period. As a result, 37% of the ski fields in Japan have been closed [1], and 56% of the closed ski fields are small-scale ski fields and are managed by the local government of Japan [1]. Therefore, most elderly people who live in cold regions cannot easily do skiing. This study was carried out with the aim of recovery of the popularity of skiing and establishing skiing as a lifelong winter sport in Japan. The world-level success of Japanese alpine ski racers is an important factor for the recovery of popularity of skiing. However, no Japanese ski racer has won an alpine ski race at the Olympics or world championships. The turning technique of the world’s top skiers in alpine ski races might therefore be quite different from that of Japanese skiers. In this study, the skill of an alpine ski racer was examined by focusing on energy balance in the turn motion. Many researches have examined the physical characteristics of alpine ski racers or kinematics of the skier [2-5] and the optimum trajectory of skiing in an alpine ski race [6,7]. However, the kinetics of the skill of an alpine ski racer has not been examined because it is experimentally difficult to extract the characteristics of the skill of the world’s top level turning technique in a varied and changeable downhill course. Therefore, in this study, the skill of an alpine ski racer based on energy balance of the skier was analyzed by using 3D CAD in order to extract the characteristics of a skillful turning technique from only broadcasted images of the race without conducting an experiment.
  • 2. Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system www.theijes.com The IJES Page 35 II. COMPONENTS OF TURN MOTION Fig. 1 shows components of the turn motion of a skier. The turn motion is composed of three parts including two distinctive positions. The first half of the turn motion in which a skier increases the lean angle of his/her lower limb is called the downhill turn. The latter half of the turn motion in which a skier decreases the lean angle is called the uphill turn. Between these two parts, there is a switching zone of the turn direction that includes a neutral position when skis become flat against the slope. At the final stage of the downhill turn, a skier takes a maximum position when the lean angle of the lower leg becomes maximum. As shown in Fig. 2(a) and (b), the motion of a skier at the start of switching the turn direction is classified into two patterns according to knee and hip joint movements. One is called bending motion in which a skier bends his/her knee and hip joints after the maximum position, and the other is called stretching motion. III. ANALYSIS OF SKILL BASED ON JOINT WORK 3.1 Energy generation In alpine ski races, the racers glide down the course by utilizing potential energy caused by the difference between the altitude values of the start and finish points and simultaneously transforming this energy into kinetic energy. Therefore, it is expected that the winner has generated the most kinetic energy by joint work with the least dissipation energy caused by negative work of cutting resistance of snow by the ski edge, air resistance of the skier, friction between the ski sole and snow and viscous resistance of the joints of the skier. 3.2 Joint work The so called bending motion, which is the knee and hip joint movements of a skier at the start of switching the turn direction, may consume energy because viscous resistance occurs during bending of the joints. Therefore, it is expected that there is close relationship between the finishing time of the race and the number of bending motions of the skier from the start to finish. Fig. 3(a) and (b) show the relationship between the number of bending motions and the official record of finishing time for 10 racers in World Cup slalom races held in Kranjska Gora and Wengen, respectively. These 10 racers ranked top 30th in the World Cup and did not make a large mistake in the races. A very strong correlation was found between the number of bending motions and the official record of finishing time, suggesting that only the number of bending motions determines victory among high-ranking World Cup racers and that there is no difference in the energy consumption of one bending motion, cutting resistance of the snow, air resistance or friction of the ski sole among the world’s top-level skiers. It was clarified that one bending motion caused a loss of over 0.1[s] in finishing time judging from the inclination of a linear approximation of the plot in Fig. 3. Consequently, execution of less bending motions and more stretching motions in the race is the most important skill for alpine ski World Cup racers. IV. FINISHING TIME ESTIMATION BASED ON ENERGY BALANCE 4.1 Formulation of energy balance during the downhill descent It was demonstrated that the number of bending motions from the start to finish strongly affected the finishing time of high-ranking World Cup racers with no large mistake in the race. This means that decrease of the energy consumption caused by the bending motion and increase of joint work by the stretching motion are the most important factors to shorten the finishing time for top-level World Cup racers. The energy balance of a racer during the downhill descent is expressed as where m[kg] is weight of the skier, v[m/s] is downhill velocity and h[m] is altitude difference between the start point L1 and present position of the skier L2. A.Loss [J], B.Loss [J] and C.Loss [J] are dissipation energy caused by air resistance, bending motion and negative work of cutting resistance of the snow in one turn, respectively. Wj [J] is work of the knee joint and hip joint, Nr is the total number of turns from the start to the present position, which is equal to the sum of the number of bending motions Nb and the number of stretching motions Ns. Assuming that there is no great difference in A.Loss and C.Loss among high-ranking World Cup racers, the difference in kinetic energy among the racers Δmv2 /2 [J] is whereΔNb and ΔNs are the differences in the number of bending motions and the number of stretching motions among the racers, respectively.
  • 3. Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system www.theijes.com The IJES Page 36 4.2 Estimation of viscoelasticity of the joints Estimation of the finishing time using Eq. 2 verifies the skill of lower limb movement of a top-level alpine ski racer. In this estimation, it is necessary to determine the change in joint angles and viscoelasticity of the joints. In order to identify these characteristics, jumping motions of three ski racers wearing ski boots were recorded. When the changes in joint angles at the moment of jumping up and landing and also the height of the jumping motion are measured, viscoelasticity can be estimated by using the statistical mass distribution of the subject. The jumping motions of three top-level Japanese ski racers were recorded. Table 1 and Table 2 show the average values of changes in joint angles and viscoelasticity measured three times in the experiment, respectively. 4.3 Finishing time estimation Table 3: shows the dissipation energy and work that were calculated by estimated viscoelasticity of the joints. Dissipation energy in bending motion [J] Joint work in stretching motion [J] Hip 4.68 05.19 Knee 8.95 10.55 Total 13.63 15.74 c1 [N・m・s/rad] c2 [N・m・s/rad] k1 [N・m/rad] k2 [N・m/rad] 35.0 57.6 249.3 613.7 Bending [deg] Stretching [deg] Hip Knee Hip Knee -7.87 -9.26 10.97 10.79 By inserting these values for B.Loss and Wj into Eq. 2, the difference in average values of downhill velocity Δv [m/s] is calculated. Consequently, the finishing time of each racer can be estimated by Eq. 3 on the basis of the fastest official finishing time of the winner. (3) whereΔt [s] is the difference in finishing time from the winner, t1 [s] is the official finish time of the winner, and L [m] is the distance of the downhill course of the race that is calculated by the finishing time and Δv. Fig. 4 shows a comparison of the finishing time according to the official record and the estimated value in the same race as shown in Fig. 3(a). It was demonstrated that the finishing time was accurately estimated and that energy balance of the joint movement of the lower limb is important to shorten the finish time. V. ACCURATE ESTIMATION OF FINISHING TIME 5.1 Motion capture by a 3D CAD model It was clarified that the finishing time of the world’s top-level racers could be accurately estimated by the energy balance of lower limb movement. However, if there is great difference in joint movement among the racers, the estimation time will have a large error. If joint movements of the racers in the same turn are different or the racers have different levels of skill, accurate measurement of joint movement will be required for the estimation. However, it is difficult to invite top-level skiers as experimental subjects to analyze their skill. Therefore, a method that can capture joint movement from broadcasted images of an alpine ski race is needed. At the beginning of this investigation, a 3D CAD model of a skier based on the statistical mass distribution of a young athlete’s body
  • 4. Analysis of the skill of a world-class alpine ski racer by using a 3D CAD system www.theijes.com The IJES Page 37 was constructed as shown in Fig. 5. For capturing joint movement from an image, expansion or reduction, 3D rotation and changing the joint angle of the CAD model by manual adjustment are required. The accuracy of this motion capture method was compared with that of the VICON 460 system as shown in Fig. 6 (a) and (b). The average error of joint movement captured by 3D CAD was under 0.5% as shown in Table 4. It was clarified that the motion capture method using 3D CAD was sufficiently accurate to analyze the skill of a skier. 5.2 Estimation of finishing time using the 3D CAD model Work of the stretching motion and dissipation energy of the bending motion in every turn were calculated for each racer using joint movement captured by the 3D CAD model. Fig.7 shows the results of estimation of finishing time in the 2014 Levi Slalom World Cup based on the assumption that all racers have the same joint movement. Fig. 8 shows the results of estimation by using the 3D CAD model. A comparison of the results showed that finishing time could be accurately estimated by the motion capture method using the 3D CAD model. Trial No. Error [deg] Ratio for the angle change [%] Average Maximum Average Maximum 1 0.2 0.3 0.3 0.5 2 0.2 0.5 0.3 0.6 3 0.3 0.6 0.5 0.8 The results suggested that the motion capture method is useful for analyzing the skill of a top-level skier. VI. SUMMARY In this study, the skill of a World Cup alpine ski racer was investigated by using a 3D CAD model of a skier with focus on joint work and energy balance in the turn motion with the aim of recovery of the popularity of skiing as a leisure sport and the establishing of skiing as a lifelong winter sport in Japan. It was demonstrated that there was a very strong correlation between finishing time of the race and number of bending motions at the time of switching the direction of the turn. In addition, work of the hip joint and knee joint was calculated by using a 3D CAD model of the skier matched to the scene of the turn from the broadcasted images of World Cup alpine ski races. It was clarified that the finishing time of each ski racer could be accurately estimated by energy balance of the joint work even if ski racers had different joint movements during the turn motion. The results suggest that the proposed motion capture method is useful for analyzing the skill of a top- level skier without conductiong an experiment on the snow. ACKNOWLEDGMENTS This work was supported by JSPS KAKENHI (Multi-year Fund) Grant Number (26420191). REFERENCES Reference an article: [1]. M. Kureha, Regional pattern of lost and closed ski fields in Japan, J. Ski Science. Vol.11 No.1 (2014) 43-50. [2]. T. Sato, K. Sakuraba, Y. Tsuchiya, S. Maruyama, E. Ochi, Seasonal variation of bone metabolism and bone mineral density in male alpine skiers, J. Ski Science. Vol.11 No.1 (2014) 43-50. [3]. Y. Kondo, T. Takeda, J. Kawaguchi, Structure of qualitative development of techniques and division of the skill level in giant slalom of alpine skiing competition, J. Ski Science. Vol.9 No.1 (2012) 1-23. [4]. G. Neumayr, H. Hoertnagl, R.Pfister, A. Koller, G.Eibl, E. Raas, Physical and Physiological Factors Associated with Success in Professional Alpine Skiing, Int. [5]. J. Sports Med. 24 (2003) 571-575. [6]. E. M. Haymes, A. L. Dickinson, Characteristics of elite male and female ski racers, Medicine and science in sports and exercise. 12 (1980) 153-158. [7]. Y. Hirano, Quickest descent line during alpine ski racing, Sports engineering. 9 (2006) 221-228. [8]. F. Seifriz, J. Mester, Measurement and computer simulation of trajectories in alpine skiing, Science and skiingⅡ(2000) 155-164. [9]. A. Koga, S. Suzuki, S. Hayashi, Y. Hoshino, D. Taguchi, Skill analysis of turn technique focused on viscoelasticity of joints in alpine ski race, Proceedings of SOBIM 2014 (2014) 179-182. [10]. S. Suzuki, S. Hayashi, D. Taguchi, A. Koga, R. Ishibashi, Y. Hoshino, Skill analysis of alpine ski racer focused on viscoelasticity characteristics of joints, Proceedings of MECJ-15 (2015) in CD.