Model Question Paper

Subject Code: BT0063

Subject Name: Mathematics for IT

Credits: 4                                                                      Marks: 140

                               Part A (One mark questions)


1. In ------------------ form an element is not generally repeated, i.e., all the elements are   taken
as distinct.

A) Set roster

B) Set builder

C) Roster

 D) set tabular

2. If every element of a set A is also an element of a set B, then A is called a subset of B or A
is contained in B. It is written as_________

A) A ⊂ B.

B) A     B

C) A x B

D) A ∩ B

3. Let A = {1, 2, 3, 4, } and B = {3, 1, 4, 2) Then.

A) A≠ B

B) A=B

C) A ⊂ B
D) A ⊄B

4. Let A and B be two sets. If A ⊂ B and A ≠ B, then B is called a _______ of A

A) Power set

B) Subset

C) Superpower set

D) Superset

5. Which of the following sentence is not a statement?

            1. New Delhi is in India.
            2. Two plus two is four.
            3. Two plus two is five.
            4. Switch on the fan.

A) 1

B) 2

C) 3

D) 4

   New statements that can be formed by combining two or more simple statements are called
__________

A) Simple statement

B) Compound statement

C) Complex statement

D) Logical statement
7. Which of the following sentence is optative?

A) Open the door.
B) Where are you going?
C) Hurrah! We have won the match.
D) May God bless you!



8. Which of the following sentence is open sentence?

A) Open the door.
B) He is a college Student
C) Hurrah! We have won the match.
D) May God bless you!



9. Which of the following equation represents Closure Law

A) a, b ∈ G, a * b ∈ G

B) a * (b * c) = (a * b) * c

C) a * e = e * a = a

D) a * b = b * a = e

10. Find 7 + 5 10 =?

A) 17

B) 3

C) 2

D) 1
11. Let e and e ′ be the two identity elements of a group G and a ∈ G

                 Then ae =?

A) 1

B) e

c) e’

D) a

12. Find (ab) (b–1a–1)

A) a

B) b

C) e

D) 1

13. 1+ tan2=______

A) sec2

B) sin2

C) cos2

D) cosec2

                  5           −4 π                    3π
14. If sin A =      , cos B =   , < A < π and π < B <    then the value of Sin (A+B) is
                 13           5 2                      2

  A) 63/65

  B) 16/65

   C) 56/65

   D) 65/53
15. Express 2.53 radians in degrees

A) 142.9°

B) 143.9°

C) 144.9°

D) 141.9°



      Express 792° in radians


A) (22 π / 5)


      (21 π / 5)

C) (22 π / 15)


D) (23 π / 5)


17.       If a > b, then a − b is

A) Positive

B) Negative

C) Zero

D) None of the Above
18. Choose the right answer

                                           a − b + b − a is equal to

A) 2 (b – a)

 B) 0

 C) 2 (a – b)

 D) 2 a − b


19. Evaluate It        (2 x − 6 )
                x →3


A) 2

B) 1

C) -1

D) 0

20. Evaluate It
                x →0
                       (2 x   2
                                  +1   )
A) 2

B) 1

C) -1

D) 0

                          dy
21.If y = tan x, then        is
                          dx

A) sin 2 x

B) cos 2 x
C) sec 2 x

D) cot 2 x

                                 dy
22. If y = cot x evaluate           =
                                 dx

     A) cos2 x

    B) − sin 2 x

    C) − cos ec 2 x

    D) cos

23. If f(x) = k find f ′(x ) .

    A) 0

    B)

    C)

    D) -1

24. f(x) = log x x > 0, Find f ′( x ) =

         A) log x

         B) 1/x

         C) 1

         D) log (log x)
25. Solve       cos ec 2 xdx =

 A)

 B) - cos x+ C

 C) –cosec x +C

 D) –sin x +C

 26. Solve        x −4 dx =


       x −2
 A)         +c
        2

   x −2
B)      +c
   −2

       x −5
C)          +c
       −5

       x −3
D)          +c
       −3

27. If f(x) = x2 and g(x) = x2 + 2, then

 A) f ′( x ) ≤ g ′( x ).


 B) f ′( x ) = 2 g ′( x )


 C) f ′( x ) ≠ g ′(x ).


 D) f ′( x ) = g ′( x )
ax 2 + bx + c
28. Solve
                  x3

               b   c
A) = log x −     −   +k
               x 2x

               b   c
B) = log x −     − 2 +k
               2x 2x

               b   c
C) = log x −     − 2 +k
               x 2x

                 b   c
D) = log 2 x −     − 2 +k
                 x 2x

                                                             dy    x
29. What is the order and degree of the equation?   y = x.      +
                                                             dx dy / dx

A) Second order, second degree

B) First order, second degree

C) First order, First degree

D) Second order, First degree

            dy
30. Solve      = e 3 x −2 y + x 2 e −2 y
            dx

      e2 y e2x x3
 A)       =   + +c
       2    3  3

      e y e3x x 3
B)       =   +    +c
       2   3   3

      e 2 y e3 x x 3
C)         =    + +c
       2     3   3
e 2 y e3x x 2
D)        =   + +c
      2     3  3

31. For all z1, z2 ∈ C.   z1 . z 2 = ?


 A) z 2 + z 2


 B) z 2 − z 2


 C) z 2 . z 2


  D) z 2 / z 2


32. If z = x + iy is a complex number then ______ is called the modulus or absolute value of z.


A)   x2 + y 2


B)    x +y


C)      x2 + y


D)    x + y2

          2 3 4               7 8 9
33. A =             and B =              then 2A + 3B=?
          5 6 7               1 2 3


         13 30 35
 A) =
         25 18 23

         25 30 35
 B) =
         13 18 23

         25 31 35
 C) =
         13 28 23
25 30 23
 D) =
         13 18 35

           2a + 2 b 2a − 2 b    6 2
34. If                       =       then a, b, c, =?
           2c + d    c −d      14 10

A) a = 3. b = 1 c = 8

B) a = 2. b = 1 c = 8

C) a = 2. b = 4 c = 8

D) a = 2. b = 1 c = 9

                                               n −1                             n −1
                          1 1 1            1                                1
35. For the expression 1 + + + + .........            + ........   Sn = 2 −            =?
                          2 4 8            2                                2

                        n
                1
A) S n = 2 −
                2

                        2n
             1
B) S n = 2 −
             2

                            n −1
             1
C) S n = 2 −
             2

                             n +1
                    1
 D) S n = 2 −
                    2

36. For the series 1+2+3+4+5+6+……… Sn= ?


A) S n =
           (n + 1)
               2

           n(n + 1)
B) S n =
              2
n(n − 1)
C) S n =
              2


D) S n =
           (n − 1)
               2

                                              n −1                             n −1
                         1 1 1            1                                1
37.For the expression 1 + + + + .........            + ........   Sn = 2 −            =?
                         2 4 8            2                                2

                       n
             1
A) S n = 2 −
             2

                       2n
                   1
B) S n = 2 −
                   2

                           n −1
             1
C) S n = 2 −
             2

                            n +1
              1
 D) S n = 2 −
              2

38. The mean of marks scored by 30 girls of a class is 44%. The mean for 50 boys is 42%.
    Find the mean for the whole class.




A) 32.75%

B) 22.75%

C) 42.75%

D) 52.75%
39. Heights of six students are 163, 173, 168, 156, 162 and 165 cms. Find the arithmetic mean.

 A) 164.5 cms.

 B) 163.5 cms.

 C) 164 cms.

 D) 165.5 cms.

40. In an office there are 84 employees. Their salaries are as given below:

                  Salary
                             2430     2590       2870      3390    4720       5160
                   (Rs.)
                 Employees    4         28        31        16       3         2



Find the mean salary of the employees




A) Rs. 2975.16

B) Rs. 2975.26

C) Rs. 2975.46

D) Rs. 2975.36
Part B (Two mark questions)
41. Let U = {1,2,3,4,5,6,7,8,9,10} and A= {1,3,5,7,9} Find A′.

A) {2, 4, 6, 8, 10}.

 B {2, 3, 6, 8, 10}.

 C) {2, 4, 5, 8, 10}.

 D) {2, 4, 6, 9, 10}.

42. Let A = {2, 4, 6, 8} and B = {6, 8, 10, 12}. Find A ∪ B.

           A) {2, 4, 6, 8, 10, 12}.

           B) {2, 6, 8, 12}.

           C) {2, 4, 6, 10, 12}.

           D) {2, 6, 8, 10, 12}.

43. Which of the following is not a negation of the statement: New Delhi is a city

 A) New Delhi is not a city

 B) it is not the case that new delhi is a city

C) it is false that New Delhi is a city

 D) New delhi is capital of india



44. If a statement is true for all logical possibilities it is said as ________

           A) Tautologies

           B) negatition

           C) conjuction

           D) compound
45. Fill the empty spaces in the composition table




 A) 1,1,1

 B) 2,2,2

 C) 3,3,3

 D) 4,4,4

46. _______and ________are the properties to be satisfied for non-empty set G is said to be a
semi group w.r.t. the binary operation

 A) Inverse, identity

 B) Closure, inverse

 C) Identity, Associative

 D) Closure, Associative

                                  tan 2 60° − 2 tan 2 45° + sec 2 30°
47.                                                                        is
                              2 sin 2 45° sin   90° + cos 2 60° cos 3 0°

A) 3/4

B) 4/3

C) 1/2

D) 1
1 − cos 2 A + sin 2 A
 48. Simplify
                     1 + cos 2 A + sin 2 A

 A) Cos A

 B) tan A

 C) Cosec A

 D) Sec A

                                                 2n + 1
49. E                                         It                   is
                                             n →∞ 2 n


A) 1

B) -1

C) 1/2

D) -1/2

                                                          3n 2 + 4n + 7
50. E                                               It
                                                   n →∞   5 + 3n + 2n 2

 A) 3/2

 B) 2/3

 C) -2

 D) +2

                     2x               dy
51. If y = sin −1          2
                               find      =
                    1+ x              dx

        3
A)
     1 + x2

        1
B)
     1 + x2
2
C)
      1+ x2

         4
D)
      1 + x2

               dy
52.     Find      when x = a cos 3 t , y = a sin 3 t
               dx

 A)

 B) - tan t

 C) cot t

 D) cos t

53. Integrate Sin 10x Sin 2x w.r.t. x

      sin 8 x 1 sin 2 x
A)           − .        +c
         x    2 24

      sin 8 x 1 sin 12 x
B)           − .         +c
         x    2 24

      sin 4 x 1 sin 12 x
C)           − .         +c
         x    2 24

      sin 2 x 1 sin 12 x
D)           − .         +c
         x    2 24

54. Evaluate        (ax + b )n dx , n ≠ −1.


A)
      (a + b )n−1 + c
       a(n − 1)


 B)
       (a + b )n+1 + c
        a(n + 1)
C)
      (a + b )n + c
        a(n )


 D)
      (a + b )n+2 + c
       a(n + 2)

            (            )
55. Solve x 2 − y 2 dx = 2 xydy


      (          )
A) x x − 3 y 2 = c1


      (             )
B) x x 2 − 3 y 2 = c 1


      (         )
C) x x 3 − 3 y 2 = c1


      (         )
D) x x 2 − 3 y 3 = c1

                        dy
56. Solve (x + 1)          − y = e 3 x (x + 1)2
                        dx

           1 2x
A) y =       e +c        (x + 1)
           3

            1 3x
 B) y =       e +c         (x + 2)
            3

            1 3x
 C) y =       e +c         (x + 1)
            2

            1 3x
 D) y =       e +c         (x + 1)
            3

57._________ form of a complex number is called the polar form or the trigonometric form.

A) r (cos θ + i sin θ ).


B) r (cos θ + sin θ ).
C) (cos θ + i sin θ ).


D) (cos θ + sin θ ).

58. For every z1, z2 ∈ C, z1z2 ∈ C. represents _______Property

A) Associative law

B) Commutative law

C) Closure law

D) Distributive law

                       1 2
        2 0 1
59. A =        and B = 4 6          then AB = ?
        −1 0 1
                       0 1


            2 −1
A) AB =
           −1 5

            −1 5
B) AB =
             2 −1

             5 2
C) AB =
            −1 −1

             2 5
D) AB =
            −1 −1

        0   1 2         1 0 0
60. A = 2 − 1 3 and B = 0 1 0           find BA
        3  4 0          0 0 1
2      1 2
A) = 0     −1 3
     3      4 0


     0      1 0
B) = 2     −1 2
     3      4 3

     0   1 2
C) = 2 − 1 3
     3  4 0


     1      4 2
D) = 2 −1 3
     3  1 0


                                Part C (Four mark questions)



61. Match the following
      Let A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}. Find


         a) A × B                      i) {(1, 4), (2, 4), (3, 4)}.

         b) A × C                      ii) {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5),
                                       (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}.

         c) (A × B) ∩ (A × C)          iii) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

         d) (A × B) ∪ (A × C)          iv) {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5),
                                       (3, 6)}
A) a-iv, b-ii, c-iii, d-i

B) a-i, b-i, c-iv, d-iii

C) a-iii, b-iv, c-i, d-ii

D) a-i, b-iii, c-iv, d-ii

62. State whether the following statements are True or False




A) a-True, b-False, c-True, d-False

B) a-True, b-False, c-False, d-False

C) a-True, b-True, c-True, d-True

D) a-False, b-False, c-True, d-False

63. The following lines are the proof     Theorem, Theorem: In a group G the inverse of
an element is unique. Find the missing statements
A) ca,cb,ba,e


B) ba,ca,ba,c


C) ca,ca,ab,c


D) ab,ac,ba,e


64. Match the following

                1. Sin 2A                 a.   2 Sin A Cos A

                2. Cos 2A                 b. 1-2sin2A

                3. Sin 3A                 c.   3 Sin A - 4 sin3A

                4. Cos 3A                 d.   4cos3A-3 Cos A


A) 1-a,2-c,3-b,4-d


B) 1-d,2-c,3-b,4-a

C) 1-b, 2-a,3-c,4-d

D) 1-b,2-d,3-a,4-c


65. Match the following


                      x →1
                             (
                1. It 1 + x + x 2     )           a.   4


                                 1
                2. It                             b. 2
                      x →1 1 +   x + x2

                3. It 2 + 3 x + 4 x 2             c. 1/3
                      x →0
x2 − 4
                 4. It                                d.     3
                       x →2 x − 2




A) 1-a,2-c,3-b,4-d


B) 1-d,2-b,3-c,4-a

C) 1-b, 2-a,3-c,4-d

D) 1-d,2-c,3-b,4-a

66. Match the following




                            Y                   dy/dx

                                1              4x2 + 4x − 5
                 1.                       a.
                         4x2 − 3x + 9             (2 x + 1)2

                        2x2 − 3x +1
                 2.                       b.   sec2 x
                          2x +1

                        sin x + cos x                 − 8x + 3
                 3.                       c.
                            cos x              (4 x   2
                                                           − 3x + 9    )
                                                                       2




                 4.
                        x cos x + sin x
                                          d.
                                                                  (
                                               2 cos x − x 3 + 3 x sin x       )
                                2
                             x +1                            (x   2
                                                                      +1   )
                                                                           2




A) 1-a, 2-c,3-b,4-d


B) 1-d, 2-b, 3-c,4-a

C) 1-c 2-a, 3-b,4-d

D) 1-d, 2-c,3-b,4-a
67. State TRUE or FALSE




   1. A partial differential equation is that in which there are two or more independent
       variables and partial coefficients with respect to any of them.



   2. An ordinary differential equation is that in which all the differential coefficients have
       reference to two independent variable.



   3. The order of a differential equation is the order of the highest derivative appearing in it.



   4. The degree of a differential equation is the total number of variables occurring in it



A) 1-T, 2-F, 3-F, 4-T


B) 1-F, 2-F, 3-T, 4-F

C) 1-T, 2-F, 3-T, 4-F

D) 1-F, 2-F, 3-F,4-T


68. Match the following complex numbers in polar form



                                                             π                π
        a)   3 +i                             i)   2 cos −        + i sin −
                                                              4               4

                                                          2π         2π
        b) 1 – i                              ii) 2 cos      + i sin
                                                           3          3
π             π
         c) − 1 + i 3                   iii) 2 cos       + i sin
                                                     6             6




A) a-i, b-ii, c-iii,

B) a-iii, b-i, c-ii,

C) a-iii, b-ii, c-i

D) a-ii, b-i, c-iii

69. Match the following determinants



             1    4        9
        a) 4      9        16           i) -9
             9 16 25


          0      1     2    1
          0      3     1    2
       b)                               ii) -8
          1      1     1    4
          0      0     1    2


            0 0 1 1
            0 1 0 1
       c)                              iii) 2
            0 1 1 0
            1 1 1 1

A) a-i, b-ii, c-iii,

B) a-iii, b-i, c-ii,

C) a-iii, b-ii, c-i

D) a-ii, b-i, c-iii
70. Match the following determinants



              ∞
                             1            1   1             1
        a)                   n −1
                                    =1+     + 2 + ...... + n −2 + ...... i) series is divergent.
             n =1        2                2 2             2

               ∞
        b)           u n = 1 + 2 + 3 + 4 + ....... + n + ..              ii) The given series oscillates between 2
              n =1



                                                                          finite values

                     ∞
       c)                 (− 1)n    = −1 + 1 − 1 + 1 − 1.....         iii) series is a convergent series.
                   n =1




A) a-i, b-ii, c-iii,

B) a-iii, b-i, c-ii,

C) a-iii, b-ii, c-i

D) a-ii, b-i, c-iii
71. Match the following determinants



              ∞
                             1            1   1             1
        a)                   n −1
                                    =1+     + 2 + ...... + n −2 + ...... i) series is divergent.
             n =1        2                2 2             2

               ∞
        b)           u n = 1 + 2 + 3 + 4 + ....... + n + ..                 ii) The given series oscillates between 2
              n =1



                                                                              finite values

                     ∞
       c)                 (− 1)n    = −1 + 1 − 1 + 1 − 1.....             iii) series is a convergent series.
                   n =1


A) a-i, b-ii, c-iii,

B) a-iii, b-i, c-ii,

C) a-iii, b-ii, c-i

D) a-ii, b-i, c-iii




72. 10 students of B.Com class of a college have obtained the following marks in statistics out

    of 100. Calculate the standard deviation

         S. No               :       1      2     3      4      5    6         7       8 9        10

         Marks               :       5     10     20    25      40   42        45      48 70      80

A) 23.07

B) 22.77

C) 21.07

D) 24.07
3   3.18   3.18.33
73. Solve the following:      +      +          + .........
                           50 50.100 50.100.150

                  1
       10         5
A) S =                −1
        7

                  1
       10         5
B) S =
        7

                  1
       10         5
C) S =                +1
        7

                  1
       10         5
D) S =                +2
        7

             2   4   6
74. Solve      +   +   + ..........to ∞
             3! 5! 7!

A) S=1

B) S=1/e

C) S=e

D) S=- 1

75. Integrate the following functions w.r.t. x. Match them.

              1
           6e x                                                    sin 2 x
   a)                                           i) 2 sin x 1 −
            x2                                                        5


             ex                                               1
   b)                 2x
                                                ii)
         4 + 9e                                       n (sec x + tan x )n
sec x                       1        3e x
    c)                        n >0   iii)     tan −1
          (sec x + tan x )n                 6         2

                                                 1
          cos 3 x
    d)                               iv)    − 6e x
            sin x




A) a-iv, b-ii, c-iii, d-i

B) a-i, b-iv, c-iii, d-ii

C) a-iii, b-i, c-ii ,d-iv

D) a-iv, b-iii, c-ii, d-i
Answer Keys

                     Part - A                            Part - B                 Part - C

Q. No.       Ans. Key     Q. No.     Ans. Key   Q. No.      Ans. Key    Q. No.        Ans. Key

         1       C              21       C           41             A            61          C

         2       A              22       C           42             A            62          C

         3       B              23       A           43             D            63          B

         4       D              24       B           44             A            64          C

         5       D              25       A           45             A            65          D

         6       B              26       D           46             D            66          C

         7       D              27       D           47             B            67          C

         8       B              28       C           48             B            68          B

         9       A              29       B           49             A            69          D

     10          C              30       C           50             A            70          B

     11          D              31       C           51             C            71          B

     12          C              32       A           52             B            72          A

     13          A              33       B           53             B            73          A

     14          B              34       B           54             B            74          B

     15          C              35       C           55             B            75          D

     16          A              36       B           56             D

     17          A              37       C           57             A

     18          D              38       C           58             C

     19          D              39       A           59             D

     20          B              40       D           60             C

Bt0063 mathematics fot it

  • 1.
    Model Question Paper SubjectCode: BT0063 Subject Name: Mathematics for IT Credits: 4 Marks: 140 Part A (One mark questions) 1. In ------------------ form an element is not generally repeated, i.e., all the elements are taken as distinct. A) Set roster B) Set builder C) Roster D) set tabular 2. If every element of a set A is also an element of a set B, then A is called a subset of B or A is contained in B. It is written as_________ A) A ⊂ B. B) A B C) A x B D) A ∩ B 3. Let A = {1, 2, 3, 4, } and B = {3, 1, 4, 2) Then. A) A≠ B B) A=B C) A ⊂ B
  • 2.
    D) A ⊄B 4.Let A and B be two sets. If A ⊂ B and A ≠ B, then B is called a _______ of A A) Power set B) Subset C) Superpower set D) Superset 5. Which of the following sentence is not a statement? 1. New Delhi is in India. 2. Two plus two is four. 3. Two plus two is five. 4. Switch on the fan. A) 1 B) 2 C) 3 D) 4 New statements that can be formed by combining two or more simple statements are called __________ A) Simple statement B) Compound statement C) Complex statement D) Logical statement
  • 3.
    7. Which ofthe following sentence is optative? A) Open the door. B) Where are you going? C) Hurrah! We have won the match. D) May God bless you! 8. Which of the following sentence is open sentence? A) Open the door. B) He is a college Student C) Hurrah! We have won the match. D) May God bless you! 9. Which of the following equation represents Closure Law A) a, b ∈ G, a * b ∈ G B) a * (b * c) = (a * b) * c C) a * e = e * a = a D) a * b = b * a = e 10. Find 7 + 5 10 =? A) 17 B) 3 C) 2 D) 1
  • 4.
    11. Let eand e ′ be the two identity elements of a group G and a ∈ G Then ae =? A) 1 B) e c) e’ D) a 12. Find (ab) (b–1a–1) A) a B) b C) e D) 1 13. 1+ tan2=______ A) sec2 B) sin2 C) cos2 D) cosec2 5 −4 π 3π 14. If sin A = , cos B = , < A < π and π < B < then the value of Sin (A+B) is 13 5 2 2 A) 63/65 B) 16/65 C) 56/65 D) 65/53
  • 5.
    15. Express 2.53radians in degrees A) 142.9° B) 143.9° C) 144.9° D) 141.9° Express 792° in radians A) (22 π / 5) (21 π / 5) C) (22 π / 15) D) (23 π / 5) 17. If a > b, then a − b is A) Positive B) Negative C) Zero D) None of the Above
  • 6.
    18. Choose theright answer a − b + b − a is equal to A) 2 (b – a) B) 0 C) 2 (a – b) D) 2 a − b 19. Evaluate It (2 x − 6 ) x →3 A) 2 B) 1 C) -1 D) 0 20. Evaluate It x →0 (2 x 2 +1 ) A) 2 B) 1 C) -1 D) 0 dy 21.If y = tan x, then is dx A) sin 2 x B) cos 2 x
  • 7.
    C) sec 2x D) cot 2 x dy 22. If y = cot x evaluate = dx A) cos2 x B) − sin 2 x C) − cos ec 2 x D) cos 23. If f(x) = k find f ′(x ) . A) 0 B) C) D) -1 24. f(x) = log x x > 0, Find f ′( x ) = A) log x B) 1/x C) 1 D) log (log x)
  • 8.
    25. Solve cos ec 2 xdx = A) B) - cos x+ C C) –cosec x +C D) –sin x +C 26. Solve x −4 dx = x −2 A) +c 2 x −2 B) +c −2 x −5 C) +c −5 x −3 D) +c −3 27. If f(x) = x2 and g(x) = x2 + 2, then A) f ′( x ) ≤ g ′( x ). B) f ′( x ) = 2 g ′( x ) C) f ′( x ) ≠ g ′(x ). D) f ′( x ) = g ′( x )
  • 9.
    ax 2 +bx + c 28. Solve x3 b c A) = log x − − +k x 2x b c B) = log x − − 2 +k 2x 2x b c C) = log x − − 2 +k x 2x b c D) = log 2 x − − 2 +k x 2x dy x 29. What is the order and degree of the equation? y = x. + dx dy / dx A) Second order, second degree B) First order, second degree C) First order, First degree D) Second order, First degree dy 30. Solve = e 3 x −2 y + x 2 e −2 y dx e2 y e2x x3 A) = + +c 2 3 3 e y e3x x 3 B) = + +c 2 3 3 e 2 y e3 x x 3 C) = + +c 2 3 3
  • 10.
    e 2 ye3x x 2 D) = + +c 2 3 3 31. For all z1, z2 ∈ C. z1 . z 2 = ? A) z 2 + z 2 B) z 2 − z 2 C) z 2 . z 2 D) z 2 / z 2 32. If z = x + iy is a complex number then ______ is called the modulus or absolute value of z. A) x2 + y 2 B) x +y C) x2 + y D) x + y2 2 3 4 7 8 9 33. A = and B = then 2A + 3B=? 5 6 7 1 2 3 13 30 35 A) = 25 18 23 25 30 35 B) = 13 18 23 25 31 35 C) = 13 28 23
  • 11.
    25 30 23 D) = 13 18 35 2a + 2 b 2a − 2 b 6 2 34. If = then a, b, c, =? 2c + d c −d 14 10 A) a = 3. b = 1 c = 8 B) a = 2. b = 1 c = 8 C) a = 2. b = 4 c = 8 D) a = 2. b = 1 c = 9 n −1 n −1 1 1 1 1 1 35. For the expression 1 + + + + ......... + ........ Sn = 2 − =? 2 4 8 2 2 n 1 A) S n = 2 − 2 2n 1 B) S n = 2 − 2 n −1 1 C) S n = 2 − 2 n +1 1 D) S n = 2 − 2 36. For the series 1+2+3+4+5+6+……… Sn= ? A) S n = (n + 1) 2 n(n + 1) B) S n = 2
  • 12.
    n(n − 1) C)S n = 2 D) S n = (n − 1) 2 n −1 n −1 1 1 1 1 1 37.For the expression 1 + + + + ......... + ........ Sn = 2 − =? 2 4 8 2 2 n 1 A) S n = 2 − 2 2n 1 B) S n = 2 − 2 n −1 1 C) S n = 2 − 2 n +1 1 D) S n = 2 − 2 38. The mean of marks scored by 30 girls of a class is 44%. The mean for 50 boys is 42%. Find the mean for the whole class. A) 32.75% B) 22.75% C) 42.75% D) 52.75%
  • 13.
    39. Heights ofsix students are 163, 173, 168, 156, 162 and 165 cms. Find the arithmetic mean. A) 164.5 cms. B) 163.5 cms. C) 164 cms. D) 165.5 cms. 40. In an office there are 84 employees. Their salaries are as given below: Salary 2430 2590 2870 3390 4720 5160 (Rs.) Employees 4 28 31 16 3 2 Find the mean salary of the employees A) Rs. 2975.16 B) Rs. 2975.26 C) Rs. 2975.46 D) Rs. 2975.36
  • 14.
    Part B (Twomark questions) 41. Let U = {1,2,3,4,5,6,7,8,9,10} and A= {1,3,5,7,9} Find A′. A) {2, 4, 6, 8, 10}. B {2, 3, 6, 8, 10}. C) {2, 4, 5, 8, 10}. D) {2, 4, 6, 9, 10}. 42. Let A = {2, 4, 6, 8} and B = {6, 8, 10, 12}. Find A ∪ B. A) {2, 4, 6, 8, 10, 12}. B) {2, 6, 8, 12}. C) {2, 4, 6, 10, 12}. D) {2, 6, 8, 10, 12}. 43. Which of the following is not a negation of the statement: New Delhi is a city A) New Delhi is not a city B) it is not the case that new delhi is a city C) it is false that New Delhi is a city D) New delhi is capital of india 44. If a statement is true for all logical possibilities it is said as ________ A) Tautologies B) negatition C) conjuction D) compound
  • 15.
    45. Fill theempty spaces in the composition table A) 1,1,1 B) 2,2,2 C) 3,3,3 D) 4,4,4 46. _______and ________are the properties to be satisfied for non-empty set G is said to be a semi group w.r.t. the binary operation A) Inverse, identity B) Closure, inverse C) Identity, Associative D) Closure, Associative tan 2 60° − 2 tan 2 45° + sec 2 30° 47. is 2 sin 2 45° sin 90° + cos 2 60° cos 3 0° A) 3/4 B) 4/3 C) 1/2 D) 1
  • 16.
    1 − cos2 A + sin 2 A 48. Simplify 1 + cos 2 A + sin 2 A A) Cos A B) tan A C) Cosec A D) Sec A 2n + 1 49. E It is n →∞ 2 n A) 1 B) -1 C) 1/2 D) -1/2 3n 2 + 4n + 7 50. E It n →∞ 5 + 3n + 2n 2 A) 3/2 B) 2/3 C) -2 D) +2 2x dy 51. If y = sin −1 2 find = 1+ x dx 3 A) 1 + x2 1 B) 1 + x2
  • 17.
    2 C) 1+ x2 4 D) 1 + x2 dy 52. Find when x = a cos 3 t , y = a sin 3 t dx A) B) - tan t C) cot t D) cos t 53. Integrate Sin 10x Sin 2x w.r.t. x sin 8 x 1 sin 2 x A) − . +c x 2 24 sin 8 x 1 sin 12 x B) − . +c x 2 24 sin 4 x 1 sin 12 x C) − . +c x 2 24 sin 2 x 1 sin 12 x D) − . +c x 2 24 54. Evaluate (ax + b )n dx , n ≠ −1. A) (a + b )n−1 + c a(n − 1) B) (a + b )n+1 + c a(n + 1)
  • 18.
    C) (a + b )n + c a(n ) D) (a + b )n+2 + c a(n + 2) ( ) 55. Solve x 2 − y 2 dx = 2 xydy ( ) A) x x − 3 y 2 = c1 ( ) B) x x 2 − 3 y 2 = c 1 ( ) C) x x 3 − 3 y 2 = c1 ( ) D) x x 2 − 3 y 3 = c1 dy 56. Solve (x + 1) − y = e 3 x (x + 1)2 dx 1 2x A) y = e +c (x + 1) 3 1 3x B) y = e +c (x + 2) 3 1 3x C) y = e +c (x + 1) 2 1 3x D) y = e +c (x + 1) 3 57._________ form of a complex number is called the polar form or the trigonometric form. A) r (cos θ + i sin θ ). B) r (cos θ + sin θ ).
  • 19.
    C) (cos θ+ i sin θ ). D) (cos θ + sin θ ). 58. For every z1, z2 ∈ C, z1z2 ∈ C. represents _______Property A) Associative law B) Commutative law C) Closure law D) Distributive law 1 2 2 0 1 59. A = and B = 4 6 then AB = ? −1 0 1 0 1 2 −1 A) AB = −1 5 −1 5 B) AB = 2 −1 5 2 C) AB = −1 −1 2 5 D) AB = −1 −1 0 1 2 1 0 0 60. A = 2 − 1 3 and B = 0 1 0 find BA 3 4 0 0 0 1
  • 20.
    2 1 2 A) = 0 −1 3 3 4 0 0 1 0 B) = 2 −1 2 3 4 3 0 1 2 C) = 2 − 1 3 3 4 0 1 4 2 D) = 2 −1 3 3 1 0 Part C (Four mark questions) 61. Match the following Let A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}. Find a) A × B i) {(1, 4), (2, 4), (3, 4)}. b) A × C ii) {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}. c) (A × B) ∩ (A × C) iii) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)} d) (A × B) ∪ (A × C) iv) {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
  • 21.
    A) a-iv, b-ii,c-iii, d-i B) a-i, b-i, c-iv, d-iii C) a-iii, b-iv, c-i, d-ii D) a-i, b-iii, c-iv, d-ii 62. State whether the following statements are True or False A) a-True, b-False, c-True, d-False B) a-True, b-False, c-False, d-False C) a-True, b-True, c-True, d-True D) a-False, b-False, c-True, d-False 63. The following lines are the proof Theorem, Theorem: In a group G the inverse of an element is unique. Find the missing statements
  • 22.
    A) ca,cb,ba,e B) ba,ca,ba,c C)ca,ca,ab,c D) ab,ac,ba,e 64. Match the following 1. Sin 2A a. 2 Sin A Cos A 2. Cos 2A b. 1-2sin2A 3. Sin 3A c. 3 Sin A - 4 sin3A 4. Cos 3A d. 4cos3A-3 Cos A A) 1-a,2-c,3-b,4-d B) 1-d,2-c,3-b,4-a C) 1-b, 2-a,3-c,4-d D) 1-b,2-d,3-a,4-c 65. Match the following x →1 ( 1. It 1 + x + x 2 ) a. 4 1 2. It b. 2 x →1 1 + x + x2 3. It 2 + 3 x + 4 x 2 c. 1/3 x →0
  • 23.
    x2 − 4 4. It d. 3 x →2 x − 2 A) 1-a,2-c,3-b,4-d B) 1-d,2-b,3-c,4-a C) 1-b, 2-a,3-c,4-d D) 1-d,2-c,3-b,4-a 66. Match the following Y dy/dx 1 4x2 + 4x − 5 1. a. 4x2 − 3x + 9 (2 x + 1)2 2x2 − 3x +1 2. b. sec2 x 2x +1 sin x + cos x − 8x + 3 3. c. cos x (4 x 2 − 3x + 9 ) 2 4. x cos x + sin x d. ( 2 cos x − x 3 + 3 x sin x ) 2 x +1 (x 2 +1 ) 2 A) 1-a, 2-c,3-b,4-d B) 1-d, 2-b, 3-c,4-a C) 1-c 2-a, 3-b,4-d D) 1-d, 2-c,3-b,4-a
  • 24.
    67. State TRUEor FALSE 1. A partial differential equation is that in which there are two or more independent variables and partial coefficients with respect to any of them. 2. An ordinary differential equation is that in which all the differential coefficients have reference to two independent variable. 3. The order of a differential equation is the order of the highest derivative appearing in it. 4. The degree of a differential equation is the total number of variables occurring in it A) 1-T, 2-F, 3-F, 4-T B) 1-F, 2-F, 3-T, 4-F C) 1-T, 2-F, 3-T, 4-F D) 1-F, 2-F, 3-F,4-T 68. Match the following complex numbers in polar form π π a) 3 +i i) 2 cos − + i sin − 4 4 2π 2π b) 1 – i ii) 2 cos + i sin 3 3
  • 25.
    π π c) − 1 + i 3 iii) 2 cos + i sin 6 6 A) a-i, b-ii, c-iii, B) a-iii, b-i, c-ii, C) a-iii, b-ii, c-i D) a-ii, b-i, c-iii 69. Match the following determinants 1 4 9 a) 4 9 16 i) -9 9 16 25 0 1 2 1 0 3 1 2 b) ii) -8 1 1 1 4 0 0 1 2 0 0 1 1 0 1 0 1 c) iii) 2 0 1 1 0 1 1 1 1 A) a-i, b-ii, c-iii, B) a-iii, b-i, c-ii, C) a-iii, b-ii, c-i D) a-ii, b-i, c-iii
  • 26.
    70. Match thefollowing determinants ∞ 1 1 1 1 a) n −1 =1+ + 2 + ...... + n −2 + ...... i) series is divergent. n =1 2 2 2 2 ∞ b) u n = 1 + 2 + 3 + 4 + ....... + n + .. ii) The given series oscillates between 2 n =1 finite values ∞ c) (− 1)n = −1 + 1 − 1 + 1 − 1..... iii) series is a convergent series. n =1 A) a-i, b-ii, c-iii, B) a-iii, b-i, c-ii, C) a-iii, b-ii, c-i D) a-ii, b-i, c-iii
  • 27.
    71. Match thefollowing determinants ∞ 1 1 1 1 a) n −1 =1+ + 2 + ...... + n −2 + ...... i) series is divergent. n =1 2 2 2 2 ∞ b) u n = 1 + 2 + 3 + 4 + ....... + n + .. ii) The given series oscillates between 2 n =1 finite values ∞ c) (− 1)n = −1 + 1 − 1 + 1 − 1..... iii) series is a convergent series. n =1 A) a-i, b-ii, c-iii, B) a-iii, b-i, c-ii, C) a-iii, b-ii, c-i D) a-ii, b-i, c-iii 72. 10 students of B.Com class of a college have obtained the following marks in statistics out of 100. Calculate the standard deviation S. No : 1 2 3 4 5 6 7 8 9 10 Marks : 5 10 20 25 40 42 45 48 70 80 A) 23.07 B) 22.77 C) 21.07 D) 24.07
  • 28.
    3 3.18 3.18.33 73. Solve the following: + + + ......... 50 50.100 50.100.150 1 10 5 A) S = −1 7 1 10 5 B) S = 7 1 10 5 C) S = +1 7 1 10 5 D) S = +2 7 2 4 6 74. Solve + + + ..........to ∞ 3! 5! 7! A) S=1 B) S=1/e C) S=e D) S=- 1 75. Integrate the following functions w.r.t. x. Match them. 1 6e x sin 2 x a) i) 2 sin x 1 − x2 5 ex 1 b) 2x ii) 4 + 9e n (sec x + tan x )n
  • 29.
    sec x 1 3e x c) n >0 iii) tan −1 (sec x + tan x )n 6 2 1 cos 3 x d) iv) − 6e x sin x A) a-iv, b-ii, c-iii, d-i B) a-i, b-iv, c-iii, d-ii C) a-iii, b-i, c-ii ,d-iv D) a-iv, b-iii, c-ii, d-i
  • 30.
    Answer Keys Part - A Part - B Part - C Q. No. Ans. Key Q. No. Ans. Key Q. No. Ans. Key Q. No. Ans. Key 1 C 21 C 41 A 61 C 2 A 22 C 42 A 62 C 3 B 23 A 43 D 63 B 4 D 24 B 44 A 64 C 5 D 25 A 45 A 65 D 6 B 26 D 46 D 66 C 7 D 27 D 47 B 67 C 8 B 28 C 48 B 68 B 9 A 29 B 49 A 69 D 10 C 30 C 50 A 70 B 11 D 31 C 51 C 71 B 12 C 32 A 52 B 72 A 13 A 33 B 53 B 73 A 14 B 34 B 54 B 74 B 15 C 35 C 55 B 75 D 16 A 36 B 56 D 17 A 37 C 57 A 18 D 38 C 58 C 19 D 39 A 59 D 20 B 40 D 60 C