SlideShare a Scribd company logo
1 of 19
X-ray Diffraction
The Basics
Followed by a few examples of
Data Analysis
by
Wesley Tennyson
NanoLab/NSF NUE/Bumm
NanoLab/NSF NUE/Bumm
X-ray Diffraction
Bragg’s Law
Lattice Constants
Laue Conditions
θ - 2θ Scan
Scherrer’s Formula
Data Analysis Examples
Bragg’s Law
nλ = 2 d sin θ
• Constructive interference only occurs for certain θ’s
correlating to a (hkl) plane, specifically when the path
difference is equal to n wavelengths.
NanoLab/NSF NUE/Bumm
Bragg condition’s
The diffraction condition can be written in vector
form
2k∙G + G2 = 0
k - is the incident wave vector
k’ - is the reflected wave vector
G - is a reciprocal lattice vector such that where
G = ∆k = k - k’
the diffraction condition is met
NanoLab/NSF NUE/Bumm
Lattice Constants
The distance between planes of atoms is
d(hkl) = 2π / |G|
Since G can be written as
G = 2π/a (h*b1+ k*b2 +l*b3)
Substitute in G
d(hkl) = a / (h2 + k2 + l2)(1/2)
Or
a = d * (h2 + k2 + l2)(1/2)
a is the spacing between nearest neighbors
NanoLab/NSF NUE/Bumm
Laue Conditions
a1∙∆k = 2πυ1 a2∙∆k = 2πυ2
a3∙∆k = 2πυ3
Each of the above describes a cone in reciprocal
space about the lattice vectors a1, a2, and a3.
 the υi are integers
When a reciprocal lattice point intersects this cone the
diffraction condition is met, this is generally called
the Ewald sphere.
NanoLab/NSF NUE/Bumm
Summary of Bragg & Laue
When a diffraction
condition is met there can
be a reflected X-ray
 Extra atoms in the basis can
suppress reflections
Three variables λ, θ, and d
 λ is known
 θ is measured in the
experiment (2θ)
 d is calculated
From the planes (hkl)
 a is calculated


sin
2
n
d 
2
2
2
l
k
h
d
a 


NanoLab/NSF NUE/Bumm
θ - 2θ Scan
The θ - 2θ scan maintains these angles with the
sample, detector and X-ray source
Normal to surface
Only planes of atoms that share this normal will be seen in the θ - 2θ Scan
NanoLab/NSF NUE/Bumm
θ - 2θ Scan
The incident X-rays may reflect in many directions
but will only be measured at one location so we
will require that:
Angle of incidence (θi) = Angle of reflection (θr)
This is done by moving the detector twice as fast
in θ as the source. So, only where θi = θr is the
intensity of the reflect wave (counts of photons)
measured.
NanoLab/NSF NUE/Bumm
θ - 2θ Scan
Smaller Crystals Produce Broader XRD Peaks
t = thickness of crystallite
K = constant dependent on crystallite shape (0.89)
 = x-ray wavelength
B = FWHM (full width at half max) or integral breadth
B = Bragg Angle
Scherrer’s Formula
B
cos
B
K
t





Scherrer’s Formula
What is B?
B = (2θ High) – (2θ Low)
B is the difference in
angles at half max
2θ high
Noise
2θ low
Peak
When to Use Scherrer’s Formula
 Crystallite size <1000 Å
 Peak broadening by other factors
 Causes of broadening
• Size
• Strain
• Instrument
 If breadth consistent for each peak then assured
broadening due to crystallite size
 K depends on definition of t and B
 Within 20%-30% accuracy at best
Sherrer’s Formula References
Corman, D. Scherrer’s Formula: Using XRD to Determine Average Diameter of
Nanocrystals.
Data Analysis
 Plot the data (2θ vs. Counts)
 Determine the Bragg Angles for the peaks
 Calculate d and a for each peak
 Apply Scherrer’s Formula to the peaks
Bragg Example
Bragg Example
d = λ / (2 Sin θB) λ = 1.54 Ǻ
= 1.54 Ǻ / ( 2 * Sin ( 38.3 / 2 ) )
= 2.35 Ǻ
Simple Right!
Scherrer’s Example
Au Foil
98.25 (400)
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 101 101.5 102
2 Theta
Counts
Scherrer’s Example
B
B
t


cos
89
.
0



t = 0.89*λ / (B Cos θB) λ = 1.54 Ǻ
= 0.89*1.54 Ǻ / ( 0.00174 * Cos (98.25/ 2 ) )
= 1200 Ǻ
B = (98.3 - 98.2)*π/180 = 0.00174
Simple Right!

More Related Content

Similar to X-ray_Diffraction.ppt

Characterization of nanoparticles
Characterization of nanoparticlesCharacterization of nanoparticles
Characterization of nanoparticlesupinderpalsingh2
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Mec3609 ht radiation
Mec3609 ht radiationMec3609 ht radiation
Mec3609 ht radiationFaez Rudin
 
RadiationPhysics_Interactions_Medium.pdf
RadiationPhysics_Interactions_Medium.pdfRadiationPhysics_Interactions_Medium.pdf
RadiationPhysics_Interactions_Medium.pdfLinHsinHon1
 
Diffraction-grating experiment ppt with full detail
Diffraction-grating experiment ppt with full detailDiffraction-grating experiment ppt with full detail
Diffraction-grating experiment ppt with full detailDivyaPatel294431
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.ABDERRAHMANE REGGAD
 
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfOE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfJamesWalter40
 
Srsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometrySrsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometryssuser29ce41
 
Bolometric Applications at Room Temperature
Bolometric Applications at Room TemperatureBolometric Applications at Room Temperature
Bolometric Applications at Room Temperaturedie_dex
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing Ghassan Hadi
 
Experimental Stress Determination through Neutron Diffraction - A Review
Experimental Stress Determination through Neutron Diffraction - A ReviewExperimental Stress Determination through Neutron Diffraction - A Review
Experimental Stress Determination through Neutron Diffraction - A ReviewRavishankar Venkatasubramanian
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orbpati5271
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfEmadElsehly
 

Similar to X-ray_Diffraction.ppt (20)

Characterization of nanoparticles
Characterization of nanoparticlesCharacterization of nanoparticles
Characterization of nanoparticles
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Mec3609 ht radiation
Mec3609 ht radiationMec3609 ht radiation
Mec3609 ht radiation
 
RadiationPhysics_Interactions_Medium.pdf
RadiationPhysics_Interactions_Medium.pdfRadiationPhysics_Interactions_Medium.pdf
RadiationPhysics_Interactions_Medium.pdf
 
Reno Lecoustre Et Al
Reno Lecoustre Et AlReno Lecoustre Et Al
Reno Lecoustre Et Al
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
05_pitra.pdf
05_pitra.pdf05_pitra.pdf
05_pitra.pdf
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Diffraction-grating experiment ppt with full detail
Diffraction-grating experiment ppt with full detailDiffraction-grating experiment ppt with full detail
Diffraction-grating experiment ppt with full detail
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 
OE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdfOE Instrumentation_03_Interferometry_2.pdf
OE Instrumentation_03_Interferometry_2.pdf
 
Srsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometrySrsc 04 lecture 2 source based radiometry
Srsc 04 lecture 2 source based radiometry
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
Bolometric Applications at Room Temperature
Bolometric Applications at Room TemperatureBolometric Applications at Room Temperature
Bolometric Applications at Room Temperature
 
IRPS2005 P5 A 1
IRPS2005 P5 A 1IRPS2005 P5 A 1
IRPS2005 P5 A 1
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing
 
Experimental Stress Determination through Neutron Diffraction - A Review
Experimental Stress Determination through Neutron Diffraction - A ReviewExperimental Stress Determination through Neutron Diffraction - A Review
Experimental Stress Determination through Neutron Diffraction - A Review
 
X ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction orX ray diffraction or braggs diffraction or
X ray diffraction or braggs diffraction or
 
XRD-calculations and characterization.pdf
XRD-calculations and characterization.pdfXRD-calculations and characterization.pdf
XRD-calculations and characterization.pdf
 

Recently uploaded

Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 

Recently uploaded (20)

Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 

X-ray_Diffraction.ppt

  • 1. X-ray Diffraction The Basics Followed by a few examples of Data Analysis by Wesley Tennyson NanoLab/NSF NUE/Bumm
  • 2. NanoLab/NSF NUE/Bumm X-ray Diffraction Bragg’s Law Lattice Constants Laue Conditions θ - 2θ Scan Scherrer’s Formula Data Analysis Examples
  • 3. Bragg’s Law nλ = 2 d sin θ • Constructive interference only occurs for certain θ’s correlating to a (hkl) plane, specifically when the path difference is equal to n wavelengths.
  • 4. NanoLab/NSF NUE/Bumm Bragg condition’s The diffraction condition can be written in vector form 2k∙G + G2 = 0 k - is the incident wave vector k’ - is the reflected wave vector G - is a reciprocal lattice vector such that where G = ∆k = k - k’ the diffraction condition is met
  • 5. NanoLab/NSF NUE/Bumm Lattice Constants The distance between planes of atoms is d(hkl) = 2π / |G| Since G can be written as G = 2π/a (h*b1+ k*b2 +l*b3) Substitute in G d(hkl) = a / (h2 + k2 + l2)(1/2) Or a = d * (h2 + k2 + l2)(1/2) a is the spacing between nearest neighbors
  • 6. NanoLab/NSF NUE/Bumm Laue Conditions a1∙∆k = 2πυ1 a2∙∆k = 2πυ2 a3∙∆k = 2πυ3 Each of the above describes a cone in reciprocal space about the lattice vectors a1, a2, and a3.  the υi are integers When a reciprocal lattice point intersects this cone the diffraction condition is met, this is generally called the Ewald sphere.
  • 7. NanoLab/NSF NUE/Bumm Summary of Bragg & Laue When a diffraction condition is met there can be a reflected X-ray  Extra atoms in the basis can suppress reflections Three variables λ, θ, and d  λ is known  θ is measured in the experiment (2θ)  d is calculated From the planes (hkl)  a is calculated   sin 2 n d  2 2 2 l k h d a   
  • 8. NanoLab/NSF NUE/Bumm θ - 2θ Scan The θ - 2θ scan maintains these angles with the sample, detector and X-ray source Normal to surface Only planes of atoms that share this normal will be seen in the θ - 2θ Scan
  • 9. NanoLab/NSF NUE/Bumm θ - 2θ Scan The incident X-rays may reflect in many directions but will only be measured at one location so we will require that: Angle of incidence (θi) = Angle of reflection (θr) This is done by moving the detector twice as fast in θ as the source. So, only where θi = θr is the intensity of the reflect wave (counts of photons) measured.
  • 11. Smaller Crystals Produce Broader XRD Peaks
  • 12. t = thickness of crystallite K = constant dependent on crystallite shape (0.89)  = x-ray wavelength B = FWHM (full width at half max) or integral breadth B = Bragg Angle Scherrer’s Formula B cos B K t     
  • 13. Scherrer’s Formula What is B? B = (2θ High) – (2θ Low) B is the difference in angles at half max 2θ high Noise 2θ low Peak
  • 14. When to Use Scherrer’s Formula  Crystallite size <1000 Å  Peak broadening by other factors  Causes of broadening • Size • Strain • Instrument  If breadth consistent for each peak then assured broadening due to crystallite size  K depends on definition of t and B  Within 20%-30% accuracy at best Sherrer’s Formula References Corman, D. Scherrer’s Formula: Using XRD to Determine Average Diameter of Nanocrystals.
  • 15. Data Analysis  Plot the data (2θ vs. Counts)  Determine the Bragg Angles for the peaks  Calculate d and a for each peak  Apply Scherrer’s Formula to the peaks
  • 17. Bragg Example d = λ / (2 Sin θB) λ = 1.54 Ǻ = 1.54 Ǻ / ( 2 * Sin ( 38.3 / 2 ) ) = 2.35 Ǻ Simple Right!
  • 18. Scherrer’s Example Au Foil 98.25 (400) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 101 101.5 102 2 Theta Counts
  • 19. Scherrer’s Example B B t   cos 89 . 0    t = 0.89*λ / (B Cos θB) λ = 1.54 Ǻ = 0.89*1.54 Ǻ / ( 0.00174 * Cos (98.25/ 2 ) ) = 1200 Ǻ B = (98.3 - 98.2)*π/180 = 0.00174 Simple Right!