Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Search for Neutron Electric Dipole Moment  <ul><li>Physics of neutron EDM </li></ul><ul><li>Proposal for a new neutron EDM...
<ul><li>EDM violates parity </li></ul><ul><li>Dirac’s magnetic monopole can generate EDM  </li></ul><ul><li>Neutron scatte...
Neutron Electric Dipole Moment EDM has to be pointing parallel to the spin direction Mirror S + - d S - + d
 
Observation of parity violation in  60 Co beta-decay
No evidence for neutron EDM ! Upper limit set at 5 x 10  -20  e • cm “ The absence of an electric dipole moment in our neu...
<ul><li>EDM violates time-reversal symmetry </li></ul><ul><li>CPT invariance implies EDM violates CP  </li></ul>Time-rever...
 
History of Neutron EDM Measurements  Current neutron EDM upper limit: < 3.0 x 10 -26  e•cm (90% C.L.)   Still no evidence ...
Physics Motivation for New Neutron EDM Measurements <ul><li>CP Violation (in the light-quark baryon sector)  </li></ul><ul...
EDM measurement principle B 0 E <S z > = + h/2 <S z > = - h/2 h  (0) = -2 μ .B h  (  )= 2 (- μ .B + d n .E) h  (  )...
Neutron EDM Experiments <ul><li>Limitations: </li></ul><ul><li>•  Short duration for observing the precession </li></ul><u...
Ultra-Cold Neutrons (UCN) <ul><li>First suggested by Fermi </li></ul><ul><li>Many material provides a  repulsive potential...
Neutron EDM Experiment with Ultra Cold Neutrons   <ul><li>•  Use  199 Hg co-magnetometer to sample the variation of B-fiel...
UCN Production in Superfluid  4 He  Incident cold neutron with momentum of 0.7 A -1  (~10 -3  ev) can excite a phonon in  ...
UCN Production in Superfluid  4 He  Magnetic Trapping of UCN at NIST (Nature 403 (2000) 62) 560 ± 160 UCNs trapped per cyc...
A proposal for a new neutron EDM experiment  Collaborating institutes:   Arizona State, UC Berkeley, Caltech, Duke, Hahn-M...
How to measure the precession of UCN in the superfluid  4 He bottle? <ul><li>Use polarized  3 He to detect the UCN precess...
Neutron EDM Measurement in superfluid  4 He <ul><li>Fill cells with superfluid  4 He containing polarized  3 He   </li></u...
Two oscillatory signals SQUID signal Scintillation signal
Status of SNS neutron EDM <ul><li>Many feasibility studies and measurements have been performed </li></ul><ul><li>Conceptu...
3 He Distributions in Superfluid  4 He Neutron Beam 4 He Target Cell 3 He Preliminary T = 330 mK Dilution Refrigerator at ...
Polarized  3 He Atomic Beam Source 1 K cold head Injection nozzle Polarizer quadrupole Spin flip region Analyzer quadrupol...
Dressed Spin in Neutron EDM <ul><li>Neutrons and  3 He naturally precess at different frequencies (different g factors) </...
Critical dressing of neutrons and  3 He Crossing points equalize neutron and  3 He g factors: 3 He neutron Effective dress...
Los Alamos Polarized  3 He Source 1 K cold head Injection nozzle Polarizer quadrupole Spin flip region Analyzer quadrupole...
Polarized  3 He source at LANL Mapping the dressing field source analyzer RGA Spin-flip coils and dressing coils used insi...
Observation of  3 He dressed-spin effect Esler, Peng, Lamoreaux, et al. Nucl-ex/0703029 (2007)
Polarized  3 He relaxation time measurements H. Gao, R. McKeown, et al, arXiv:Physics/0603176 T 1  > 3000 seconds in 1.9K ...
High voltage tests   Goal is 50 kV/cm 200 liter LHe. Voltage is amplified with a variable capacitor 90 kV/cm is reached fo...
SNS at ORNL First proton beam was delivered in April 2006 1.4 MW Spallation Source (1GeV proton, 1.4mA)
SNS Target Hall p beam FNPB-Fundamental  Neutron Physics Beamline FNPB  construction  underway Cold beam  available  ~2007...
FNPB Beamline Double monochrometer Selects 8.9   neutrons for UCN via LHe
Neutron EDM Detector
nEDM ground “breaking” Feb. 6, 2009 (Shovel ready)
n-EDM Sensitivity vs Time d n < 1x10 -28  e-cm EDM @ SNS 2000 2010
Summary <ul><li>Neutron EDM measurement addresses fundamental questions in physics (CP violation in light-quark baryons). ...
Why do molecules have EDM (without violating parity)? <ul><li>Consider a diatomic polar molecule. The only possible orient...
Neutron EDM in Standard Model  <ul><li>One and two-loop contributions are zero. Three-loop contribution is ~10 -34   e•cm ...
Neutron EDM in Standard Model  <ul><li>Θ  term’s contribution to the neutron EDM :   </li></ul>Θ  term   in the QCD Lagran...
SUSY Prediction of Neutron versus Electron EDM Barbieri et al.
List of Neutron EDM Experiments B = 1mG  => 3 Hz neutron precession freq.   d = 10 -26  e•cm, E = 10 KV/cm  => 10 -7  Hz s...
Kinematics of n -  4 He Scattering  E(Q)   is the phonon dispersion relation   <ul><li>200nev </li></ul><ul><li>(typical w...
UIUC Test Apparatus for Polarized  3 He Relaxation at 600 mK
SQUIDs  M. Espy, A. Matlachov  ~100 cm 2  superconducting pickup coil Flux = 2 x 10 -16  Tm 2  = 0.1   0   Noise = 4 m  ...
Upcoming SlideShare
Loading in …5
×

Search for Neutron Electric Dipole Moment

1,607 views

Published on

The colloquium given by Prof. J.-C. Peng at Purdue U. in Mar. 12, 2009

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Search for Neutron Electric Dipole Moment

  1. 1. Search for Neutron Electric Dipole Moment <ul><li>Physics of neutron EDM </li></ul><ul><li>Proposal for a new neutron EDM experiment at the SNS (Spallation Neutron Source) </li></ul><ul><li>Results of R&D and future prospect </li></ul>Jen-Chieh Peng Purdue University March 12, 2009 University of Illinois at Urbana-Champaign
  2. 2. <ul><li>EDM violates parity </li></ul><ul><li>Dirac’s magnetic monopole can generate EDM </li></ul><ul><li>Neutron scattering sets an upper limit of 3 x 10 -18 cm </li></ul><ul><li>A dedicated experiment for neutron EDM is underway </li></ul>
  3. 3. Neutron Electric Dipole Moment EDM has to be pointing parallel to the spin direction Mirror S + - d S - + d
  4. 5. Observation of parity violation in 60 Co beta-decay
  5. 6. No evidence for neutron EDM ! Upper limit set at 5 x 10 -20 e • cm “ The absence of an electric dipole moment in our neutron experiment and the forced postponement of our 60 Co experiments were the greatest disappointments in my research career. But by then I had realized that research scientists have both good and bad luck and productive scientists do not allow the bad luck to discourage them from further research ” N. Ramsey, 1998
  6. 7. <ul><li>EDM violates time-reversal symmetry </li></ul><ul><li>CPT invariance implies EDM violates CP </li></ul>Time-reversal No new results on neutron EDM measurement between 1957 and 1964 S + - d S - + d
  7. 9. History of Neutron EDM Measurements Current neutron EDM upper limit: < 3.0 x 10 -26 e•cm (90% C.L.) Still no evidence for neutron EDM
  8. 10. Physics Motivation for New Neutron EDM Measurements <ul><li>CP Violation (in the light-quark baryon sector) </li></ul><ul><li>Physics Beyond the Standard Model </li></ul><ul><ul><li>Standard Model predicts d n ~ 10 -31 e•cm </li></ul></ul><ul><ul><li>Super Symmetric Models predict d n ≤ 10 -25 e•cm </li></ul></ul><ul><li>Baryon Asymmetry of universe </li></ul><ul><ul><li>Require CP violation beyond the SM </li></ul></ul>3×10 -26 e•cm 10 -31 e•cm n 1×10 -19 e•cm 10 -35 e•cm μ 2×10 -27 e•cm 10 -38 e•cm e Experiment SM Prediction
  9. 11. EDM measurement principle B 0 E <S z > = + h/2 <S z > = - h/2 h  (0) = -2 μ .B h  (  )= 2 (- μ .B + d n .E) h  (  )= 2(- μ .B - d n .E ) B 0 B 0 E d n defined +ve  ↑↑ -  ↑↓ = Δ  = 4 d n . E / h (slides from Karamath)
  10. 12. Neutron EDM Experiments <ul><li>Limitations: </li></ul><ul><li>• Short duration for observing the precession </li></ul><ul><li>• Systematic error due to motional magnetic field (v x E) </li></ul>Both can be improved by using ultra-cold neutrons Ramsey’s Separated Oscillatory Field Method (d = 10 -26 e•cm, E = 10 KV/cm -> 10 -7 Hz shift )
  11. 13. Ultra-Cold Neutrons (UCN) <ul><li>First suggested by Fermi </li></ul><ul><li>Many material provides a repulsive potential of ~ 100 nev (10 -7 ev) for neutrons </li></ul><ul><li>Ultra-cold neutrons (E < 10 -7 ev, v < 8 m/s) can be stored in bottles (until they decay). </li></ul><ul><li>Gravitational energy is ~ 10 -7 ev per meter (can store UCN in a bottle without a lid) </li></ul><ul><li>UCN can be produced with cold-moderator (tail of the Maxwell distribution) </li></ul>
  12. 14. Neutron EDM Experiment with Ultra Cold Neutrons <ul><li>• Use 199 Hg co-magnetometer to sample the variation of B-field in the UCN storage cell </li></ul><ul><li>• Limited by low UCN density of ~ 5 UCN/cm 3 </li></ul>How can one obtain a higher UCN flux? Measurement at Institute Laue-Langevin
  13. 15. UCN Production in Superfluid 4 He Incident cold neutron with momentum of 0.7 A -1 (~10 -3 ev) can excite a phonon in 4 He and become an UCN (Golub and Pendlebury) neutron Superfluid 4 He UCN phonon (~1 mev)
  14. 16. UCN Production in Superfluid 4 He Magnetic Trapping of UCN at NIST (Nature 403 (2000) 62) 560 ± 160 UCNs trapped per cycle (observed) 480 ± 100 UCNs trapped per cycle (predicted)
  15. 17. A proposal for a new neutron EDM experiment Collaborating institutes: Arizona State, UC Berkeley, Caltech, Duke, Hahn-Meitner, UIUC, Indiana, Kentucky, Leiden, LANL, MIT, NCSU, ORNL, Simon-Fraser, Tennessee, Yale ( Based on the idea originated by R. Golub and S. Lamoreaux in 1994 )
  16. 18. How to measure the precession of UCN in the superfluid 4 He bottle? <ul><li>Use polarized 3 He to detect the UCN precession </li></ul><ul><li>n – 3 He absorption is strongly spin-dependent </li></ul>~ 0 J = 1 ~ 4.8 x 10 6 barns J = 0 σ abs (at v = 5m/sec) Total spin
  17. 19. Neutron EDM Measurement in superfluid 4 He <ul><li>Fill cells with superfluid 4 He containing polarized 3 He </li></ul><ul><li>Produce polarized UCNs with polarized 1mev neutron beam </li></ul><ul><li>Precess UCN and 3 He in a uniform B field (~10mG) and a strong E field (~50KV/cm). ( ν ( 3 He) ~ 33 Hz, ν (n) ~ 30 Hz) </li></ul><ul><li>Detect scintillation light from the reaction n + 3 He  p + t </li></ul>
  18. 20. Two oscillatory signals SQUID signal Scintillation signal
  19. 21. Status of SNS neutron EDM <ul><li>Many feasibility studies and measurements have been performed </li></ul><ul><li>Conceptual Design approved: Feb 2007 </li></ul><ul><li>Construction approval (expected Aug 2009) </li></ul><ul><ul><li>Cost: ~ 18 M$ </li></ul></ul><ul><li>Collaboration prepares to begin construction in FY10 </li></ul>
  20. 22. 3 He Distributions in Superfluid 4 He Neutron Beam 4 He Target Cell 3 He Preliminary T = 330 mK Dilution Refrigerator at LANSCE Flight Path 11a Phys. Rev. Lett. 93, 105302 (2004) Position
  21. 23. Polarized 3 He Atomic Beam Source 1 K cold head Injection nozzle Polarizer quadrupole Spin flip region Analyzer quadrupole 3 He RGA detector Produce polarized 3 He with 99.5% polarization at a flux of 2 ×10 14 /sec and a mean velocity of 100 m/sec
  22. 24. Dressed Spin in Neutron EDM <ul><li>Neutrons and 3 He naturally precess at different frequencies (different g factors) </li></ul><ul><li>Applying a RF field (dressing field), B d Sin(  d t) , perpendicular to the constant B 0 field, the effective g factors of neutrons and 3 He will be modified (dressed spin effect) </li></ul><ul><li>At a critical dressing field, the effective g factors of neutron and 3 He can be made identical! </li></ul>(As an alternative for SQUID magnetometer)
  23. 25. Critical dressing of neutrons and 3 He Crossing points equalize neutron and 3 He g factors: 3 He neutron Effective dressed g factors: Reduce the danger of B 0 instability between measurements 9.72 6.77 3.86 1.19
  24. 26. Los Alamos Polarized 3 He Source 1 K cold head Injection nozzle Polarizer quadrupole Spin flip region Analyzer quadrupole 3 He RGA detector B 1 dressing B 0 static Polarizer Analyzer RGA 36 in 3 He Spin dressing experiment Ramsey coils
  25. 27. Polarized 3 He source at LANL Mapping the dressing field source analyzer RGA Spin-flip coils and dressing coils used inside the solenoid. Cold head Quad separator Solenoid
  26. 28. Observation of 3 He dressed-spin effect Esler, Peng, Lamoreaux, et al. Nucl-ex/0703029 (2007)
  27. 29. Polarized 3 He relaxation time measurements H. Gao, R. McKeown, et al, arXiv:Physics/0603176 T 1 > 3000 seconds in 1.9K superfluid 4 He Acrylic cell coated with dTPB Test has also been done at 600 mK at UIUC
  28. 30. High voltage tests Goal is 50 kV/cm 200 liter LHe. Voltage is amplified with a variable capacitor 90 kV/cm is reached for normal state helium. 30 kV/cm is reached below the λ -point J. Long et al., arXiv:physics/0603231
  29. 31. SNS at ORNL First proton beam was delivered in April 2006 1.4 MW Spallation Source (1GeV proton, 1.4mA)
  30. 32. SNS Target Hall p beam FNPB-Fundamental Neutron Physics Beamline FNPB construction underway Cold beam available ~2007 UCN line via LHe ~2009
  31. 33. FNPB Beamline Double monochrometer Selects 8.9  neutrons for UCN via LHe
  32. 34. Neutron EDM Detector
  33. 35. nEDM ground “breaking” Feb. 6, 2009 (Shovel ready)
  34. 36. n-EDM Sensitivity vs Time d n < 1x10 -28 e-cm EDM @ SNS 2000 2010
  35. 37. Summary <ul><li>Neutron EDM measurement addresses fundamental questions in physics (CP violation in light-quark baryons). </li></ul><ul><li>A new neutron EDM experiment uses UCN production in superfluid helium and polarized 3 He as co-magnetometer and analyser. </li></ul><ul><li>The goal of the proposed measurement is to improve the current neutron EDM sensitivity by two orders of magnitude. </li></ul><ul><li>Many feasibility studies have been carried out. Construction is expected to start in FY2010. </li></ul>
  36. 38. Why do molecules have EDM (without violating parity)? <ul><li>Consider a diatomic polar molecule. The only possible orientation of the EDM is along the molecular axis, but the rotation (spin) is directed perpendicular to the axis. </li></ul><ul><li>For polyatomic molecules (like NH 3 ), the +k and –k (k is the spin projection) are degenerate states with opposite sign of EDM. The superposition of these two states would give zero EDM. </li></ul>
  37. 39. Neutron EDM in Standard Model <ul><li>One and two-loop contributions are zero. Three-loop contribution is ~10 -34 e•cm </li></ul>a) Contributions from single quark’s EDM: 1) Electroweak Process b) Contributions from diquark interactions: ( hep-ph/0008248) d n ~ 10 -32 e•cm
  38. 40. Neutron EDM in Standard Model <ul><li>Θ term’s contribution to the neutron EDM : </li></ul>Θ term in the QCD Lagrangian : 2) Strong Interaction Spontaneously broken Pecci-Quinn symmetry? No evidence of a pseudoscalar axion! d n < 10 -25 e•cm -> | θ | < 3 x 10 -10
  39. 41. SUSY Prediction of Neutron versus Electron EDM Barbieri et al.
  40. 42. List of Neutron EDM Experiments B = 1mG => 3 Hz neutron precession freq. d = 10 -26 e•cm, E = 10 KV/cm => 10 -7 Hz shift in precession freq. 1999 < 6.3 x 10 -26 120-150 0.01 4.5 <6.9 UCN Mag. Res. 1992 < 9.7 x 10 -26 70-100 0.018 12-15 <6.9 UCN Mag. Res. 1990 < 12 x 10 -26 70 0.01 16 <6.9 UCN Mag. Res. 1986 < 2.6 x 10 -25 50-55 0.025 12-15 <6.9 UCN Mag. Res. 1984 < 8 x 10 -25 60-80 0.01 10 <6.9 UCN Mag. Res. 1981 < 6 x 10 -25 5 0.025 20 <6.9 UCN Mag. Res. 1980 < 1.6 x 10 -24 5 0.028 25 <6.9 UCN Mag. Res. 1977 < 3 x 10 -24 0.0125 17 100 154 Beam Mag. Res. 1973 < 1 x 10 -23 0.012 14 120 154 Beam Mag. Res. 1969 < 5 x 10 -23 0.015 17 120 115 Beam Mag. Res. 1969 < 1 x 10 -21 0.0009 1.5 50 2200 Beam Mag. Res. 1968 < 3 x 10 -22 0.00625 9 140 130 Beam Mag. Res. 1967 < 8 x 10 -22 10 -7 -- 10 9 2200 Bragg Reflection 1967 < 7 x 10 -22 0.014 9 140 60 Beam Mag. Res. 1957 < 4x 10 -20 0.00077 150 71.6 2050 Beam Mag. Res. 1950 < 3 x 10 -18 10 -20 -- 10 25 2200 Scattering year EDM (e.cm) Coh. Time (s) B (Gauss) E (kV/cm) <v>(m/cm) Ex. Type
  41. 43. Kinematics of n - 4 He Scattering E(Q) is the phonon dispersion relation <ul><li>200nev </li></ul><ul><li>(typical wall potential) </li></ul>θ is neutron’s scattering angle For 1 mev neutron beam, σ (UCN)/ σ (tot) ~ 10 -3 for 200 nev wall potential Mono-energetic cold neutron beam with Δ K i /K i ~ 2%
  42. 44. UIUC Test Apparatus for Polarized 3 He Relaxation at 600 mK
  43. 45. SQUIDs M. Espy, A. Matlachov ~100 cm 2 superconducting pickup coil Flux = 2 x 10 -16 Tm 2 = 0.1  0 Noise = 4 m  0 /Hz 1/2 at 10  Hz ~ T 1/2 2.5 m  0 /Hz 1/2

×