1. The document proposes a genetic-fuzzy based method for automatic intrusion detection using network datasets. It combines fuzzy set theory with genetic algorithms to extract rules for both discrete and continuous attributes to detect normal and intrusion patterns.
2. The method was tested on KDD99 Cup and DARPA98 network intrusion detection datasets and showed high detection rates with low false alarm rates for both misuse detection and anomaly detection.
3. By extracting many rules to represent normal network behavior patterns, the proposed genetic-fuzzy approach can detect new or unknown intrusions based on anomalies without requiring prior domain expertise on intrusion patterns.