SlideShare a Scribd company logo
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 1
Ch 1 Introduction
Sections:
1. Production Systems
2. Automation in Production Systems
3. Manual Labor in Production Systems
4. Automation Principles and Strategies
5. Organization of the Book
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 2
The Realities of Modern
Manufacturing
 Globalization - Once underdeveloped countries (e.g.,
China, India, Mexico) are becoming major players in
manufacturing
 International outsourcing - Parts and products once made
in the United States by American companies are now
being made offshore (overseas) or near-shore (in Mexico
and Central America)
 Local outsourcing - Use of suppliers within the U.S. to
provide parts and services
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 3
More Realities of Modern
Manufacturing
 Contract manufacturing - Companies that specialize in
manufacturing entire products, not just parts, under
contract to other companies
 Trend toward the service sector in the U.S. economy
 Quality expectations - Customers, both consumer and
corporate, demand products of the highest quality
 Need for operational efficiency - U.S. manufacturers must
be efficient in in their operations to overcome the labor
cost advantage of international competitors
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 4
Modern Manufacturing Approaches
and Technologies
 Automation - automated equipment instead of labor
 Material handling technologies - because
manufacturing usually involves a sequence of activities
 Manufacturing systems - integration and coordination
of multiple automated or manual workstations
 Flexible manufacturing - to compete in the low-
volume/high-mix product categories
 Quality programs - to achieve the high quality expected
by today's customers
 CIM - to integrate design, production, and logistics
 Lean production - more work with fewer resources
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 5
Production System Defined
A collection of people, equipment, and procedures
organized to accomplish the manufacturing
operations of a company
Two categories:
 Facilities – the factory and equipment in the facility
and the way the facility is organized (plant layout)
 Manufacturing support systems – the set of
procedures used by a company to manage
production and to solve technical and logistics
problems in ordering materials, moving work through
the factory, and ensuring that products meet quality
standards
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 6
The Production System
Fig. 1.1
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 7
Production System Facilities
Facilities include the factory, production machines and
tooling, material handling equipment, inspection
equipment, and computer systems that control the
manufacturing operations
 Plant layout – the way the equipment is physically
arranged in the factory
 Manufacturing systems – logical groupings of
equipment and workers in the factory
 Production line
 Stand-alone workstation and worker
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 8
Manufacturing Systems
Three categories in terms of the human participation in
the processes performed by the manufacturing system:
1. Manual work systems - a worker performing one or
more tasks without the aid of powered tools, but
sometimes using hand tools
2. Worker-machine systems - a worker operating
powered equipment
3. Automated systems - a process performed by a
machine without direct participation of a human
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 9
Manual Work System
Fig. 1.2 (a)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 10
Worker-Machine System
Fig. 1.2 (b)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 11
Automated System
Fig. 1.2. (c)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 12
Manufacturing Support Systems
Involves a cycle of information-processing activities that
consists of four functions:
1. Business functions - sales and marketing, order entry,
cost accounting, customer billing
2. Product design - research and development, design
engineering, prototype shop
3. Manufacturing planning - process planning, production
planning, MRP, capacity planning
4. Manufacturing control - shop floor control, inventory
control, quality control
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 13
Information Processing Cycle in
Manufacturing Support Systems
Fig. 1.3
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 14
Automation in Production Systems
Two categories of automation in the production system:
1. Automation of manufacturing systems in the
factory
2. Computerization of the manufacturing support
systems
 The two categories overlap because manufacturing
support systems are connected to the factory
manufacturing systems
 Computer-Integrated Manufacturing (CIM)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 15
Computer Integrated Manufacturing
Fig. 1.4
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 16
Automated Manufacturing Systems
Examples:
 Automated machine tools
 Transfer lines
 Automated assembly systems
 Industrial robots that perform processing or
assembly operations
 Automated material handling and storage systems to
integrate manufacturing operations
 Automatic inspection systems for quality control
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 17
Automated Manufacturing Systems
Three basic types:
1. Fixed automation
2. Programmable automation
3. Flexible automation
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 18
Fixed Automation
A manufacturing system in which the sequence of
processing (or assembly) operations is fixed by the
equipment configuration
Typical features:
 Suited to high production quantities
 High initial investment for custom-engineered equipment
 High production rates
 Relatively inflexible in accommodating product variety
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 19
Programmable Automation
A manufacturing system designed with the capability
to change the sequence of operations to
accommodate different product configurations
Typical features:
 High investment in general purpose equipment
 Lower production rates than fixed automation
 Flexibility to deal with variations and changes in
product configuration
 Most suitable for batch production
 Physical setup and part program must be changed
between jobs (batches)
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 20
Flexible Automation
An extension of programmable automation in which the
system is capable of changing over from one job to the
next with no lost time between jobs
Typical features:
 High investment for custom-engineered system
 Continuous production of variable mixes of products
 Medium production rates
 Flexibility to deal with soft product variety
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 21
Product Variety and Production
Quantity for Three Automation Types
Fig. 1.5
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 22
Computerized Manufacturing Support
Systems
Objectives of automating the manufacturing support
systems:
 To reduce the amount of manual and clerical effort in
product design, manufacturing planning and control, and
the business functions
 Integrates computer-aided design (CAD) and computer-
aided manufacturing (CAM) in CAD/CAM
 CIM includes CAD/CAM and the business functions of
the firm
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 23
Reasons for Automating
1. To increase labor productivity
2. To reduce labor cost
3. To mitigate the effects of labor shortages
4. To reduce or remove routine manual and clerical tasks
5. To improve worker safety
6. To improve product quality
7. To reduce manufacturing lead time
8. To accomplish what cannot be done manually
9. To avoid the high cost of not automating
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 24
Manual Labor in Production Systems
Is there a place for manual labor in the modern
production system?
 Answer: YES
 Two aspects:
1. Manual labor in factory operations
2. Labor in manufacturing support systems
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 25
Manual Labor in Factory Operations
The long term trend is toward greater use of
automated systems to substitute for manual labor
 When is manual labor justified?
 Some countries have very low labor rates and
automation cannot be justified
 Task is too technologically difficult to automate
 Short product life cycle
 Customized product requires human flexibility
 To cope with ups and downs in demand
 To reduce risk of product failure
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 26
Labor in Manufacturing Support
Systems
 Product designers who bring creativity to the design task
 Manufacturing engineers who
 Design the production equipment and tooling
 And plan the production methods and routings
 Equipment maintenance
 Programming and computer operation
 Engineering project work
 Plant management
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 27
Automation Principles and Strategies
1. The USA Principle
2. Ten Strategies for Automation and Process Improvement
3. Automation Migration Strategy
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 28
U.S.A Principle
1. Understand the existing process
 Input/output analysis
 Value chain analysis
 Charting techniques and mathematical modeling
2. Simplify the process
 Reduce unnecessary steps and moves
3. Automate the process
 Ten strategies for automation and production
systems
 Automation migration strategy
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 29
Ten Strategies for Automation and
Process Improvement
1. Specialization of operations
2. Combined operations
3. Simultaneous operations
4. Integration of operations
5. Increased flexibility
6. Improved material handling and storage
7. On-line inspection
8. Process control and optimization
9. Plant operations control
10.Computer-integrated manufacturing
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 30
Automation Migration Strategy
For Introduction of New Products
1. Phase 1 – Manual production
 Single-station manned cells working independently
 Advantages: quick to set up, low-cost tooling
2. Phase 2 – Automated production
 Single-station automated cells operating
independently
 As demand grows and automation can be justified
3. Phase 3 – Automated integrated production
 Multi-station system with serial operations and
automated transfer of work units between stations
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 31
Automation
Migration
Strategy
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 32
Organization of the Book
1. Overview of Manufacturing
2. Automation and Control Technologies
3. Material Handling and Identification Technologies
4. Manufacturing Systems
5. Quality Control in Manufacturing Systems
6. Manufacturing Support Systems
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book
Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 33
Organization of the Book
Fig.1.7

More Related Content

Similar to 67034 ch01

Automated-Assembly-Systems.ppt
Automated-Assembly-Systems.pptAutomated-Assembly-Systems.ppt
Automated-Assembly-Systems.ppt
AbhishekChavan77
 
automation method.ppt
automation method.pptautomation method.ppt
automation method.ppt
AbhijitBhattacherjee4
 
Module 1 Lecture 1 Introduction To Automation In Production Systems.ppt
Module 1 Lecture 1 Introduction To Automation In Production Systems.pptModule 1 Lecture 1 Introduction To Automation In Production Systems.ppt
Module 1 Lecture 1 Introduction To Automation In Production Systems.ppt
Khalil Alhatab
 
overview of mfg
overview of mfgoverview of mfg
overview of mfg
Mahros Darsin
 
Single-Station Manufacturing Cells
Single-Station Manufacturing CellsSingle-Station Manufacturing Cells
Single-Station Manufacturing Cells
VADLAJAGADEESHWARAAC
 
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
RuthviCool1
 
Manufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptxManufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptx
MasAyuHassan1
 
2. automation & control technology
2. automation & control technology2. automation & control technology
2. automation & control technology
Mahros Darsin
 
Manufacturing models and metrics costs
Manufacturing models and metrics costsManufacturing models and metrics costs
Ch 5 Industrial Control Systems.ppt
Ch 5  Industrial Control Systems.pptCh 5  Industrial Control Systems.ppt
Ch 5 Industrial Control Systems.ppt
Khalil Alhatab
 
Manual Assembly Lines1
Manual Assembly Lines1Manual Assembly Lines1
Manual Assembly Lines1
VADLAJAGADEESHWARAAC
 
3. industrial control system
3. industrial control system3. industrial control system
3. industrial control system
Mahros Darsin
 
NC Programming
NC ProgrammingNC Programming
NC Programming
Vishnuvardhan Reddy S
 
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Varun Pratap Singh
 
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdfLecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
kyaswanth3
 
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Varun Pratap Singh
 
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Varun Pratap Singh
 
Management Information System one or two chapter By Amjad Ali Depar MBA Student
Management Information System one or two chapter By Amjad Ali Depar MBA StudentManagement Information System one or two chapter By Amjad Ali Depar MBA Student
Management Information System one or two chapter By Amjad Ali Depar MBA Student
AG RD
 
Automation in Manufacturing (Unit-2) by Varun Pratap Singh
Automation in Manufacturing (Unit-2) by Varun Pratap SinghAutomation in Manufacturing (Unit-2) by Varun Pratap Singh
Automation in Manufacturing (Unit-2) by Varun Pratap Singh
Varun Pratap Singh
 

Similar to 67034 ch01 (20)

Automated-Assembly-Systems.ppt
Automated-Assembly-Systems.pptAutomated-Assembly-Systems.ppt
Automated-Assembly-Systems.ppt
 
automation method.ppt
automation method.pptautomation method.ppt
automation method.ppt
 
Module 1 Lecture 1 Introduction To Automation In Production Systems.ppt
Module 1 Lecture 1 Introduction To Automation In Production Systems.pptModule 1 Lecture 1 Introduction To Automation In Production Systems.ppt
Module 1 Lecture 1 Introduction To Automation In Production Systems.ppt
 
overview of mfg
overview of mfgoverview of mfg
overview of mfg
 
Single-Station Manufacturing Cells
Single-Station Manufacturing CellsSingle-Station Manufacturing Cells
Single-Station Manufacturing Cells
 
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
4-Automated material handling systems , AGV Transfer mechanism , Buffer stora...
 
Manufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptxManufacturing Models and Metrics.pptx
Manufacturing Models and Metrics.pptx
 
2. automation & control technology
2. automation & control technology2. automation & control technology
2. automation & control technology
 
Manufacturing models and metrics costs
Manufacturing models and metrics costsManufacturing models and metrics costs
Manufacturing models and metrics costs
 
Ch 5 Industrial Control Systems.ppt
Ch 5  Industrial Control Systems.pptCh 5  Industrial Control Systems.ppt
Ch 5 Industrial Control Systems.ppt
 
Manual Assembly Lines1
Manual Assembly Lines1Manual Assembly Lines1
Manual Assembly Lines1
 
3. industrial control system
3. industrial control system3. industrial control system
3. industrial control system
 
NC Programming
NC ProgrammingNC Programming
NC Programming
 
67042 ch09
67042 ch0967042 ch09
67042 ch09
 
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-3) by Varun Pratap Singh.pdf
 
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdfLecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
Lecture_14b_-_Industrial_Robotics_-_Ch_8[1].pdf
 
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-4) by Varun Pratap Singh.pdf
 
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdfAutomation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
Automation in Manufacturing (Unit-5) by Varun Pratap Singh.pdf
 
Management Information System one or two chapter By Amjad Ali Depar MBA Student
Management Information System one or two chapter By Amjad Ali Depar MBA StudentManagement Information System one or two chapter By Amjad Ali Depar MBA Student
Management Information System one or two chapter By Amjad Ali Depar MBA Student
 
Automation in Manufacturing (Unit-2) by Varun Pratap Singh
Automation in Manufacturing (Unit-2) by Varun Pratap SinghAutomation in Manufacturing (Unit-2) by Varun Pratap Singh
Automation in Manufacturing (Unit-2) by Varun Pratap Singh
 

Recently uploaded

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 

Recently uploaded (20)

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 

67034 ch01

  • 1. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 1 Ch 1 Introduction Sections: 1. Production Systems 2. Automation in Production Systems 3. Manual Labor in Production Systems 4. Automation Principles and Strategies 5. Organization of the Book
  • 2. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 2 The Realities of Modern Manufacturing  Globalization - Once underdeveloped countries (e.g., China, India, Mexico) are becoming major players in manufacturing  International outsourcing - Parts and products once made in the United States by American companies are now being made offshore (overseas) or near-shore (in Mexico and Central America)  Local outsourcing - Use of suppliers within the U.S. to provide parts and services
  • 3. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 3 More Realities of Modern Manufacturing  Contract manufacturing - Companies that specialize in manufacturing entire products, not just parts, under contract to other companies  Trend toward the service sector in the U.S. economy  Quality expectations - Customers, both consumer and corporate, demand products of the highest quality  Need for operational efficiency - U.S. manufacturers must be efficient in in their operations to overcome the labor cost advantage of international competitors
  • 4. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 4 Modern Manufacturing Approaches and Technologies  Automation - automated equipment instead of labor  Material handling technologies - because manufacturing usually involves a sequence of activities  Manufacturing systems - integration and coordination of multiple automated or manual workstations  Flexible manufacturing - to compete in the low- volume/high-mix product categories  Quality programs - to achieve the high quality expected by today's customers  CIM - to integrate design, production, and logistics  Lean production - more work with fewer resources
  • 5. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 5 Production System Defined A collection of people, equipment, and procedures organized to accomplish the manufacturing operations of a company Two categories:  Facilities – the factory and equipment in the facility and the way the facility is organized (plant layout)  Manufacturing support systems – the set of procedures used by a company to manage production and to solve technical and logistics problems in ordering materials, moving work through the factory, and ensuring that products meet quality standards
  • 6. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 6 The Production System Fig. 1.1
  • 7. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 7 Production System Facilities Facilities include the factory, production machines and tooling, material handling equipment, inspection equipment, and computer systems that control the manufacturing operations  Plant layout – the way the equipment is physically arranged in the factory  Manufacturing systems – logical groupings of equipment and workers in the factory  Production line  Stand-alone workstation and worker
  • 8. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 8 Manufacturing Systems Three categories in terms of the human participation in the processes performed by the manufacturing system: 1. Manual work systems - a worker performing one or more tasks without the aid of powered tools, but sometimes using hand tools 2. Worker-machine systems - a worker operating powered equipment 3. Automated systems - a process performed by a machine without direct participation of a human
  • 9. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 9 Manual Work System Fig. 1.2 (a)
  • 10. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 10 Worker-Machine System Fig. 1.2 (b)
  • 11. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 11 Automated System Fig. 1.2. (c)
  • 12. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 12 Manufacturing Support Systems Involves a cycle of information-processing activities that consists of four functions: 1. Business functions - sales and marketing, order entry, cost accounting, customer billing 2. Product design - research and development, design engineering, prototype shop 3. Manufacturing planning - process planning, production planning, MRP, capacity planning 4. Manufacturing control - shop floor control, inventory control, quality control
  • 13. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 13 Information Processing Cycle in Manufacturing Support Systems Fig. 1.3
  • 14. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 14 Automation in Production Systems Two categories of automation in the production system: 1. Automation of manufacturing systems in the factory 2. Computerization of the manufacturing support systems  The two categories overlap because manufacturing support systems are connected to the factory manufacturing systems  Computer-Integrated Manufacturing (CIM)
  • 15. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 15 Computer Integrated Manufacturing Fig. 1.4
  • 16. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 16 Automated Manufacturing Systems Examples:  Automated machine tools  Transfer lines  Automated assembly systems  Industrial robots that perform processing or assembly operations  Automated material handling and storage systems to integrate manufacturing operations  Automatic inspection systems for quality control
  • 17. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 17 Automated Manufacturing Systems Three basic types: 1. Fixed automation 2. Programmable automation 3. Flexible automation
  • 18. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 18 Fixed Automation A manufacturing system in which the sequence of processing (or assembly) operations is fixed by the equipment configuration Typical features:  Suited to high production quantities  High initial investment for custom-engineered equipment  High production rates  Relatively inflexible in accommodating product variety
  • 19. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 19 Programmable Automation A manufacturing system designed with the capability to change the sequence of operations to accommodate different product configurations Typical features:  High investment in general purpose equipment  Lower production rates than fixed automation  Flexibility to deal with variations and changes in product configuration  Most suitable for batch production  Physical setup and part program must be changed between jobs (batches)
  • 20. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 20 Flexible Automation An extension of programmable automation in which the system is capable of changing over from one job to the next with no lost time between jobs Typical features:  High investment for custom-engineered system  Continuous production of variable mixes of products  Medium production rates  Flexibility to deal with soft product variety
  • 21. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 21 Product Variety and Production Quantity for Three Automation Types Fig. 1.5
  • 22. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 22 Computerized Manufacturing Support Systems Objectives of automating the manufacturing support systems:  To reduce the amount of manual and clerical effort in product design, manufacturing planning and control, and the business functions  Integrates computer-aided design (CAD) and computer- aided manufacturing (CAM) in CAD/CAM  CIM includes CAD/CAM and the business functions of the firm
  • 23. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 23 Reasons for Automating 1. To increase labor productivity 2. To reduce labor cost 3. To mitigate the effects of labor shortages 4. To reduce or remove routine manual and clerical tasks 5. To improve worker safety 6. To improve product quality 7. To reduce manufacturing lead time 8. To accomplish what cannot be done manually 9. To avoid the high cost of not automating
  • 24. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 24 Manual Labor in Production Systems Is there a place for manual labor in the modern production system?  Answer: YES  Two aspects: 1. Manual labor in factory operations 2. Labor in manufacturing support systems
  • 25. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 25 Manual Labor in Factory Operations The long term trend is toward greater use of automated systems to substitute for manual labor  When is manual labor justified?  Some countries have very low labor rates and automation cannot be justified  Task is too technologically difficult to automate  Short product life cycle  Customized product requires human flexibility  To cope with ups and downs in demand  To reduce risk of product failure
  • 26. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 26 Labor in Manufacturing Support Systems  Product designers who bring creativity to the design task  Manufacturing engineers who  Design the production equipment and tooling  And plan the production methods and routings  Equipment maintenance  Programming and computer operation  Engineering project work  Plant management
  • 27. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 27 Automation Principles and Strategies 1. The USA Principle 2. Ten Strategies for Automation and Process Improvement 3. Automation Migration Strategy
  • 28. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 28 U.S.A Principle 1. Understand the existing process  Input/output analysis  Value chain analysis  Charting techniques and mathematical modeling 2. Simplify the process  Reduce unnecessary steps and moves 3. Automate the process  Ten strategies for automation and production systems  Automation migration strategy
  • 29. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 29 Ten Strategies for Automation and Process Improvement 1. Specialization of operations 2. Combined operations 3. Simultaneous operations 4. Integration of operations 5. Increased flexibility 6. Improved material handling and storage 7. On-line inspection 8. Process control and optimization 9. Plant operations control 10.Computer-integrated manufacturing
  • 30. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 30 Automation Migration Strategy For Introduction of New Products 1. Phase 1 – Manual production  Single-station manned cells working independently  Advantages: quick to set up, low-cost tooling 2. Phase 2 – Automated production  Single-station automated cells operating independently  As demand grows and automation can be justified 3. Phase 3 – Automated integrated production  Multi-station system with serial operations and automated transfer of work units between stations
  • 31. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 31 Automation Migration Strategy
  • 32. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 32 Organization of the Book 1. Overview of Manufacturing 2. Automation and Control Technologies 3. Material Handling and Identification Technologies 4. Manufacturing Systems 5. Quality Control in Manufacturing Systems 6. Manufacturing Support Systems
  • 33. ©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover. 33 Organization of the Book Fig.1.7