SlideShare a Scribd company logo
1
Министерство культуры Российской Федерации
ФГБОУ ВПО «Кемеровский государственный университет
культуры и искусств»
Социально-гуманитарный институт
Кафедра экономики социальной сферы
ВЫСШАЯ МАТЕМАТИКА:
Линейная алгебра и аналитическая геометрия
Конспект лекций
по специальности 080507 «Менеджер организации»
Кемерово 2011
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
2
Утвержден на заседании кафедры экономики социальной сферы
30 мая 2011 г., протокол № 11
Рекомендован к изданию УМС СГИ
15 июня 2011 г., протокол № 8
Высшая математика: линейная алгебра и аналитическая геометрия
[Текст]: конспект лекций по специальности 080507 «Менеджмент орга-
низации» / сост.: А. С. Ащеулова, О. С. Карнадуд, А. И. Саблинский. –
Кемерово: КемГУКИ, 2011. – 71 с.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
3
ВВЕДЕНИЕ
Предлагаемое учебное пособие представляет собой базовый кон-
спект лекций по высшей математике для студентов первого курса специ-
альности 080507 «Менеджер организации» очного и заочного отделений.
Из всего курса высшей математики в нем рассматриваются следующие
разделы «Определители», «Матрицы и системы линейных алгебраиче-
ских уравнений», «Векторная алгебра» и «Аналитическая геометрия».
Целью изучения курса математики является:
 Формирование базы, на основе которой строится общеобразовательная
и специальная подготовка специалистов;
 Привитие навыков освоения нового, развитие логического и алгорит-
мического мышления;
 Выработка у студентов умения проведения математического анализа
прикладных задач.
Курс математики относится к циклу общих математических и есте-
ственнонаучных дисциплин. Для его изучения требуются навыки и зна-
ния в рамках программы общеобразовательной школы.
Курс математики является базой для изучения большинства предме-
тов, относящихся к циклу общепрофессиональных дисциплин, таких, как:
 Информатика;
 Экономическая теория;
 Маркетинг;
 Финансы и кредит;
 Статистика;
 Бухгалтерский учет;
 Информационные технологии управления.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
4
ГЛАВА 1. ЛИНЕЙНАЯ АЛГЕБРА
Тема 1. Элементы линейной алгебры
1.1. Матрицы и действия над ними
1.2. Определители
1.3. Обратная матрица
1.4. Ранг матрицы
Матрицы и действия над ними
Определение. Матрицей размера mn называется совокупность
mn элементов, представленная в виде таблицы, состоящей из m строк
и n столбцов, где aij, i=1,2,…, m j=1,2,…,n, m, nN – элемент матрицы А,
стоящий на пересечении i-й строки и j-го столбца.















mnmm
n
n
aaa
aaa
aaa
...
............
...
...
A
21
22221
11211
Определение. Если число строк матрицы равно числу столбцов,
то матрица называется квадратной, а число строк является ее поряд-
ком или размером.
Определение. Элементы квадратной матрицы размера n, стоя-
щие на пересечении строк и столбцов с одинаковыми номерами, то
есть, a11, a22, …, ann, образуют главную диагональ. Соответственно,
элементы a1n, a2n-1, …, an1, лежащие на прямой, соединяющей правый
верхний и левый нижний углы матрицы, образуют побочную диагональ.















nnnn
n
n
aaa
aaa
aaa
...
............
...
...
A
21
22221
11211
Определение. Две матрицы А и В одинакового размера называют
равными, если они совпадают поэлементно. Равенство записывается
как А=В.
главная диагональпобочная диагональ
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
5
Виды матриц
Определение. Матрица, состоящая из одной строки A=(a11, a12,
…, a1n), называется матрицей-строкой или вектором. Матрица, со-
стоящая из одного столбца















1
21
11
...
A
ma
a
a
, называется матрицей-столбцом
или также вектором.
Определение. Матрица, произвольного размера, все элементы
которой равны нулю, называют нулевой и обозначается О.
Определение. Квадратная матрица, у которой на главной диаго-
нали стоят единицы, а остальные элементы равны нулю, называется
единичной и обозначается















1...00
............
0...10
0...01
Е
Определение. Квадратная матрица, у которой все элементы вы-
ше или ниже главной диагонали равны нулю, под главной диагональю
стоят нули, называется треугольной.
Определение. Произвольная матрица вида )( ВАС  , составленная
из двух матриц, разделенных вертикальной чертой, называется расши-
ренной. Например, матрица













100
010
001
674
809
341
С
является расширенной. Она составлена из квадратной матрицы третьего
порядка и единичной матрицы третьего порядка.
Определение. Квадратная матрица А n-го порядка называется
симметричной, если ее элементы подчиняются следующему равенству
aij=aji, где i, j=1,2,..,n.
Например, матрица














643
425
351
D является симметричной.
Определение. Матрица АТ
называется транспонированной к
матрице А, если у нее каждая строка является столбцом матрицы А.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
6
Например,























413
292
061
420
196
321
A T
A
Действия над матрицами
1. Умножение матрицы на число.
Определение. Произведением числа λ на матрицу А называется
матрица В такая, что В=λА. Элементы матрицы В вычисляются по
формуле ija ijb , где i=1,2,..,m j=1,2,..,n.















mnmm
n
n
aaa
aaa
aaa




...
............
...
...
AB
21
22221
11211
.
Пример.
Умножить матрицу













701
3116
532
A на 2.



























1402
6232
1064
272021
2321216
252322
В .
Замечание. Общий множитель всех элементов матрицы можно
выносить за знак матрицы.
2. Сложение (вычитание) матриц.
Пусть матрицы А и В имеют одинаковый размер mn, то есть















mnmm
n
n
aaa
aaa
aaa
...
............
...
...
A
21
22221
11211
,















mnmm
n
n
bbb
bbb
bbb
...
............
...
...
B
21
22221
11211
.
Матрица С размера mn называется суммой (разностью) матриц
А и В, если
,
...
............
...
...
C
2211
23222222121
13112121111


















mnmnmmmm
n
n
bababa
bababa
bababa
,m n N
то есть, чтобы сложить (вычесть) матрицы одинакового размера, необхо-
димо сложить (вычесть) их соответствующие элементы.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
7
3. Умножение матриц.
Определение. Произведением матрицы А размера mn и матрицы
В размера nr называется матрица С размера mr, имеющая следующий
вид:















mrmm
r
r
ccc
ccc
ccc
...
............
...
...
C
21
22221
11211
, где njinjijiij bababac  ...2211 i=1,2, …,m, j=1,2,…, r.
Замечание 1. Отметим, что перемножить матрицы можно только в
том случае, если число элементов в строке первой матрицы равно числу
элементов в столбце второй матрицы.
Замечание 2. Из правила умножения матриц следует, что ABBA  ,
то есть умножение матриц не коммутативно.
При умножении матриц удобно использовать следующую схему:
njinjijiij bababac  ...2211
Пример. Заданы матрицы























502
321
401
021
401
321
BA
Вычислим произведение:
.
243
1609
2547
503)2(41002)2(01201)2()1(1
5430410420012410)1(1
5332410322012312)1(1
502
321
401
021
401
321
B

















































A
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
8
Выполним умножение матриц при помощи, предложенной схемы
Свойства сложения и умножения матриц
1. AА T
)( T
.
2. TT
AА  )( , где α=const.
3. TTT
BABА  )( .
4. TTT
ABBА  )( .
5. A+B=B+A.
6. (A+B)+C=A+(B+C).
7. α(A+B)=αA+αB, где α=const.
8. A(B+C)=AB+AC.
9. (A+B)C=AC+BC.
10. C(AB)=(CA)B.
11. α(AB)=(αA)B=A(αB), где α=const.
Определители
Если матрица квадратная, то ее можно оценить (определить), то
есть поставить в соответствие число.
Определение. Определителем  матрицы А (или detА) называется
многочлен, составленный из элементов этой матрицы. Для матрицы
порядка n определитель записывается в виде
nnnn
n
n
aaa
aaa
aaa
...
............
...
...
detA
21
22221
11211
 .
Если матрица числовая, то значение определителя есть число, ко-
торое находят по известным правилам.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
9
Вычисление определителей
Определитель 2-го порядка равен произведению элементов главной
диагонали минус произведение элементов побочной диагонали, то есть
21122211
2221
1211
detA aaaa
aa
aa
 .
Примеры.
Вычислить определители:
1. 2643241
43
21
 ;
2. 1)cos(sincossincoscossinsin
sincos
cossin 2222


xxxxxxxx
xx
xx
;
Определитель 3-го порядка вычисляется по формуле:
211233322311312213312312213213332211
333231
232221
131211
detA aaaaaaaaaaaaaaaaaa
aaa
aaa
aaa

.
Правило треугольников
Из структуры формулы видно, что каждое слагаемое в правой час-
ти входит по одному элементу из каждой строки и каждого столбца мат-
рицы. Формулу вычисления определителя третьего порядка легко запом-
нить, если воспользоваться правилом треугольников (рис.1.1). Берутся
произведения элементов, соединенных линиями. На рисунке слева ли-
ниями указаны произведения элементов, которые следует взять со зна-
ком «+», справа – со знаком «–».
+ –
Рис. 1.1. Правило треугольников
Правило Саррюса
К определителю приписывают справа два первых столбца и вычис-
ляют сумму произведений элементов, стоящих на главной диагонали, и
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
10
«прямых» параллельных ей и со знаком минус вычисляют сумму произ-
ведений элементов, расположенных на побочной диагонали, и «прямых»,
параллельных ей (рис. 1.2)
Рис. 1.2. Правило Саррюса
Пример.
Вычислить определитель
312
012
101


1. Рассмотрим правило треугольников, сначала выпишем слагаемые со
знаком «+»
слагаемые со знаком «+» слагаемые со знаком «–»
Запишем все вместе
1002203302011)1(1)2()1(12)2(00311
312
012
101



2. Рассмотрим правило Саррюса
1002203
302011)1(1)2()1(12)2(00311


Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
11
Определение. Минором Mij элемента aij, i,j=1,2,…,n называется опре-
делитель порядка n–1, полученный вычеркиванием i-й строки и j-го
столбца из определителя  порядка n.
Определение. Алгебраическим дополнением элемента aij опреде-
лителя  называется число Aij, равное минору Mij со знаком «+», если
сумма i+j четная, и со знаком «», если сумма i+j нечетная, т. е.
ij
ji
ij MA 
 )1( .
Теорема. Определитель квадратной матрицы равен сумме произ-
ведений элементов любой строки или любого столбца на их алгебраиче-
ские дополнения:






n
i
ijij
n
j
ijij
AaA
AaA
1
1
.
Пример.
Вычислить определитель разложением по третьему столбцу.
134)01(30)22()2011(3
0))2(112(
12
01
3)1(
12
01
0)1(
12
12
)1()1(
312
012
101
333231









Свойства определителей
1. Определитель матрицы не изменится, если матрицу транспонировать.
T
det detA A .
2. Определитель матрицы равен нулю, если он содержит строку (стол-
бец), все элементы которой равны нулю.
3. Определитель матрицы равен нулю, если элементы двух строк (столб-
цов) одинаковые.
4. Определитель матрицы равен нулю, если элементы двух строк (столб-
цов) пропорциональны.
5. Определитель матрицы меняет свой знак на противоположный, если
поменять местами две строки (столбца).
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
12
6. Если все элементы некоторой строки (столбца) имеют общим множи-
тель, то он выносится за знак определителя.
7. Если к одной строке (столбцу) определителя прибавить другую строку
(столбец) умноженную на число, то значение определителя не изменится.
8. Определитель треугольной матрицы равен произведению элементов,
стоящих на главной диагонали.
11 12 1
22 2
11 22
0
det ...
0 0
n
n
nn
nn
a a a
a a
A a a a
a
    


   

Способы вычисления определителей
Существует несколько способов вычисления определителя. Выбор
способа диктуется видом и порядком определителя. Удачно выбранный
способ позволяет существенно сократить вычисления. Рассмотрим их на
примере матрицы третьего порядка.
Пример.
Вычислить определитель матрицы третьего порядка.














222
142
122
A
1-й способ: правило треугольников.
128484416
2221)2(2)1()4()2(1)2(2)1()2(22)4(2
222
142
122





A
2-й способ: использование теоремы о разложении определителя по
любой строке или столбцу.
Разложим определитель по второй строке
12084)44()24(4)24(2
22
22
1)1(
22
12
)4()1(
22
12
2)1(
222
142
122
322212













 
A
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
13
Находим определитель
0 0
Матрица вырожденная.
Обратной не существует
Находим миноры. Записываем
обратную матрицу в виде (1.1)
3-й способ: использование свойств определителя для приведение его к
треугольному виду.
)1(
222
142
122 



=
222
260
122



= 121)6(2
100
260
122


первую строку
умножили на
(–1) и прибавили
ко второй
первую строку
прибавили
к третьей
вычислили определитель тре-
угольной матрицы, он по свойству
равен произведению элементов
стоящих на главной диагонали
4-й способ: использование метода Саррюса сделайте самостоятельно.
Обратная матрица
Определение. Если определитель матрицы равен нулю, то мат-
рица называется вырожденной. В противном случае, матрица называ-
ется невырожденной.
Определение. Матрица А–1
называется обратной к матрице
А размера n, если она удовлетворяет следующему равенству:
ЕАААА   11
.
Теорема. Для существования обратной матрицы А–1
необходимо и
достаточно, чтобы матрица А была невырожденной.
Если обратная матрица существует, то она находится по фор-
муле:
















nnnn
n
AAA
AAA
ААА
А
...
............
...
...
1
21
22212
n12111
1
(1.1)
Алгоритм нахождения обратной матрицы
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
14
Пример.
Найти матрицу обратную к матрице











123
122
311
А .
Решение. Вычислим определитель матрицы А
0522181232
123
122
311

Так как 0, матрица А является невырожденной, и для нее суще-
ствует обратная, найдем ее. Для этого вычислим алгебраические допол-
нения для каждого элемента матрицы А:
264
23
22
)1(
1)32(
13
12
)1(
0
12
12
)1(
31
13
21
12
11
11






А
А
А
1)32(
23
11
)1(
891
13
31
)1(
5)61(
12
31
)1(
32
23
22
22
12
21






А
А
А
0
22
11
)1(
5)61(
12
31
)1(
561
12
31
)1(
33
33
23
32
13
31






А
А
А
найденные значения в формулу (1.1):















012
581
550
5
11
А .
Ранг матрицы
Определение. Рангом матрицы А называется наивысший порядок
ее миноров, отличных от нуля, который обозначается rang(A)=r(A)≥0.
Элементарные преобразования матрицы
1. Перестановка двух строк.
2. Умножение любой строки на ненулевое число.
3. Добавление к одной строке другой, умноженной на любое число.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 1. Элементы линейной алгебры
15
Теорема. Ранг матрицы не изменится, если к ней применить эле-
ментарные преобразования.
Замечание. При определении ранга матрицы целесообразно при
помощи элементарных преобразований привести ее к треугольному виду.
Используя свойство 8 определителей, легко найти наибольший порядок
отличных от нуля миноров.
Свойства ранга:
1. Ранг нулевой матрицы считается равным нулю
2. R(A)≤min(m, n)
3. r(A)=n у матрицы n-го порядка тогда и только тогда, когда 0А
Пример.
Вычислить ранг матрицы











0010
0101
0101
А .
Решение.
Приведем матрицу А к треугольному виду.






















0010
0000
0101)1(
0010
0101
0101











0000
0010
0101







010
101
первую строку умно-
жили на (–1) и приба-
вили ко второй
переставили мес-
тами 1-ую и 3-ю
строки
т. к. третья строка и третий
столбец нулевые, то их
убрали
Так как получившаяся матрица имеет размер 32 , следовательно необ-
ходимо найти минор второго порядка отличный от нуля.
1
10
01
M  , тогда r(A)=2.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
16
Тема 2. Системы линейных алгебраических уравнений
2.1. Основные понятия
2.2. Метод Крамера
2.3. Матричный метод
2.4. Метод Гаусса
2.5. Однородные системы линейных уравнений
2.6. Решение неоднородной системы линейных уравнений
Основные понятия
Пусть задана система m линейных алгебраических уравнений с n
неизвестными (СЛАУ):










,...
..............................................
,...
,...
2211
22222121
11212111
mnmnmm
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa
где xj – неизвестные, aij – коэффициенты при неизвестных, bi – свобод-
ные члены, i=1,2,…m, j=1,2,…n.
Обозначим через А матрицу, составленную из коэффициентов при
неизвестных jx , а через А матрицу, полученную из А присоединением к
ней столбца свободных членов:















mnmm
n
n
aaa
aaa
aaa
...
............
...
...
A
21
22221
11211
,















mmnmm
n
n
b
b
b
aaa
aaa
aaa
...
...
............
...
...
A 2
1
21
22221
11211
.
Матрица А называется матрицей коэффициентов системы уравне-
ний, а матрица А – расширенной матрицей коэффициентов системы
уравнений.
Определение. Решением системы уравнений называется совокуп-
ность таких значений неизвестных: x1=α1, x2=α2, …, xn=αn, которые
удовлетворяют всем уравнениям системы. Решить систему уравнений
значит указать все его решения или показать, что их нет.
Определение. Система уравнений называется совместной, если
она имеет хотя бы одно решение. Если система не имеет решения, то
она называется несовместной. Совместная система уравнений называ-
ется определенной, если она имеет единственное решение, и неопреде-
ленной, если она имеет более одного решения.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
17
Методы решения СЛАУ
Рассмотрим систему из трех линейных алгебраических уравнений
и трех неизвестных








,
,
,
3333232131
2323222121
1313212111
bxaxaxa
bxaxaxa
bxaxaxa
(2.1)
тогда матрица коэффициентов при неизвестных и расширенная матрица
коэффициентов имеют вид:











333231
232221
131211
A
aaa
aaa
aaa
,











3
2
1
333231
232221
131211
b
b
b
aaa
aaa
aaa
A .
Метод Крамера
Для системы (2.1) введем следующие обозначения:
333231
232221
131211
aaa
aaa
aaa

33323
23222
13121
1
aab
aab
aab
 ,
33331
23221
13111
2
aba
aba
aba
 ,
33231
22221
11211
3
baa
baa
baa
 ,
где Δi, i=1,2,3 – определители, полученные из исходного определителя
заменой i-го столбца столбцом свободных членов.
Тогда при решении системы методом Крамера возможны следую-
щие случаи:
1) если 0, то система (2.1) совместна и имеет единственное решение,
которое находится по формулам:


 1
1x ,


 2
2x ,


 3
3x ;
2) если =0, 1=2=3=0, то система (2.1) либо имеет множество реше-
ний, либо несовместна;
3) если =0 и хотя бы один из 1, 2, 3 не равен нулю, то система несо-
вместна и решения не имеет.
Алгоритм решения СЛАУ методом Крамера
Находим определитель системы 
0 0
1=2=3=0
множество решений
хотя бы один из
определителей 1, 2, 3
не равен 0. Система не
имеет решений
Система имеет единственное
решение


 1
1x
,


 2
2x ,


 3
3x .
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
18
Находим обратную
Обратная
матрица
существует
Обратной
матрицы не
существует
Решение ищем в
виде BA  1
X
Данный метод
нельзя применять
Матричный метод
Пусть для системы (2.1) определитель 0. Запишем ее в матрич-
ной форме. Имеем: А – матрица коэффициентов при неизвестных, Х –
столбец неизвестных, В – столбец свободных членов системы:











333231
232221
131211
A
aaa
aaa
aaa
,











3
2
1
b
b
b
B











3
2
1
x
x
x
X ,
тогда BXA  .
выразим Х BA  1
X . (2.2)
Алгоритм решения матричным методом
Метод Гаусса
Метод Гаусса основан на алгоритме последовательного исключе-
ния неизвестных.
Задача состоит в том, чтобы привести ее к «треугольному» виду
при помощи эквивалентных преобразований.
Выпишем расширенную матрицу коэффициентов системы (2.1):











3
2
1
333231
232221
131211
b
b
b
aaa
aaa
aaa
A .
При решении системы уравнений (2.1) методом Гаусса возможны
следующие случаи:
1. Если матрица A приведена к треугольному виду, то система (2.1) со-
вместна и имеет единственное решение.
2. Если матрица A содержит хотя бы одну строку, все элементы которой
равны нулю, то система (2.1) совместна и имеет множество решений.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
19
3. Если матрица A содержит строку, все элементы которой, кроме сво-
бодного члена, равны нулю, то система (2.1) несовместна, то есть ре-
шения не имеет.
Пример.
Решить системы линейных алгебраических уравнений
а)








.1
,22
,12
321
321
321
xxx
xxx
xxx
б)








.31152
,2453
,532
321
321
321
xxx
xxx
xxx
Решение.
а)
1. Решим систему методом Крамера.
1
111
112
211




 3
111
112
211
1 


 6
111
122
211
2 

 2
111
212
111
3 




Так как 0, то система совместна и имеет единственное решение:
3
1
31
1 


x , 6
1
62
2 


x , 2
1
23
3 


x .
2. Решим систему матричным методом.
Так как 0, то обратная матрица к матрице А существует. Вычис-
лим алгебраические дополнения, имеем:
1
11
12
3
11
12
2
11
11
A
13
12
11










A
A
0
11
11
1
11
21
1
11
21
23
22
21









A
A
A
1
12
11
5
12
21
3
11
21
33
32
31










A
A
A
тогда обратная матрица 1
A
имеет следующий вид:














101
513
312
1
A .
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
20
Найдем решение системы. Для этого запишем уравнение в коор-
динатной форме (2.2):
















































2
6
3
1
2
1
101
513
312
1
3
2
1
BA
x
x
x
.
3. Решим систему методом Гаусса. Приведем расширенную матрицу ко-
эффициентов A к «треугольному виду».
)1()2(
1
2
1
111
112
211 


























2
4
1
100
510
211
Матрица приведена к треугольному виду, следовательно, система
совместна и имеет единственное решение. Найдем его, выписав систему
уравнений, соответствующую последней матрице.








.2
,45
,12
3
32
321
x
xx
xxx









.2
,6425
,32261
3
2
1
x
x
x
Ответ: х1=3, х2=6, х3=2.
б)








.31152
,2453
,532
321
321
321
xxx
xxx
xxx
1. Решим систему методом Крамера, имеем:
,0
1152
453
321




 ,0140
1153
452
325
1 




Так как =0, 10, то система несовместна, решения не имеет.
2. Решим систему матричным методом. Так как =0, то обратная матри-
ца к матрице А не существует, матричный метод не применим.
3. Решим систему методом Гаусса. Приведем расширенную матрицу ко-
эффициентов A к треугольному виду.
)2()3(
3
2
5
1152
453
321 













→















7
13
5
510
510
321
→













20
13
5
000
510
321
Так как у полученной матрицы в последней строке коэффициенты
при неизвестных равны нулю, а свободный член не равен нулю, то реше-
ния нет, то есть система несовместна.
Ответ: система несовместна.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
21
Пример. Решить систему линейных уравнений








.42369
,33446
,24523
4321
4321
4321
xxxx
xxxx
xxxx
Решение: составим расширенную матрицу системы
)3()2(
4
3
2
2369
3446
4523 













→ )2(
2
1
2
101200
5600
4523




























0
1
2
0000
5600
4523
или 









1
2
5600
4523
Исходная система эквивалентна следующей системе уравнений:





.156
,24523
43
4321
xx
xxxx
Возьмем x2 и х4 свободными, а х1 и х3 – базисными. Тогда
 
 .712
18
1
,15
6
1
421
43


xxx
xx
Придавая произвольные значения неизвестным х3 и х2, получим
различные решения системы линейных уравнений.
Однородные системы линейных уравнений
Определение. Система линейных алгебраических уравнений назы-
вается однородной, если все свободные члены системы равны нулю:










,0...
..............................................
,0...
,0...
2211
2222121
1212111
nmnmm
nn
nn
xaxaxa
xaxaxa
xaxaxa
(2.3)
Свойства однородной системы линейных уравнений
1. Однородная система линейных уравнений всегда совместна, так как
всегда имеет, по крайней мере, нулевое решение.
2. Для существования ненулевых решений ранг матрицы коэффициентов
должен быть меньше числа переменных r<n.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
22
Пример.
Решить однородную систему уравнений








.023
,0322
,02
4321
4321
4321
xxxx
xxxx
xxxx
Решение. Запишем матрицы коэффициентов и, совершив элементарные
преобразования со строками, приведем ее к ступенчатому виду.













2113
3221
1112
Поменяем первую и вторую строку местами
)3()2(
2113
1112
3221 













→













7550
7550
3221
→ 







7550
3221
Вернемся от матрицы к системе линейных уравнений.





.0755
,02
432
4321
xxx
xxxx
х1 и х2 – базисные переменные;
х3 и х4 – свободные переменные.
 
.
5
1
,75
5
1
41
432
xx
xxx


Решение неоднородной системы линейных уравнений
Пусть дана произвольная система m линейных уравнений с n неиз-
вестными










,...
..............................................
,...
,...
2211
22222121
11212111
mnmnmm
nn
nn
bxaxaxa
bxaxaxa
bxaxaxa
Теорема (Кронекера-Капелли). Система линейных алгебраиче-
ских уравнений совместна тогда и только тогда, когда ранг расширен-
ной матрицы системы равен рангу основной матрицы.
Теорема. Если ранг совместной системы равен числу неизвест-
ных, то система имеет единственное решение.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
23
Теорема. Если ранг совместной системы меньше числа неизвест-
ных, то система имеет бесчисленное множество решений.
Правило решения неоднородной системы линейных уравнений
1. Найти ранги основной и расширенной матриц системы. Если )()( ArAr  ,
то система несовместна.
2. Если rArAr  )()( , система совместна. Найти какой-либо базисный
минор порядка r. Взять r уравнений, из коэффициентов которых состав-
лен базисный минор (остальные уравнения отбросить). Неизвестные, ко-
эффициенты которые входят в базисный минор, называют базисными и
оставляют слева, а остальные n–r неизвестных называют свободными и
переносят в правые части уравнений.
3. Найти выражения базисных неизвестных через свободные. Получим
общее решение системы.
4. Придавая свободным неизвестным произвольные значения, получим
соответствующие значения базисных неизвестных. Таким образом, мож-
но найти частные решения исходной системы уравнений.
Схема исследования системы уравнений
Пример.








44352
5432
132
5431
5321
432
xxxx
xxxx
xxx
1. Записываем расширенную матрицу системы и с помощью элементар-
ных преобразований приведем матрицу к ступенчатому виду.
Находим ранг матрицы и расширенной матрицы
)()( ArAr 
система несовместна
)()( ArAr 
система совместна
m<n m>nm=n
r=mr<m r<m r=m r=nr<n
Находим базисные и свободные переменные.
Выражаем базисные переменные через свободные Единственное решение
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 2. Системы линейных алгебраических уравнений
24






































 



0
1
5
00000
03210
04312
)1(
1
1
5
03210
03210
04312
)1(
4
5
1
43502
04312
03210
2. 2)()(  ArAr следовательно, система совместна. Выберем за базисные
переменные x1 и x2, а свободными соответственно будут x3, x4 и x5.
3. Перейдем от матрицы к системе





132
5432
432
5321
xxx
xxxx
4. Выразим базисные переменные через свободные.





432
5321
321
4352
xxx
xxxx







432
532
1
321
2
435
xxx
xxx
x





432
5431
321
25,15,22
xxx
xxxx
Общее решение системы имеет вид
 54343543 ;;;321;25,15,22 xxxxxxxx 
Частное решение  0;0;0;1;2 
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
25
ГЛАВА 2. ВЕКТОРНАЯ АЛГЕБРА
Тема 3. Векторная алгебра
3.1. Основные определения
3.2. Линейные операции над векторами
3.3. Проекция вектора на ось
3.4. Разложение вектора по ортам координатных осей
3.5. Действия над векторами, заданными проекциями
3.6. Координаты вектора
3.7. Базис системы векторов
3.8. Скалярное произведение векторов и его свойства
3.9. Векторное произведение векторов и его свойства
3.10. Смешанное произведение векторов
Основные определения
Величины, которые полностью определяются своим численным
значением, называются скалярными. Примерами скалярных величин яв-
ляются длина, площадь, объем, масса, температура и другие. Помимо
скалярных величин в различных задачах встречаются величины, для оп-
ределения которых кроме числового значения необходимо знать также
их направление. Такие величины называются векторными. Примерами
векторных величин могут служить сила, скорость и другие.
Определение. Вектором называется направленный отрезок,
имеющий определенную длину, у которого одна из ограничивающих его
точек принимается за начало, а вторая за конец. Если А – начало векто-
ра и В – его конец, то вектор обозначается символом AB

. Вектор можно
обозначить и одной малой латинской буквой с черточкой над ней a

.
Определение. Длиной (модулем) вектора называется расстояние
между началом и концом вектора.
AB a
 
Определение. Вектор, длина которого равна 0, то есть начало и
конец его совпадают, называется нулевым вектором и обозначается 0.
Нулевой вектор направления не имеет.
Определение. Вектор, длина которого равна 1, называется еди-
ничным вектором и обозначается через е. Единичный вектор, направле-
ние которого совпадает с направлением вектора a

, называется ортом
вектора a

.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
26
Определение. Вектора называются коллинеарными, если они рас-
положены на одной или параллельных прямых. Нулевой вектор коллинеа-
рен любому вектору.
Определение. Вектора называются равными, если они коллинеар-
ны, одинаково направлены и имеют одинаковые модули.
Из определения равенства векторов следует, что вектор можно пере-
носить параллельно самому себе, помещая его начало в любую точку про-
странства, в частности, плоскости. Такой вектор называется свободным.
Определение. Три вектора в пространстве называют компланар-
ными, если они лежат в одной плоскости или в параллельных плоско-
стях. Если среди трех векторов хотя бы один нулевой или два любых
коллинеарны, то такие вектора компланарны.
Рис. 3.1. Компланарные вектора
Линейные операции над векторами
Под линейными операциями над векторами понимают операции
сложения, вычитания векторов, а так же умножение вектора на число.
Пусть a

и b

произвольные вектора. Необходимо найти a

+b

.
Правило параллелограмма
Возьмем произвольную точку О и построим вектор aOA

 и
bOB

 . Достроим до параллелограмма. Суммой векторов будет являться
направленная диагональ полученного параллелограмма.
Правило треугольника
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
27
Конец вектора a

соединяем с началом вектора b

. Суммой этих
векторов будет вектор с началом в точке О и концом в точке В.
Под разностью векторов a

и b

понимается вектор c

такой, что b+c=a.
Отметим, что в параллелограмме, построенном на векторах a

и b

,
одна направленная диагональ является суммой векторов a

и b

, а другая
разностью векторов.
Произведение вектора на скаляр
Произведением вектора a

на скаляр называется вектор λa

, кото-
рый имеет длину a

 , коллинеарен вектору a

, имеет направление векто-
ру a

, если λ>0 и противоположен по направлению, если λ<0.
Свойства линейных операций над векторами
1. a

+ b

= b

+ a

– коммутативность.
2. a

+ (b

+ с

) = (a

+ b

)+ с

3. a

+ 0

= a

4. a

+(–1)a

= 0

5. ()a

= (a

) – ассоциативность
6. (+)a

= a

+ a

– дистрибутивность
7. (a

+ b

) = a

+ b

8. 1a

= a

Эти свойства позволяют проводить преобразования в линейных
операциях с вектором, как это делается в обычной алгебре: слагаемые
меняют местами, вводят скобки, группируют, выносят за скобки, как
скалярные, так и векторные общие множители.
Проекция вектора на ось
Пусть AB – произвольный вектор 0AB . Обозначим через А1 и В1
проекции на ось l соответственно начало А и конец В вектора AB и рас-
смотрим вектор 11BA .
Проекцией вектора AB на ось l называется положительное число
11BA , если вектор 1 1
A B

и ось l одинаковы направлены, и отрицательное
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
28
число – 11BA , если вектор 11BA и ось l противоположно направлены.
Проекция вектора AB на ось l обозначается: ABпрl .
Если точки А1 и В1 совпадают ( 011 BA ), то проекцией вектора AB
равна 0.
Угол φ между вектором AB и осью l изображен на рисунке 3.2:
Рис. 3.2. Угол между вектором и осью
Основные свойства проекции
1. Проекция вектора a

на ось l равна произведению модуля вектора a

на
cosα
cosl  aaпр

Следствие 1. Проекция вектора на ось положительна (отрица-
тельна), если вектор образует острый (тупой) угол и равна 0, если
этот угол прямой.
Следствие 2. Проекции равных векторов на одну и туже ось рав-
ны между собой.
2. Проекция суммы нескольких векторов на одну и туже ось равна сумме
их проекций на эту ось.
3. При умножении вектора a

на число λ его проекция на ось также ум-
ножается на это число.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
29
Разложение вектора по ортам координатных осей
Рассмотрим в пространстве прямоугольную систему координат
Oxyz. Выделим на координатных осях Ox, Oy и Oz единичный вектор
(орт) и обозначим их i, j, k. Выберем произвольный вектор a

и совмес-
тим его начало с начало координат OMa 

. Найдем проекции вектора a

на координатные оси. Проведем через конец вектора a

плоскости парал-
лельно координатным плоскостям. Точки пересечения этих плоскостей с
осями координат обозначим, соответственно, М1, М2, М3, получим пря-
моугольный параллелепипед (рис. 3.3), одной из диагоналей которого
является вектор OM . Тогда: xaOMOMпр

 1x , yaOMOMпр

 2y ,
zaOMOMпр

 3z .
Тогда
kajaiaa zyx

 , (3.1)
эта формула является основной в векторном исчислении и называется
разложением вектора по ортам координатных осей. Числа ах, аy и аz на-
зываются координатами вектора a

, то есть координаты вектора есть его
проекции на соответствующие координатные оси.
Векторное равенство часто записывают в символическом виде: a

(ах; аy; аz). Равенство b

(bх; by; bz) означает, что x y zb b i b j b k  
  
. Зная
проекции вектора a

, можно легко найти выражение для модуля вектора.
На основании о длине диагонали прямоугольного параллелепипеда:
2
3
2
2
2
1
2
OMOMOMOM  .
Отсюда имеем:
222
zyx aaaa 

(3.2)
Пусть углы вектора a

с осями Ox, Oy и Oz ,соответственно, равны
α, β и γ. По свойству проекций вектора на ось имеем:



cos
cos
cos



aa
aa
aa
z
y
x
(3.3)
Следовательно:
a
a
a
a
a
a zyx
  cos;cos;cos (3.4)
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
30
Рис. 3.3. Разложение вектора
Числа cosα, cosβ и cosγ называются направляющими косинусами
вектора a

. Подставим выражение (3.4) в равенство (3.2):
сos2
α + cos2
β + cos2
γ = 1
То есть сумма квадратов направляющих косинусов нулевого вектора
равна 1. Легко заметить, что единичного вектора будет иметь координа-
ты e

(cosα; cosβ; cosγ)
Итак, задав координаты вектора, всегда можно определить его мо-
дуль и направление (то есть сам вектор).
Действия над векторами, заданными проекциями
Пусть векторы a

=(ах; аy; аz) и b

=(bх; by; bz) заданы своими проек-
циями на оси координат Оx, Оy и Оz или, что тоже самое:
kajaiaa zyx


kbjbibb zyx


Линейные операции над векторами
Так как операции над векторами сводятся к соответствующим ли-
нейным операциям над проекциями этих векторов, то можно записать:
1. kbajbaibaba zzyyxx

)()()( 
 )();();( zzyyxx babababa 

.
2. kajaiaa zyx

 
);;( zyx aaaa  

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
31
Равенство векторов
Два вектора a

и b

равны тогда и только тогда, когда
x x
y y
z z
a b
а b a b
a b
 

  



Коллинеарность векторов
Выясним коллинеарность векторов a

и b

, заданными своими ко-
ординатами. Так как a

параллелен b

, то можно записать a b

, где
λ=const, то есть:
( )x y z x y z x y za i a j a k b i b j b k b i b j b k          
       
,
отсюда: ах=λbх; аy =λby; аz= λbz, то есть:
; ;y yx xz z
x y z x y z
a aa aa a
b b b b b b
       
Таким образом, проекции коллинеарных векторов пропорциональ-
ны. Верно и обратное утверждение: вектора, имеющие пропорциональ-
ные координаты, коллинеарны.
Координаты вектора
Найдем координаты вектора aAB

 , если известны координаты то-
чек А(x1, y1, z1) и В(x2, y2, z2).
Из рисунка 3.2 видно, что
kzzjyyixxkzjyixkzjyixOAOBAB

)()()()()( 121212111222  .
Рис. 3.2
Следовательно, координаты вектора равны разности соответст-
вующих координат конца и начала вектора.
);;( 121212 zzyyxxAB 
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
32
Базис системы векторов
Определение. Система векторов 1a

, 2a

, 3a

называется линейно
зависимой, если существуют такие константы 1 , 2 , 3 , не все равные
нулю и имеет место равенство
0332211

 aaa  .
Если из этого равенства с необходимостью следует, что
1 = 2 = 3 =0, то система называется линейно независимой.
Определение. Базисом в 3-мерной системе координат называется
любая упорядоченная система из трех линейно независимых векторов
пространства.
Теорема. Векторы );( 1111 zyxa 

, );( 2222 zyxa 

, );( 3333 zyxa 

обра-
зуют базис, если 0, где
333
222
111
zyx
zyx
zyx
 .
Теорема. Координаты вектора относительно некоторого базиса
определяются единственным образом.
Пример.
Даны три вектора (3,2,4)p  , (4,3,5)q  , (7,5, 2)r   . Показать,
что они образуют базис и найти разложение вектора (4,3,2)a  в этом
базисе.
Решение.
Покажем, что вектора p , q , r образуют базис. Вычислим опреде-
литель, составленный из координат этих векторов:
3 2 4
4 3 5 18 70 80 84 75 16 11 0
7 5 2
           

.
Так как 0, то векторы p , q , r образуют базис. По теореме, по-
лучаем разложение вектора a по базисным векторам p , q , r :
1 2 3
a p q r      1 2 3
4 3 4 7
3 2 3 5
2 4 5 2
  
       
                
              
.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
33
Чтобы найти координаты 1
 , 2
 , 3
 вектора a в новом базисе, не-
обходимо найти решение следующей системы уравнений:
1 2 3
1 2 3
1 2 3
3 4 7 4,
2 3 5 3,
4 5 2 2.
  
  
  
  

  
   
Решим эту систему методом Крамера, имеем:
3 4 7 3 2 4
2 3 5 4 3 5 11
4 5 2 7 5 2
    
 
,
1
4 4 7
3 3 5 3
2 5 2
  

, 2
3 4 7
2 3 5 8
4 2 2
   

, 3
3 4 4
2 3 3 3
4 5 2
    .
Так как 0, то система совместна и имеет единственное решение:
1
3
11
   , 2
8
11
  , 3
3
11
  . То есть,
3 8 3
+
11 11 11
a p q r   .
Определение. Совокупность всех 3-мерных векторов с действи-
тельными координатами, рассматриваемая с определенными в ней опе-
рациями сложения векторов и умножения вектора на число, образует
3-мерное векторное пространство.
Скалярное произведение векторов и его свойства
Определение. Скалярным произведением (обозначается bа

 или
);( bа

) двух ненулевых векторов а

и b

называется число, равное произве-
дению длин этих векторов на косинус угла между ними.
cos);( babаbа

 ,
где φ – угол между векторами а и b
То есть скалярное произведение двух векторов равно модулю од-
ного из них, умноженного на проекцию другого на ось.
Свойства скалярного произведения
1. baab


2. )()( abab

 
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
34
3. aсbсabс

 )(
4.
22
0cos aaaa


5. Если вектора а

и b

ненулевые, взаимно перпендикулярны, то их ска-
лярное произведение равно 0.
Следствие. Если произведение векторов а

и b

равно 0, значит век-
тора взаимно перпендикулярны.
6. Пусть заданы два вектора a

(ах; аy; аz) и b

(bх; by; bz), то скалярное
произведение можно найти следующим образом zzyyxx babababa 

Применение скалярного произведения
Угол между векторами
Определение угла φ между векторами a

(ах; аy; аz) и b

(bх; by; bz).
222222
cos
zyxzyx
zzyyxx
bbbaaa
bababa
ba
ba





Отсюда следует условие перпендикулярности ненулевых векторовa

и b

.
ахbх +аyby +аzbz =0.
Проекции вектора
Нахождение проекции a

на направление, заданное вектором b

,
может осуществляться по формуле:
b
ab
aпрb  или
a
ab
bпрa  , то есть 222
zyx
zzyyxx
b
bbb
bababa
aпр


 .
Векторное произведение векторов и его свойства
Определение. Три некомпланарные вектора a

, b

, c

, взятые в ука-
занном порядке, образуют правую тройку, если с конца третьего векто-
ра c

кратчайший поворот от первого вектора a

ко второму вектору b

виден совершающимся против часовой стрелки, и левую, если по часовой.
правая тройка левая тройка
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
35
Определение. Векторным произведением(обозначается bа

 или
 bа

; ) вектора a

на b

называется вектор c

, который
1. перпендикулярен векторам a

и b

2. имеет длину численно равную площади параллелограмма, построенно-
го на векторах a

и b

, sin bac

3. вектора a

, b

, c

образуют правую тройку
Свойства векторного произведения
1. abba


2. )()()( bababa

 
3. Два ненулевых вектора a

и b

коллинеарны тогда и только тогда, когда
их векторное произведение равно нулевому вектору.
4. cbcacba

 )(
5. координаты векторного произведения векторов a

(ах; аy; аz) и b

(bх; by; bz) можно найти через определители следующим образом:
yx
x
zx
x
zy
y
zyx
yx
bb
aa
k
bb
aa
j
bb
aa
i
bbb
aaa
kji
ba
yzz
z




Некоторые приложения векторного произведения
1. Установление коллинеарности векторов.
0
zyx
zyx
bbb
aaa
kji
ba
2. Нахождение площади параллелограмма и треугольника.
sin baSпарал

sin
2
1
 baSтреуг

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
36
Смешанное произведение векторов
Определение. Смешанным произведением трех векторов a

, b

, c

называется скалярное произведение векторного произведения первых
двух векторов на третий. Обозначается смешанное произведение
   );;(; cbacba

 или просто cba

 .
Смешанное произведение cba

 по модулю равно объему паралле-
лепипеда, построенного на векторах a

, b

и c

.
Свойства смешанного произведения
1. Смешанное произведение равно нулю, если:
а) хоть один из векторов равен нулю;
б) два из векторов коллинеарны;
в) векторы компланарны.
2. )()( cbacba


3. ),,(),,(),,(),,(),,(),,( bcaabccabbacacbcba


4. ),,(),,(),,( 2121 cbacbacbaa

 
5. Объем треугольной пирамиды, образованной векторами a

, b

и c

, равен
 cbaVпир

,,
6
1

6. Если ),,( zyx aaaa 

, ),,(),,,( ztxzyx ccccbbbb 

, то
zyx
zyx
zyx
ccc
bbb
aaa
cba ),,(

Некоторые приложения смешанного произведения
1. Определение взаимной ориентации векторов в пространстве.
Если ),,( cba

>0 , то cba

,, – правая тройка
Если ),,( cba

<0, то cba

,, – левая тройка
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 3. Векторная алгебра
37
2. Установление компланарности векторов.
Три вектора компланарны, когда их смешанное произведение равно 0.
3. Определение объема параллелепипеда и треугольной пирамиды.
),,( cbaVпар

 ; ),,(
6
1
cbaVпир


Пример.
Вершинами пирамиды служат точки: А(1;2;3) B(0;–1;1) C(2;5;2) D(3;0;–2)
Найти объем пирамиды.
Решение.
 ABa

(–1;–3;–2)
 ACb

(1;3;–1)
 ADc

(2;–2;–5)
4
522
131
231
6
1




пирV
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 4. Аналитическая геометрия на плоскости
38
ГЛАВА 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
Тема 4. Аналитическая геометрия на плоскости
4.1. Основные понятия
4.2. Преобразование системы координат
Основные определения
Под системой координат на плоскости понимают способ, позво-
ляющий численно описать положение любой ее точки. Одной из таких
систем является декартова прямоугольная система координат.
Прямоугольная система координат задается двумя взаимно пер-
пендикулярными прямыми – осями, на которых выбрано положительное
направление и задан единичный отрезок. Точку пересечения осей назы-
вают началом координат (О). А сами оси называют: осью абсцисс (Ох) и
ось ординат (Оу).
Рассмотрим произвольную точку М на плоскости. Вектор OM на-
зывается радиус-вектором точки М.
Произвольной точке на плоскости ставится в соответствие два чис-
ла: абсцисса точки – это проекция радиуса вектора точки на ось Ох,
ордината – проекция этого же вектора на ось Оу. Эти два числа полно-
стью определяют положение точки на плоскости.
Другой практически важной системой координат является поляр-
ная система координат. Полярная система координат задается точкой –
называемой полюсом, лучом Оr, называемым полярной осью и единич-
ным вектором того же направления, что и луч Оr. Положение произволь-
ной точки М на плоскости определяется двумя числами: ее расстоянием
r от полюса и углом φ, образованным отрезком ОМ с полярной осью (от-
счет углов ведется в направлении, противоположном движению часовой
стрелки). Числа r и φ называются полярными координатами точки М,
пишут М(r,φ), при этом r называют полярным радиусом, φ – полярным
углом.
Можно установить связь между полярной системой координат и
декартовой прямоугольной системой, если поместить начало декартовой
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 4. Аналитическая геометрия на плоскости
39
прямоугольной системы в полюс, а полярную ось направить вдоль поло-
жительного направления оси Ох.
Декартова система ко-
ординат
Полярная система коор-
динат
Тогда координаты произвольной точки в двух различных системах
координат связываются соотношениями:







sin
cos
ry
rx
Полярные координаты точки М выражаются следующим обра-
зом.







x
y
tg
yxr

22
Определяя величину φ, следует установить (по знакам x и y) чет-
верть, в которой лежит искомый угол, и учитывать, что   .
Пример.
Дана точка N (3; –3). Найти полярные координаты этой точки.
Решение.









1
3
3
231833 22
tg
r
Так как точка находится в четвертой четверти, то
4

  . N( 23 ;
4

 ).
Преобразование систем координат
Определение. Переход от одной системы координат в какую-либо
другую называется преобразованием системы координат.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 4. Аналитическая геометрия на плоскости
40
Параллельный перенос
Определение. Под параллельным переносом осей координат по-
нимают переход к новой системе координат О1x1y1, при котором меня-
ется положение начала координат, а направление и масштаб остаются
неизменными.
Пусть оси O1x1 и O1y1 параллельны осям Ox и Oy. Допустим точка
M(x;y) в системе координат О1x1y1 имеет координаты x’ и y’. А начало
новой системы координат относительно старой имеет координаты (x0;y0).
Установим связь между старыми и новыми координатами.
Рис. 4.1. Параллельный перенос осей координат
Из чертежа видно, что





'.
,'
0
0
yyy
xxx
(4.1)
Полученные формулы позволяют находить старые координаты по
известным новым и наоборот.
Поворот осей координат
Определение. Под поворотом понимают такое преобразование
осей координат, при котором обе оси поворачиваются на один угол,
а начало координат и масштаб остаются неизменными.
Повернем ось координат Oxy на угол α, и пусть она займет поло-
жение О1x1y1. Получим соотношения
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 4. Аналитическая геометрия на плоскости
41





.cos'sin'
,sin'cos'


yxy
yxx
(4.2)
Рис. 4.2. Поворот осей координат
Полученные формулы называют формулами поворота осей.
Если новая система координат О1x1y1 получена из старой Оxy пу-
тем параллельного переноса осей координат и последующим поворотом
осей координат на угол α. Используя формулы (4.1) и (4.2), легко полу-
чить формулы





.cos'sin'
,sin'cos'
0
0
yyxy
xyxx


(4.3)
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 5. Линия на плоскости
42
Тема 5. Линия на плоскости
5.1. Основные определения
5.2. Прямая на плоскости
Определение. Уравнением линии на плоскости Oxy называется
такое уравнение F(x;y)=0, которому удовлетворяют координаты x и y
каждой точки линии и не удовлетворяют координаты любой точки, не
лежащей на этой прямой.
Уравнение линии позволяет изучение геометрических свойств ли-
нии заменить исследованием ее уравнения.
Определение. Уравнение F(r;φ)=0 называется уравнением линии в
полярной системе координат.
Определение. Линию на плоскости можно задать при помощи
двух уравнений (параметрическое уравнение)





).(
),(
tyy
txx
Уравнение прямой на плоскости
Простейшей из линий является прямая. Разным способам задания
прямой, соответствуют в прямоугольной системе координат разные виды
ее уравнений.
Общее уравнение прямой
Определение. Любая прямая на плоскости может быть задана
уравнением первого порядка
Ах+Ву+С=0, (5.1)
причем постоянные А, В не равны нулю одновременно, т. е. А2 + В2  0.
Это уравнение первого порядка называют общим уравнением прямой.
Разрешим уравнение (5.1) относительно переменной y
.
B
C
x
B
A
y 
Обозначим
B
A
k  и
B
C
b  , тогда получим
y=kx+b. (5.2)
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 5. Линия на плоскости
43
Из уравнения (5.2) видно, что точка N(0;b) точка пересечения с
осью Oy. k называют угловым коэффициентом прямой ( tgk  ). Уравне-
ние (5.2) называется уравнением прямой с угловым коэффициентом.
В зависимости от значений постоянных А, В и С возможны сле-
дующие частные случаи:
C=0, А0, В0 – прямая проходит через начало координат;
А=0, В0, С0 (By+C=0) – прямая параллельна оси Ох;
В=0, А0, С0 (Аx+C=0) – прямая параллельна оси Оу;
В=С=0, А0 – прямая совпадает с осью Оу;
А=С=0, В0 – прямая совпадает с осью Ох.
Уравнение прямой, проходящей через две точки
Пусть в пространстве заданы две точки M1(x1; y1) и M2(x2; y2), тогда
уравнение прямой, проходящей через эти точки:
.
12
1
12
1
yy
yy
xx
xx





Если какой-либо из знаменателей равен нулю, следует приравнять
нулю соответствующий числитель.
Дробь k
xx
yy



12
12
называется угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и
В(3, 4).
Применяя записанную выше формулу, получаем:
34
,
2
3
2
4
,
31
3
42
4











xy
xy
xy
01  yx – общее уравнение прямой.
1 xy – уравнение прямой с угловым коэффициентом.
Уравнение прямой в отрезках
Если в общем уравнении прямой Ах+Ву+С=0 С0, то, разделив на
С, получим: 1 у
С
В
х
С
А
или
1
b
y
a
x
, (5.3)
где
B
C
b
A
C
a  ; .
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 5. Линия на плоскости
44
Геометрический смысл коэффициентов в том, что коэффициент а
является координатой точки пересечения прямой с осью Ох, а b – коор-
динатой точки пересечения прямой с осью Оу.
Замечание. Не каждую прямую можно представить уравнением в
отрезках, например, прямые, параллельные осям или проходящие через
начало координат.
Пример. Задано общее уравнение прямой 2х–3у+5=0. Найти уравнение
этой прямой в отрезках.
.1
3525
,1
5
3
5
2
,532







yx
yx
yx
Уравнение прямой, проходящей через точку с заданным угловым
коэффициентом
Пусть прямая проходит через точку M(x0;y0) и дан угловой коэф-
фициент этой прямой k.
).( 00 xxkyy 
Нормальное уравнение прямой
Если обе части уравнения Ах+Ву+С=0 умножить на число
22
1
BA 
 , которое называется нормирующем множителем, то получим
0coscos  pyx  – нормальное уравнение прямой.
Знак  нормирующего множителя надо выбирать так, чтобы С < 0.р –
длина перпендикуляра, опущенного из начала координат на прямую,
а  – угол, образованный этим перпендикуляром с положительным на-
правлением оси Ох.
Пример. Дано общее уравнение прямой 3х–4у–65=0. Найти нормальное
уравнение прямой.
Найдем нормирующий множитель
5
1
)4(3
1
22


 , тогда
5
4
sin,
5
3
cos   , а р=13. Нормальное
уравнение прямой будет иметь вид 013
5
4
5
3
 yx
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 5. Линия на плоскости
45
Угол между прямыми на плоскости
Пусть две прямые заданы уравнениями с угловыми коэффициентами
y=k1x+b1, y=k2x+b2 (рис. 5.1)
Рис. 5.1. Угол между двумя прямыми
Требуется найти угол φ, на который надо повернуть в положитель-
ном направлении первую прямую вокруг точки пересечения до совпаде-
ния со второй прямой.
.
1
)(
21
12
12
kk
kk
tgtg


  (5.4)
Если две прямые перпендикулярны, то .
2

  Следовательно,
10
1
21
12
21



 kk
kk
kk
ctg (
2
1
1
k
k  )
Если две прямые параллельны, то .0 Следовательно, 012  kk
или 12 kk  .
Расстояние от точки до прямой
Теорема. Если задана точка М(х0, у0), то расстояние до прямой
Ах+Ву+С=0 определяется как
22
00
BA
CByAx
d


 . (5.5)
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 6. Линии второго порядка
46
Тема 6. Линии второго порядка
6.1. Основные понятия
6.2. Окружность
6.3. Эллипс
6.4. Гипербола
6.5. Парабола
Основные понятия
Рассмотрим линии, определяемые уравнением второй степени от-
носительно текущих координат
Ах2
+2Вху+Су2
+2Dx+2Ey+F=0. (6.1)
Коэффициенты уравнения действительные числа, но по крайней
мере одно из чисел А, В или С отлично от нуля. Такие линии называются
линиями (кривыми) второго порядка.
Окружность
Определение. Множество всех точек М(x;y) плоскости, равно-
удаленных от центра О(x0;y0) называется окружностью.
Пусть МО=R, тогда
(x–x0)2
+(y–y0)2
=R2
– уравнение окружности.
Рис. 6.1. Окружность
Эллипс
Определение. Эллипсом называется множество точек на плоско-
сти, сумма расстояний от которых до двух фиксированных точек, на-
зываемых фокусами, есть величина постоянная (равная 2a, a>0), боль-
шая, чем расстояние между фокусами (2c).
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 6. Линии второго порядка
47
2a – большая (фокальная) ось; a – большая полуось;
2b – малая ось; b – малая полуось.
Пусть точка M(x;y) принадлежит эллипсу, F1(-c;0) и F2 (c;0) – фо-
кусы, тогда cFF 221  .
Положим
,)( 22
11 ycxMFr  .)( 22
22 ycxMFr  (6.1)
Рис. 6.2. К определению эллипса
Определение. r1 и r2 называются фокальными радиус-векторами
точки M(x;y).
Из определения эллипса r1+r2=const. Подставим в это уравнение (6.1)
aycxycx 2)()( 2222

Перенесем один из корней вправо:
2222
)(2)( ycxaycx  .
Возведем обе части в квадрат, получим
.)(4)(4)( 2222222
ycxaycxaycx 
Приведем подобные. Перенесем корень влево, а все остальные сла-
гаемые – вправо.
.)( 222
xcaycxa 
Возведем обе части в квадрат
 
).()(
,
,22
,2)(
22222222
224222222
22242222222
2224222
caayacax
cxayacaxa
cxxcaayaxcacaxa
cxxcaaycxa




Положим b2
=a2
-c2
, тогда
).( 2222222
caayaxb 
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 6. Линии второго порядка
48
Разделим на a2
b2
, получим каноническое уравнение эллипса
12
2
2
2

b
y
a
x
. (6.2)
Теорема. Фокусное расстояние и полуоси эллипса связаны соот-
ношением:
a2
=b2
+c2
.
Определение. Форма эллипса определяется характеристикой,
которая является отношением фокусного расстояния к большей оси и
называется эксцентриситетом.
.
a
c
e 
Так как по определению эллипса с<a, то е<1.
Определение. Величина
a
b
k  называется коэффициентом сжа-
тия эллипса, а величина
a
ba
k

1 называется сжатием эллипса.
Коэффициент сжатия и эксцентриситет связаны соотношением: k2
=1–e2
.
 Если a=b (c=0, e=0, фокусы сливаются), то эллипс превращается в ок-
ружность.
 Если для точки М(х1;у1) выполняется условие: 12
2
1
2
2
1

b
y
a
x
, то она нахо-
дится внутри эллипса, а если 12
2
1
2
2
1

b
y
a
x
, то точка находится вне
эллипса.
Теорема. Для произвольной точки М(x;у), принадлежащей эллипсу
верны соотношения:





.
,
2
1
exar
exar
Определение. Директрисами эллипса называют две прямые, па-
раллельные малой оси и отстоящие от нее на расстоянии, равном
e
a
Теорема. Для того, чтобы точка лежала на эллипсе, необходимо и
достаточно, чтобы отношение расстояния до фокуса к расстоянию до
соответствующей директрисы равнялось эксцентриситету е.
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
Тема 6. Линии второго порядка
49
Рис. 6.3. Эллипс с директрисами
Касательная к эллипсу
Уравнение касательной к эллипсу в точке касания M(x0;y0) имеет вид
12
0
2
0

b
yy
a
xx
.
Гипербола
Определение. Гиперболой называется множество точек плоско-
сти, для которых модуль разности расстояний от двух фиксированных
точек, называемых фокусами есть величина постоянная, меньшая рас-
стояния между фокусами.
2а называется действительной осью гиперболы, а называется дей-
ствительной полуосью гиперболы
2b называется мнимой осью гиперболы, b называется мнимой по-
луосью гиперболы
Пусть точка M(x;y) принадлежит эллипсу, F1(–c;0) и F2 (c;0) – фо-
кусы, тогда cFF 221  .
,)( 22
11 ycxMFr  .)( 22
22 ycxMFr 
По определению r1–r2= 2a.
По аналогии с выводом канонического уравнения для эллипса получим.
aycxycx 2)()( 2222

2222222
)()(44)( ycxycxaaycx 
xcaycxa 44)(4 222

22242222
2)( cxxcaayacxa 
22242222222
22 cxxcaayacaxcaxa 
Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия
526.высшая математика линейная алгебра и аналитическая геометрия

More Related Content

Similar to 526.высшая математика линейная алгебра и аналитическая геометрия

Phép tính vector và tensor trong vật lý lý thuyết
Phép tính vector và tensor trong vật lý lý thuyếtPhép tính vector và tensor trong vật lý lý thuyết
Phép tính vector và tensor trong vật lý lý thuyết
Võ Hồng Quý
 
04 array
04 array04 array
04 array
pogromskaya
 
параллельные методы и алгоритмы линейной алгебры
параллельные методы и алгоритмы линейной алгебрыпараллельные методы и алгоритмы линейной алгебры
параллельные методы и алгоритмы линейной алгебрыyshilov
 
алгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые заданииалгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые задании
Иван Иванов
 
Построение таблиц истинности
Построение таблиц истинностиПостроение таблиц истинности
Построение таблиц истинности
aleksashka3
 
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
Yura Maturin
 
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
ITMO University
 
симметрия двуциклических матриц адамара и периодические пары голея
симметрия двуциклических матриц адамара и периодические пары голеясимметрия двуциклических матриц адамара и периодические пары голея
симметрия двуциклических матриц адамара и периодические пары голея
Иван Иванов
 
03
0303
03JIuc
 
291 цикл уроков на тему массивы
291 цикл уроков на тему  массивы291 цикл уроков на тему  массивы
291 цикл уроков на тему массивыsany0507
 
C:\fakepath\scad1
C:\fakepath\scad1C:\fakepath\scad1
C:\fakepath\scad1
guest0cc536
 
777
777777
Диплом бакалавра
Диплом бакалавраДиплом бакалавра
Диплом бакалавра
guest79428
 
Komplanarn vektor
Komplanarn vektorKomplanarn vektor
Komplanarn vektor
grin1964
 
Презентация на тему: Методические особенности подготовки учащихся к выполнени...
Презентация на тему: Методические особенности подготовки учащихся к выполнени...Презентация на тему: Методические особенности подготовки учащихся к выполнени...
Презентация на тему: Методические особенности подготовки учащихся к выполнени...2berkas
 
Лекция 1 часть 3 декартово произв
Лекция 1 часть 3 декартово произвЛекция 1 часть 3 декартово произв
Лекция 1 часть 3 декартово произвИрина Гусева
 
9893
98939893
9893
nreferat
 

Similar to 526.высшая математика линейная алгебра и аналитическая геометрия (20)

Phép tính vector và tensor trong vật lý lý thuyết
Phép tính vector và tensor trong vật lý lý thuyếtPhép tính vector và tensor trong vật lý lý thuyết
Phép tính vector và tensor trong vật lý lý thuyết
 
04 array
04 array04 array
04 array
 
параллельные методы и алгоритмы линейной алгебры
параллельные методы и алгоритмы линейной алгебрыпараллельные методы и алгоритмы линейной алгебры
параллельные методы и алгоритмы линейной алгебры
 
алгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые заданииалгебра и геометрии учебное пособие. тестовые задании
алгебра и геометрии учебное пособие. тестовые задании
 
Построение таблиц истинности
Построение таблиц истинностиПостроение таблиц истинности
Построение таблиц истинности
 
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Москва. 2003
 
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ ПАТТЕРНИЗАЦИИ СИГНАЛОВ И ИЗОБРАЖЕНИЙ
 
лекция 6
лекция 6лекция 6
лекция 6
 
симметрия двуциклических матриц адамара и периодические пары голея
симметрия двуциклических матриц адамара и периодические пары голеясимметрия двуциклических матриц адамара и периодические пары голея
симметрия двуциклических матриц адамара и периодические пары голея
 
03
0303
03
 
291 цикл уроков на тему массивы
291 цикл уроков на тему  массивы291 цикл уроков на тему  массивы
291 цикл уроков на тему массивы
 
C:\fakepath\scad1
C:\fakepath\scad1C:\fakepath\scad1
C:\fakepath\scad1
 
777
777777
777
 
Диплом бакалавра
Диплом бакалавраДиплом бакалавра
Диплом бакалавра
 
матрица
матрицаматрица
матрица
 
Komplanarn vektor
Komplanarn vektorKomplanarn vektor
Komplanarn vektor
 
Презентация на тему: Методические особенности подготовки учащихся к выполнени...
Презентация на тему: Методические особенности подготовки учащихся к выполнени...Презентация на тему: Методические особенности подготовки учащихся к выполнени...
Презентация на тему: Методические особенности подготовки учащихся к выполнени...
 
Лекция 1 часть 3 декартово произв
Лекция 1 часть 3 декартово произвЛекция 1 часть 3 декартово произв
Лекция 1 часть 3 декартово произв
 
9893
98939893
9893
 
лекция 15
лекция 15лекция 15
лекция 15
 

More from efwd2ws2qws2qsdw

720.экология образование туризм подготовка кадров
720.экология образование туризм подготовка кадров720.экология образование туризм подготовка кадров
720.экология образование туризм подготовка кадровefwd2ws2qws2qsdw
 
719.буддийская и светская этика формирование мировоззрения
719.буддийская и светская этика формирование мировоззрения719.буддийская и светская этика формирование мировоззрения
719.буддийская и светская этика формирование мировоззренияefwd2ws2qws2qsdw
 
718.детская сибириада «спорт — искусство – интеллект»
718.детская сибириада «спорт — искусство – интеллект»718.детская сибириада «спорт — искусство – интеллект»
718.детская сибириада «спорт — искусство – интеллект»efwd2ws2qws2qsdw
 
717.история философии хрестоматия
717.история философии  хрестоматия717.история философии  хрестоматия
717.история философии хрестоматияefwd2ws2qws2qsdw
 
716.psychology in basketball officiating handbook for basketball referees
716.psychology in basketball officiating handbook for basketball referees716.psychology in basketball officiating handbook for basketball referees
716.psychology in basketball officiating handbook for basketball referees
efwd2ws2qws2qsdw
 
715.сборник качественных задач общая педагогика
715.сборник качественных задач общая педагогика715.сборник качественных задач общая педагогика
715.сборник качественных задач общая педагогикаefwd2ws2qws2qsdw
 
714.северная провинция трансформация социальных институтов монография
714.северная провинция трансформация социальных  институтов монография714.северная провинция трансформация социальных  институтов монография
714.северная провинция трансформация социальных институтов монографияefwd2ws2qws2qsdw
 
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитураefwd2ws2qws2qsdw
 
712.психология эмоционального интеллекта теория, диагностика, практика
712.психология эмоционального интеллекта теория, диагностика, практика712.психология эмоционального интеллекта теория, диагностика, практика
712.психология эмоционального интеллекта теория, диагностика, практикаefwd2ws2qws2qsdw
 
711.дистанционное обучение в высшей школе социально экономический и организац...
711.дистанционное обучение в высшей школе социально экономический и организац...711.дистанционное обучение в высшей школе социально экономический и организац...
711.дистанционное обучение в высшей школе социально экономический и организац...efwd2ws2qws2qsdw
 
710.seducing the masses an introduction to advertising world
710.seducing the masses an introduction to advertising world710.seducing the masses an introduction to advertising world
710.seducing the masses an introduction to advertising world
efwd2ws2qws2qsdw
 
709.моделирование и анализ транспортных протоколов в информационных сетях мон...
709.моделирование и анализ транспортных протоколов в информационных сетях мон...709.моделирование и анализ транспортных протоколов в информационных сетях мон...
709.моделирование и анализ транспортных протоколов в информационных сетях мон...efwd2ws2qws2qsdw
 
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...efwd2ws2qws2qsdw
 
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...efwd2ws2qws2qsdw
 
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...efwd2ws2qws2qsdw
 
705.под часами альманах кн2
705.под часами  альманах  кн2705.под часами  альманах  кн2
705.под часами альманах кн2efwd2ws2qws2qsdw
 
704.методические основы подготовки судей по баскетболу учебно методическое п...
704.методические основы подготовки судей по баскетболу  учебно методическое п...704.методические основы подготовки судей по баскетболу  учебно методическое п...
704.методические основы подготовки судей по баскетболу учебно методическое п...efwd2ws2qws2qsdw
 
703.правоведение учебник гриф рао
703.правоведение учебник гриф рао703.правоведение учебник гриф рао
703.правоведение учебник гриф раоefwd2ws2qws2qsdw
 
702.взаимное страхование в российской федерации экономико организационные асп...
702.взаимное страхование в российской федерации экономико организационные асп...702.взаимное страхование в российской федерации экономико организационные асп...
702.взаимное страхование в российской федерации экономико организационные асп...efwd2ws2qws2qsdw
 
701.историческое краеведение накопление и развитие краеведческих знаний в рос...
701.историческое краеведение накопление и развитие краеведческих знаний в рос...701.историческое краеведение накопление и развитие краеведческих знаний в рос...
701.историческое краеведение накопление и развитие краеведческих знаний в рос...efwd2ws2qws2qsdw
 

More from efwd2ws2qws2qsdw (20)

720.экология образование туризм подготовка кадров
720.экология образование туризм подготовка кадров720.экология образование туризм подготовка кадров
720.экология образование туризм подготовка кадров
 
719.буддийская и светская этика формирование мировоззрения
719.буддийская и светская этика формирование мировоззрения719.буддийская и светская этика формирование мировоззрения
719.буддийская и светская этика формирование мировоззрения
 
718.детская сибириада «спорт — искусство – интеллект»
718.детская сибириада «спорт — искусство – интеллект»718.детская сибириада «спорт — искусство – интеллект»
718.детская сибириада «спорт — искусство – интеллект»
 
717.история философии хрестоматия
717.история философии  хрестоматия717.история философии  хрестоматия
717.история философии хрестоматия
 
716.psychology in basketball officiating handbook for basketball referees
716.psychology in basketball officiating handbook for basketball referees716.psychology in basketball officiating handbook for basketball referees
716.psychology in basketball officiating handbook for basketball referees
 
715.сборник качественных задач общая педагогика
715.сборник качественных задач общая педагогика715.сборник качественных задач общая педагогика
715.сборник качественных задач общая педагогика
 
714.северная провинция трансформация социальных институтов монография
714.северная провинция трансформация социальных  институтов монография714.северная провинция трансформация социальных  институтов монография
714.северная провинция трансформация социальных институтов монография
 
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура
713.концертные пьесы для русского народного оркестра [ноты] вып 3 партитура
 
712.психология эмоционального интеллекта теория, диагностика, практика
712.психология эмоционального интеллекта теория, диагностика, практика712.психология эмоционального интеллекта теория, диагностика, практика
712.психология эмоционального интеллекта теория, диагностика, практика
 
711.дистанционное обучение в высшей школе социально экономический и организац...
711.дистанционное обучение в высшей школе социально экономический и организац...711.дистанционное обучение в высшей школе социально экономический и организац...
711.дистанционное обучение в высшей школе социально экономический и организац...
 
710.seducing the masses an introduction to advertising world
710.seducing the masses an introduction to advertising world710.seducing the masses an introduction to advertising world
710.seducing the masses an introduction to advertising world
 
709.моделирование и анализ транспортных протоколов в информационных сетях мон...
709.моделирование и анализ транспортных протоколов в информационных сетях мон...709.моделирование и анализ транспортных протоколов в информационных сетях мон...
709.моделирование и анализ транспортных протоколов в информационных сетях мон...
 
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...
708.методическое пособие по дисциплине «информатика» ч3 работа с microsoft of...
 
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...
707.избранные вопросы обучения геометрии (дистанционные курсы) [текст] учебно...
 
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...
706.моделирование нагрузочно измерительных устройств с полыми немагнитными ро...
 
705.под часами альманах кн2
705.под часами  альманах  кн2705.под часами  альманах  кн2
705.под часами альманах кн2
 
704.методические основы подготовки судей по баскетболу учебно методическое п...
704.методические основы подготовки судей по баскетболу  учебно методическое п...704.методические основы подготовки судей по баскетболу  учебно методическое п...
704.методические основы подготовки судей по баскетболу учебно методическое п...
 
703.правоведение учебник гриф рао
703.правоведение учебник гриф рао703.правоведение учебник гриф рао
703.правоведение учебник гриф рао
 
702.взаимное страхование в российской федерации экономико организационные асп...
702.взаимное страхование в российской федерации экономико организационные асп...702.взаимное страхование в российской федерации экономико организационные асп...
702.взаимное страхование в российской федерации экономико организационные асп...
 
701.историческое краеведение накопление и развитие краеведческих знаний в рос...
701.историческое краеведение накопление и развитие краеведческих знаний в рос...701.историческое краеведение накопление и развитие краеведческих знаний в рос...
701.историческое краеведение накопление и развитие краеведческих знаний в рос...
 

526.высшая математика линейная алгебра и аналитическая геометрия

  • 1. 1 Министерство культуры Российской Федерации ФГБОУ ВПО «Кемеровский государственный университет культуры и искусств» Социально-гуманитарный институт Кафедра экономики социальной сферы ВЫСШАЯ МАТЕМАТИКА: Линейная алгебра и аналитическая геометрия Конспект лекций по специальности 080507 «Менеджер организации» Кемерово 2011 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 2. 2 Утвержден на заседании кафедры экономики социальной сферы 30 мая 2011 г., протокол № 11 Рекомендован к изданию УМС СГИ 15 июня 2011 г., протокол № 8 Высшая математика: линейная алгебра и аналитическая геометрия [Текст]: конспект лекций по специальности 080507 «Менеджмент орга- низации» / сост.: А. С. Ащеулова, О. С. Карнадуд, А. И. Саблинский. – Кемерово: КемГУКИ, 2011. – 71 с. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 3. 3 ВВЕДЕНИЕ Предлагаемое учебное пособие представляет собой базовый кон- спект лекций по высшей математике для студентов первого курса специ- альности 080507 «Менеджер организации» очного и заочного отделений. Из всего курса высшей математики в нем рассматриваются следующие разделы «Определители», «Матрицы и системы линейных алгебраиче- ских уравнений», «Векторная алгебра» и «Аналитическая геометрия». Целью изучения курса математики является:  Формирование базы, на основе которой строится общеобразовательная и специальная подготовка специалистов;  Привитие навыков освоения нового, развитие логического и алгорит- мического мышления;  Выработка у студентов умения проведения математического анализа прикладных задач. Курс математики относится к циклу общих математических и есте- ственнонаучных дисциплин. Для его изучения требуются навыки и зна- ния в рамках программы общеобразовательной школы. Курс математики является базой для изучения большинства предме- тов, относящихся к циклу общепрофессиональных дисциплин, таких, как:  Информатика;  Экономическая теория;  Маркетинг;  Финансы и кредит;  Статистика;  Бухгалтерский учет;  Информационные технологии управления. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 4. Тема 1. Элементы линейной алгебры 4 ГЛАВА 1. ЛИНЕЙНАЯ АЛГЕБРА Тема 1. Элементы линейной алгебры 1.1. Матрицы и действия над ними 1.2. Определители 1.3. Обратная матрица 1.4. Ранг матрицы Матрицы и действия над ними Определение. Матрицей размера mn называется совокупность mn элементов, представленная в виде таблицы, состоящей из m строк и n столбцов, где aij, i=1,2,…, m j=1,2,…,n, m, nN – элемент матрицы А, стоящий на пересечении i-й строки и j-го столбца.                mnmm n n aaa aaa aaa ... ............ ... ... A 21 22221 11211 Определение. Если число строк матрицы равно числу столбцов, то матрица называется квадратной, а число строк является ее поряд- ком или размером. Определение. Элементы квадратной матрицы размера n, стоя- щие на пересечении строк и столбцов с одинаковыми номерами, то есть, a11, a22, …, ann, образуют главную диагональ. Соответственно, элементы a1n, a2n-1, …, an1, лежащие на прямой, соединяющей правый верхний и левый нижний углы матрицы, образуют побочную диагональ.                nnnn n n aaa aaa aaa ... ............ ... ... A 21 22221 11211 Определение. Две матрицы А и В одинакового размера называют равными, если они совпадают поэлементно. Равенство записывается как А=В. главная диагональпобочная диагональ Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 5. Тема 1. Элементы линейной алгебры 5 Виды матриц Определение. Матрица, состоящая из одной строки A=(a11, a12, …, a1n), называется матрицей-строкой или вектором. Матрица, со- стоящая из одного столбца                1 21 11 ... A ma a a , называется матрицей-столбцом или также вектором. Определение. Матрица, произвольного размера, все элементы которой равны нулю, называют нулевой и обозначается О. Определение. Квадратная матрица, у которой на главной диаго- нали стоят единицы, а остальные элементы равны нулю, называется единичной и обозначается                1...00 ............ 0...10 0...01 Е Определение. Квадратная матрица, у которой все элементы вы- ше или ниже главной диагонали равны нулю, под главной диагональю стоят нули, называется треугольной. Определение. Произвольная матрица вида )( ВАС  , составленная из двух матриц, разделенных вертикальной чертой, называется расши- ренной. Например, матрица              100 010 001 674 809 341 С является расширенной. Она составлена из квадратной матрицы третьего порядка и единичной матрицы третьего порядка. Определение. Квадратная матрица А n-го порядка называется симметричной, если ее элементы подчиняются следующему равенству aij=aji, где i, j=1,2,..,n. Например, матрица               643 425 351 D является симметричной. Определение. Матрица АТ называется транспонированной к матрице А, если у нее каждая строка является столбцом матрицы А. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 6. Тема 1. Элементы линейной алгебры 6 Например,                        413 292 061 420 196 321 A T A Действия над матрицами 1. Умножение матрицы на число. Определение. Произведением числа λ на матрицу А называется матрица В такая, что В=λА. Элементы матрицы В вычисляются по формуле ija ijb , где i=1,2,..,m j=1,2,..,n.                mnmm n n aaa aaa aaa     ... ............ ... ... AB 21 22221 11211 . Пример. Умножить матрицу              701 3116 532 A на 2.                            1402 6232 1064 272021 2321216 252322 В . Замечание. Общий множитель всех элементов матрицы можно выносить за знак матрицы. 2. Сложение (вычитание) матриц. Пусть матрицы А и В имеют одинаковый размер mn, то есть                mnmm n n aaa aaa aaa ... ............ ... ... A 21 22221 11211 ,                mnmm n n bbb bbb bbb ... ............ ... ... B 21 22221 11211 . Матрица С размера mn называется суммой (разностью) матриц А и В, если , ... ............ ... ... C 2211 23222222121 13112121111                   mnmnmmmm n n bababa bababa bababa ,m n N то есть, чтобы сложить (вычесть) матрицы одинакового размера, необхо- димо сложить (вычесть) их соответствующие элементы. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 7. Тема 1. Элементы линейной алгебры 7 3. Умножение матриц. Определение. Произведением матрицы А размера mn и матрицы В размера nr называется матрица С размера mr, имеющая следующий вид:                mrmm r r ccc ccc ccc ... ............ ... ... C 21 22221 11211 , где njinjijiij bababac  ...2211 i=1,2, …,m, j=1,2,…, r. Замечание 1. Отметим, что перемножить матрицы можно только в том случае, если число элементов в строке первой матрицы равно числу элементов в столбце второй матрицы. Замечание 2. Из правила умножения матриц следует, что ABBA  , то есть умножение матриц не коммутативно. При умножении матриц удобно использовать следующую схему: njinjijiij bababac  ...2211 Пример. Заданы матрицы                        502 321 401 021 401 321 BA Вычислим произведение: . 243 1609 2547 503)2(41002)2(01201)2()1(1 5430410420012410)1(1 5332410322012312)1(1 502 321 401 021 401 321 B                                                  A Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 8. Тема 1. Элементы линейной алгебры 8 Выполним умножение матриц при помощи, предложенной схемы Свойства сложения и умножения матриц 1. AА T )( T . 2. TT AА  )( , где α=const. 3. TTT BABА  )( . 4. TTT ABBА  )( . 5. A+B=B+A. 6. (A+B)+C=A+(B+C). 7. α(A+B)=αA+αB, где α=const. 8. A(B+C)=AB+AC. 9. (A+B)C=AC+BC. 10. C(AB)=(CA)B. 11. α(AB)=(αA)B=A(αB), где α=const. Определители Если матрица квадратная, то ее можно оценить (определить), то есть поставить в соответствие число. Определение. Определителем  матрицы А (или detА) называется многочлен, составленный из элементов этой матрицы. Для матрицы порядка n определитель записывается в виде nnnn n n aaa aaa aaa ... ............ ... ... detA 21 22221 11211  . Если матрица числовая, то значение определителя есть число, ко- торое находят по известным правилам. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 9. Тема 1. Элементы линейной алгебры 9 Вычисление определителей Определитель 2-го порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали, то есть 21122211 2221 1211 detA aaaa aa aa  . Примеры. Вычислить определители: 1. 2643241 43 21  ; 2. 1)cos(sincossincoscossinsin sincos cossin 2222   xxxxxxxx xx xx ; Определитель 3-го порядка вычисляется по формуле: 211233322311312213312312213213332211 333231 232221 131211 detA aaaaaaaaaaaaaaaaaa aaa aaa aaa  . Правило треугольников Из структуры формулы видно, что каждое слагаемое в правой час- ти входит по одному элементу из каждой строки и каждого столбца мат- рицы. Формулу вычисления определителя третьего порядка легко запом- нить, если воспользоваться правилом треугольников (рис.1.1). Берутся произведения элементов, соединенных линиями. На рисунке слева ли- ниями указаны произведения элементов, которые следует взять со зна- ком «+», справа – со знаком «–». + – Рис. 1.1. Правило треугольников Правило Саррюса К определителю приписывают справа два первых столбца и вычис- ляют сумму произведений элементов, стоящих на главной диагонали, и Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 10. Тема 1. Элементы линейной алгебры 10 «прямых» параллельных ей и со знаком минус вычисляют сумму произ- ведений элементов, расположенных на побочной диагонали, и «прямых», параллельных ей (рис. 1.2) Рис. 1.2. Правило Саррюса Пример. Вычислить определитель 312 012 101   1. Рассмотрим правило треугольников, сначала выпишем слагаемые со знаком «+» слагаемые со знаком «+» слагаемые со знаком «–» Запишем все вместе 1002203302011)1(1)2()1(12)2(00311 312 012 101    2. Рассмотрим правило Саррюса 1002203 302011)1(1)2()1(12)2(00311   Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 11. Тема 1. Элементы линейной алгебры 11 Определение. Минором Mij элемента aij, i,j=1,2,…,n называется опре- делитель порядка n–1, полученный вычеркиванием i-й строки и j-го столбца из определителя  порядка n. Определение. Алгебраическим дополнением элемента aij опреде- лителя  называется число Aij, равное минору Mij со знаком «+», если сумма i+j четная, и со знаком «», если сумма i+j нечетная, т. е. ij ji ij MA   )1( . Теорема. Определитель квадратной матрицы равен сумме произ- ведений элементов любой строки или любого столбца на их алгебраиче- ские дополнения:       n i ijij n j ijij AaA AaA 1 1 . Пример. Вычислить определитель разложением по третьему столбцу. 134)01(30)22()2011(3 0))2(112( 12 01 3)1( 12 01 0)1( 12 12 )1()1( 312 012 101 333231          Свойства определителей 1. Определитель матрицы не изменится, если матрицу транспонировать. T det detA A . 2. Определитель матрицы равен нулю, если он содержит строку (стол- бец), все элементы которой равны нулю. 3. Определитель матрицы равен нулю, если элементы двух строк (столб- цов) одинаковые. 4. Определитель матрицы равен нулю, если элементы двух строк (столб- цов) пропорциональны. 5. Определитель матрицы меняет свой знак на противоположный, если поменять местами две строки (столбца). Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 12. Тема 1. Элементы линейной алгебры 12 6. Если все элементы некоторой строки (столбца) имеют общим множи- тель, то он выносится за знак определителя. 7. Если к одной строке (столбцу) определителя прибавить другую строку (столбец) умноженную на число, то значение определителя не изменится. 8. Определитель треугольной матрицы равен произведению элементов, стоящих на главной диагонали. 11 12 1 22 2 11 22 0 det ... 0 0 n n nn nn a a a a a A a a a a             Способы вычисления определителей Существует несколько способов вычисления определителя. Выбор способа диктуется видом и порядком определителя. Удачно выбранный способ позволяет существенно сократить вычисления. Рассмотрим их на примере матрицы третьего порядка. Пример. Вычислить определитель матрицы третьего порядка.               222 142 122 A 1-й способ: правило треугольников. 128484416 2221)2(2)1()4()2(1)2(2)1()2(22)4(2 222 142 122      A 2-й способ: использование теоремы о разложении определителя по любой строке или столбцу. Разложим определитель по второй строке 12084)44()24(4)24(2 22 22 1)1( 22 12 )4()1( 22 12 2)1( 222 142 122 322212                A Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 13. Тема 1. Элементы линейной алгебры 13 Находим определитель 0 0 Матрица вырожденная. Обратной не существует Находим миноры. Записываем обратную матрицу в виде (1.1) 3-й способ: использование свойств определителя для приведение его к треугольному виду. )1( 222 142 122     = 222 260 122    = 121)6(2 100 260 122   первую строку умножили на (–1) и прибавили ко второй первую строку прибавили к третьей вычислили определитель тре- угольной матрицы, он по свойству равен произведению элементов стоящих на главной диагонали 4-й способ: использование метода Саррюса сделайте самостоятельно. Обратная матрица Определение. Если определитель матрицы равен нулю, то мат- рица называется вырожденной. В противном случае, матрица называ- ется невырожденной. Определение. Матрица А–1 называется обратной к матрице А размера n, если она удовлетворяет следующему равенству: ЕАААА   11 . Теорема. Для существования обратной матрицы А–1 необходимо и достаточно, чтобы матрица А была невырожденной. Если обратная матрица существует, то она находится по фор- муле:                 nnnn n AAA AAA ААА А ... ............ ... ... 1 21 22212 n12111 1 (1.1) Алгоритм нахождения обратной матрицы Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 14. Тема 1. Элементы линейной алгебры 14 Пример. Найти матрицу обратную к матрице            123 122 311 А . Решение. Вычислим определитель матрицы А 0522181232 123 122 311  Так как 0, матрица А является невырожденной, и для нее суще- ствует обратная, найдем ее. Для этого вычислим алгебраические допол- нения для каждого элемента матрицы А: 264 23 22 )1( 1)32( 13 12 )1( 0 12 12 )1( 31 13 21 12 11 11       А А А 1)32( 23 11 )1( 891 13 31 )1( 5)61( 12 31 )1( 32 23 22 22 12 21       А А А 0 22 11 )1( 5)61( 12 31 )1( 561 12 31 )1( 33 33 23 32 13 31       А А А найденные значения в формулу (1.1):                012 581 550 5 11 А . Ранг матрицы Определение. Рангом матрицы А называется наивысший порядок ее миноров, отличных от нуля, который обозначается rang(A)=r(A)≥0. Элементарные преобразования матрицы 1. Перестановка двух строк. 2. Умножение любой строки на ненулевое число. 3. Добавление к одной строке другой, умноженной на любое число. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 15. Тема 1. Элементы линейной алгебры 15 Теорема. Ранг матрицы не изменится, если к ней применить эле- ментарные преобразования. Замечание. При определении ранга матрицы целесообразно при помощи элементарных преобразований привести ее к треугольному виду. Используя свойство 8 определителей, легко найти наибольший порядок отличных от нуля миноров. Свойства ранга: 1. Ранг нулевой матрицы считается равным нулю 2. R(A)≤min(m, n) 3. r(A)=n у матрицы n-го порядка тогда и только тогда, когда 0А Пример. Вычислить ранг матрицы            0010 0101 0101 А . Решение. Приведем матрицу А к треугольному виду.                       0010 0000 0101)1( 0010 0101 0101            0000 0010 0101        010 101 первую строку умно- жили на (–1) и приба- вили ко второй переставили мес- тами 1-ую и 3-ю строки т. к. третья строка и третий столбец нулевые, то их убрали Так как получившаяся матрица имеет размер 32 , следовательно необ- ходимо найти минор второго порядка отличный от нуля. 1 10 01 M  , тогда r(A)=2. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 16. Тема 2. Системы линейных алгебраических уравнений 16 Тема 2. Системы линейных алгебраических уравнений 2.1. Основные понятия 2.2. Метод Крамера 2.3. Матричный метод 2.4. Метод Гаусса 2.5. Однородные системы линейных уравнений 2.6. Решение неоднородной системы линейных уравнений Основные понятия Пусть задана система m линейных алгебраических уравнений с n неизвестными (СЛАУ):           ,... .............................................. ,... ,... 2211 22222121 11212111 mnmnmm nn nn bxaxaxa bxaxaxa bxaxaxa где xj – неизвестные, aij – коэффициенты при неизвестных, bi – свобод- ные члены, i=1,2,…m, j=1,2,…n. Обозначим через А матрицу, составленную из коэффициентов при неизвестных jx , а через А матрицу, полученную из А присоединением к ней столбца свободных членов:                mnmm n n aaa aaa aaa ... ............ ... ... A 21 22221 11211 ,                mmnmm n n b b b aaa aaa aaa ... ... ............ ... ... A 2 1 21 22221 11211 . Матрица А называется матрицей коэффициентов системы уравне- ний, а матрица А – расширенной матрицей коэффициентов системы уравнений. Определение. Решением системы уравнений называется совокуп- ность таких значений неизвестных: x1=α1, x2=α2, …, xn=αn, которые удовлетворяют всем уравнениям системы. Решить систему уравнений значит указать все его решения или показать, что их нет. Определение. Система уравнений называется совместной, если она имеет хотя бы одно решение. Если система не имеет решения, то она называется несовместной. Совместная система уравнений называ- ется определенной, если она имеет единственное решение, и неопреде- ленной, если она имеет более одного решения. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 17. Тема 2. Системы линейных алгебраических уравнений 17 Методы решения СЛАУ Рассмотрим систему из трех линейных алгебраических уравнений и трех неизвестных         , , , 3333232131 2323222121 1313212111 bxaxaxa bxaxaxa bxaxaxa (2.1) тогда матрица коэффициентов при неизвестных и расширенная матрица коэффициентов имеют вид:            333231 232221 131211 A aaa aaa aaa ,            3 2 1 333231 232221 131211 b b b aaa aaa aaa A . Метод Крамера Для системы (2.1) введем следующие обозначения: 333231 232221 131211 aaa aaa aaa  33323 23222 13121 1 aab aab aab  , 33331 23221 13111 2 aba aba aba  , 33231 22221 11211 3 baa baa baa  , где Δi, i=1,2,3 – определители, полученные из исходного определителя заменой i-го столбца столбцом свободных членов. Тогда при решении системы методом Крамера возможны следую- щие случаи: 1) если 0, то система (2.1) совместна и имеет единственное решение, которое находится по формулам:    1 1x ,    2 2x ,    3 3x ; 2) если =0, 1=2=3=0, то система (2.1) либо имеет множество реше- ний, либо несовместна; 3) если =0 и хотя бы один из 1, 2, 3 не равен нулю, то система несо- вместна и решения не имеет. Алгоритм решения СЛАУ методом Крамера Находим определитель системы  0 0 1=2=3=0 множество решений хотя бы один из определителей 1, 2, 3 не равен 0. Система не имеет решений Система имеет единственное решение    1 1x ,    2 2x ,    3 3x . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 18. Тема 2. Системы линейных алгебраических уравнений 18 Находим обратную Обратная матрица существует Обратной матрицы не существует Решение ищем в виде BA  1 X Данный метод нельзя применять Матричный метод Пусть для системы (2.1) определитель 0. Запишем ее в матрич- ной форме. Имеем: А – матрица коэффициентов при неизвестных, Х – столбец неизвестных, В – столбец свободных членов системы:            333231 232221 131211 A aaa aaa aaa ,            3 2 1 b b b B            3 2 1 x x x X , тогда BXA  . выразим Х BA  1 X . (2.2) Алгоритм решения матричным методом Метод Гаусса Метод Гаусса основан на алгоритме последовательного исключе- ния неизвестных. Задача состоит в том, чтобы привести ее к «треугольному» виду при помощи эквивалентных преобразований. Выпишем расширенную матрицу коэффициентов системы (2.1):            3 2 1 333231 232221 131211 b b b aaa aaa aaa A . При решении системы уравнений (2.1) методом Гаусса возможны следующие случаи: 1. Если матрица A приведена к треугольному виду, то система (2.1) со- вместна и имеет единственное решение. 2. Если матрица A содержит хотя бы одну строку, все элементы которой равны нулю, то система (2.1) совместна и имеет множество решений. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 19. Тема 2. Системы линейных алгебраических уравнений 19 3. Если матрица A содержит строку, все элементы которой, кроме сво- бодного члена, равны нулю, то система (2.1) несовместна, то есть ре- шения не имеет. Пример. Решить системы линейных алгебраических уравнений а)         .1 ,22 ,12 321 321 321 xxx xxx xxx б)         .31152 ,2453 ,532 321 321 321 xxx xxx xxx Решение. а) 1. Решим систему методом Крамера. 1 111 112 211      3 111 112 211 1     6 111 122 211 2    2 111 212 111 3      Так как 0, то система совместна и имеет единственное решение: 3 1 31 1    x , 6 1 62 2    x , 2 1 23 3    x . 2. Решим систему матричным методом. Так как 0, то обратная матрица к матрице А существует. Вычис- лим алгебраические дополнения, имеем: 1 11 12 3 11 12 2 11 11 A 13 12 11           A A 0 11 11 1 11 21 1 11 21 23 22 21          A A A 1 12 11 5 12 21 3 11 21 33 32 31           A A A тогда обратная матрица 1 A имеет следующий вид:               101 513 312 1 A . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 20. Тема 2. Системы линейных алгебраических уравнений 20 Найдем решение системы. Для этого запишем уравнение в коор- динатной форме (2.2):                                                 2 6 3 1 2 1 101 513 312 1 3 2 1 BA x x x . 3. Решим систему методом Гаусса. Приведем расширенную матрицу ко- эффициентов A к «треугольному виду». )1()2( 1 2 1 111 112 211                            2 4 1 100 510 211 Матрица приведена к треугольному виду, следовательно, система совместна и имеет единственное решение. Найдем его, выписав систему уравнений, соответствующую последней матрице.         .2 ,45 ,12 3 32 321 x xx xxx          .2 ,6425 ,32261 3 2 1 x x x Ответ: х1=3, х2=6, х3=2. б)         .31152 ,2453 ,532 321 321 321 xxx xxx xxx 1. Решим систему методом Крамера, имеем: ,0 1152 453 321      ,0140 1153 452 325 1      Так как =0, 10, то система несовместна, решения не имеет. 2. Решим систему матричным методом. Так как =0, то обратная матри- ца к матрице А не существует, матричный метод не применим. 3. Решим систему методом Гаусса. Приведем расширенную матрицу ко- эффициентов A к треугольному виду. )2()3( 3 2 5 1152 453 321               →                7 13 5 510 510 321 →              20 13 5 000 510 321 Так как у полученной матрицы в последней строке коэффициенты при неизвестных равны нулю, а свободный член не равен нулю, то реше- ния нет, то есть система несовместна. Ответ: система несовместна. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 21. Тема 2. Системы линейных алгебраических уравнений 21 Пример. Решить систему линейных уравнений         .42369 ,33446 ,24523 4321 4321 4321 xxxx xxxx xxxx Решение: составим расширенную матрицу системы )3()2( 4 3 2 2369 3446 4523               → )2( 2 1 2 101200 5600 4523                             0 1 2 0000 5600 4523 или           1 2 5600 4523 Исходная система эквивалентна следующей системе уравнений:      .156 ,24523 43 4321 xx xxxx Возьмем x2 и х4 свободными, а х1 и х3 – базисными. Тогда    .712 18 1 ,15 6 1 421 43   xxx xx Придавая произвольные значения неизвестным х3 и х2, получим различные решения системы линейных уравнений. Однородные системы линейных уравнений Определение. Система линейных алгебраических уравнений назы- вается однородной, если все свободные члены системы равны нулю:           ,0... .............................................. ,0... ,0... 2211 2222121 1212111 nmnmm nn nn xaxaxa xaxaxa xaxaxa (2.3) Свойства однородной системы линейных уравнений 1. Однородная система линейных уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение. 2. Для существования ненулевых решений ранг матрицы коэффициентов должен быть меньше числа переменных r<n. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 22. Тема 2. Системы линейных алгебраических уравнений 22 Пример. Решить однородную систему уравнений         .023 ,0322 ,02 4321 4321 4321 xxxx xxxx xxxx Решение. Запишем матрицы коэффициентов и, совершив элементарные преобразования со строками, приведем ее к ступенчатому виду.              2113 3221 1112 Поменяем первую и вторую строку местами )3()2( 2113 1112 3221               →              7550 7550 3221 →         7550 3221 Вернемся от матрицы к системе линейных уравнений.      .0755 ,02 432 4321 xxx xxxx х1 и х2 – базисные переменные; х3 и х4 – свободные переменные.   . 5 1 ,75 5 1 41 432 xx xxx   Решение неоднородной системы линейных уравнений Пусть дана произвольная система m линейных уравнений с n неиз- вестными           ,... .............................................. ,... ,... 2211 22222121 11212111 mnmnmm nn nn bxaxaxa bxaxaxa bxaxaxa Теорема (Кронекера-Капелли). Система линейных алгебраиче- ских уравнений совместна тогда и только тогда, когда ранг расширен- ной матрицы системы равен рангу основной матрицы. Теорема. Если ранг совместной системы равен числу неизвест- ных, то система имеет единственное решение. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 23. Тема 2. Системы линейных алгебраических уравнений 23 Теорема. Если ранг совместной системы меньше числа неизвест- ных, то система имеет бесчисленное множество решений. Правило решения неоднородной системы линейных уравнений 1. Найти ранги основной и расширенной матриц системы. Если )()( ArAr  , то система несовместна. 2. Если rArAr  )()( , система совместна. Найти какой-либо базисный минор порядка r. Взять r уравнений, из коэффициентов которых состав- лен базисный минор (остальные уравнения отбросить). Неизвестные, ко- эффициенты которые входят в базисный минор, называют базисными и оставляют слева, а остальные n–r неизвестных называют свободными и переносят в правые части уравнений. 3. Найти выражения базисных неизвестных через свободные. Получим общее решение системы. 4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения базисных неизвестных. Таким образом, мож- но найти частные решения исходной системы уравнений. Схема исследования системы уравнений Пример.         44352 5432 132 5431 5321 432 xxxx xxxx xxx 1. Записываем расширенную матрицу системы и с помощью элементар- ных преобразований приведем матрицу к ступенчатому виду. Находим ранг матрицы и расширенной матрицы )()( ArAr  система несовместна )()( ArAr  система совместна m<n m>nm=n r=mr<m r<m r=m r=nr<n Находим базисные и свободные переменные. Выражаем базисные переменные через свободные Единственное решение Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 24. Тема 2. Системы линейных алгебраических уравнений 24                                            0 1 5 00000 03210 04312 )1( 1 1 5 03210 03210 04312 )1( 4 5 1 43502 04312 03210 2. 2)()(  ArAr следовательно, система совместна. Выберем за базисные переменные x1 и x2, а свободными соответственно будут x3, x4 и x5. 3. Перейдем от матрицы к системе      132 5432 432 5321 xxx xxxx 4. Выразим базисные переменные через свободные.      432 5321 321 4352 xxx xxxx        432 532 1 321 2 435 xxx xxx x      432 5431 321 25,15,22 xxx xxxx Общее решение системы имеет вид  54343543 ;;;321;25,15,22 xxxxxxxx  Частное решение  0;0;0;1;2  Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 25. Тема 3. Векторная алгебра 25 ГЛАВА 2. ВЕКТОРНАЯ АЛГЕБРА Тема 3. Векторная алгебра 3.1. Основные определения 3.2. Линейные операции над векторами 3.3. Проекция вектора на ось 3.4. Разложение вектора по ортам координатных осей 3.5. Действия над векторами, заданными проекциями 3.6. Координаты вектора 3.7. Базис системы векторов 3.8. Скалярное произведение векторов и его свойства 3.9. Векторное произведение векторов и его свойства 3.10. Смешанное произведение векторов Основные определения Величины, которые полностью определяются своим численным значением, называются скалярными. Примерами скалярных величин яв- ляются длина, площадь, объем, масса, температура и другие. Помимо скалярных величин в различных задачах встречаются величины, для оп- ределения которых кроме числового значения необходимо знать также их направление. Такие величины называются векторными. Примерами векторных величин могут служить сила, скорость и другие. Определение. Вектором называется направленный отрезок, имеющий определенную длину, у которого одна из ограничивающих его точек принимается за начало, а вторая за конец. Если А – начало векто- ра и В – его конец, то вектор обозначается символом AB  . Вектор можно обозначить и одной малой латинской буквой с черточкой над ней a  . Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора. AB a   Определение. Вектор, длина которого равна 0, то есть начало и конец его совпадают, называется нулевым вектором и обозначается 0. Нулевой вектор направления не имеет. Определение. Вектор, длина которого равна 1, называется еди- ничным вектором и обозначается через е. Единичный вектор, направле- ние которого совпадает с направлением вектора a  , называется ортом вектора a  . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 26. Тема 3. Векторная алгебра 26 Определение. Вектора называются коллинеарными, если они рас- положены на одной или параллельных прямых. Нулевой вектор коллинеа- рен любому вектору. Определение. Вектора называются равными, если они коллинеар- ны, одинаково направлены и имеют одинаковые модули. Из определения равенства векторов следует, что вектор можно пере- носить параллельно самому себе, помещая его начало в любую точку про- странства, в частности, плоскости. Такой вектор называется свободным. Определение. Три вектора в пространстве называют компланар- ными, если они лежат в одной плоскости или в параллельных плоско- стях. Если среди трех векторов хотя бы один нулевой или два любых коллинеарны, то такие вектора компланарны. Рис. 3.1. Компланарные вектора Линейные операции над векторами Под линейными операциями над векторами понимают операции сложения, вычитания векторов, а так же умножение вектора на число. Пусть a  и b  произвольные вектора. Необходимо найти a  +b  . Правило параллелограмма Возьмем произвольную точку О и построим вектор aOA   и bOB   . Достроим до параллелограмма. Суммой векторов будет являться направленная диагональ полученного параллелограмма. Правило треугольника Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 27. Тема 3. Векторная алгебра 27 Конец вектора a  соединяем с началом вектора b  . Суммой этих векторов будет вектор с началом в точке О и концом в точке В. Под разностью векторов a  и b  понимается вектор c  такой, что b+c=a. Отметим, что в параллелограмме, построенном на векторах a  и b  , одна направленная диагональ является суммой векторов a  и b  , а другая разностью векторов. Произведение вектора на скаляр Произведением вектора a  на скаляр называется вектор λa  , кото- рый имеет длину a   , коллинеарен вектору a  , имеет направление векто- ру a  , если λ>0 и противоположен по направлению, если λ<0. Свойства линейных операций над векторами 1. a  + b  = b  + a  – коммутативность. 2. a  + (b  + с  ) = (a  + b  )+ с  3. a  + 0  = a  4. a  +(–1)a  = 0  5. ()a  = (a  ) – ассоциативность 6. (+)a  = a  + a  – дистрибутивность 7. (a  + b  ) = a  + b  8. 1a  = a  Эти свойства позволяют проводить преобразования в линейных операциях с вектором, как это делается в обычной алгебре: слагаемые меняют местами, вводят скобки, группируют, выносят за скобки, как скалярные, так и векторные общие множители. Проекция вектора на ось Пусть AB – произвольный вектор 0AB . Обозначим через А1 и В1 проекции на ось l соответственно начало А и конец В вектора AB и рас- смотрим вектор 11BA . Проекцией вектора AB на ось l называется положительное число 11BA , если вектор 1 1 A B  и ось l одинаковы направлены, и отрицательное Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 28. Тема 3. Векторная алгебра 28 число – 11BA , если вектор 11BA и ось l противоположно направлены. Проекция вектора AB на ось l обозначается: ABпрl . Если точки А1 и В1 совпадают ( 011 BA ), то проекцией вектора AB равна 0. Угол φ между вектором AB и осью l изображен на рисунке 3.2: Рис. 3.2. Угол между вектором и осью Основные свойства проекции 1. Проекция вектора a  на ось l равна произведению модуля вектора a  на cosα cosl  aaпр  Следствие 1. Проекция вектора на ось положительна (отрица- тельна), если вектор образует острый (тупой) угол и равна 0, если этот угол прямой. Следствие 2. Проекции равных векторов на одну и туже ось рав- ны между собой. 2. Проекция суммы нескольких векторов на одну и туже ось равна сумме их проекций на эту ось. 3. При умножении вектора a  на число λ его проекция на ось также ум- ножается на это число. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 29. Тема 3. Векторная алгебра 29 Разложение вектора по ортам координатных осей Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ox, Oy и Oz единичный вектор (орт) и обозначим их i, j, k. Выберем произвольный вектор a  и совмес- тим его начало с начало координат OMa   . Найдем проекции вектора a  на координатные оси. Проведем через конец вектора a  плоскости парал- лельно координатным плоскостям. Точки пересечения этих плоскостей с осями координат обозначим, соответственно, М1, М2, М3, получим пря- моугольный параллелепипед (рис. 3.3), одной из диагоналей которого является вектор OM . Тогда: xaOMOMпр   1x , yaOMOMпр   2y , zaOMOMпр   3z . Тогда kajaiaa zyx   , (3.1) эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей. Числа ах, аy и аz на- зываются координатами вектора a  , то есть координаты вектора есть его проекции на соответствующие координатные оси. Векторное равенство часто записывают в символическом виде: a  (ах; аy; аz). Равенство b  (bх; by; bz) означает, что x y zb b i b j b k      . Зная проекции вектора a  , можно легко найти выражение для модуля вектора. На основании о длине диагонали прямоугольного параллелепипеда: 2 3 2 2 2 1 2 OMOMOMOM  . Отсюда имеем: 222 zyx aaaa   (3.2) Пусть углы вектора a  с осями Ox, Oy и Oz ,соответственно, равны α, β и γ. По свойству проекций вектора на ось имеем:    cos cos cos    aa aa aa z y x (3.3) Следовательно: a a a a a a zyx   cos;cos;cos (3.4) Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 30. Тема 3. Векторная алгебра 30 Рис. 3.3. Разложение вектора Числа cosα, cosβ и cosγ называются направляющими косинусами вектора a  . Подставим выражение (3.4) в равенство (3.2): сos2 α + cos2 β + cos2 γ = 1 То есть сумма квадратов направляющих косинусов нулевого вектора равна 1. Легко заметить, что единичного вектора будет иметь координа- ты e  (cosα; cosβ; cosγ) Итак, задав координаты вектора, всегда можно определить его мо- дуль и направление (то есть сам вектор). Действия над векторами, заданными проекциями Пусть векторы a  =(ах; аy; аz) и b  =(bх; by; bz) заданы своими проек- циями на оси координат Оx, Оy и Оz или, что тоже самое: kajaiaa zyx   kbjbibb zyx   Линейные операции над векторами Так как операции над векторами сводятся к соответствующим ли- нейным операциям над проекциями этих векторов, то можно записать: 1. kbajbaibaba zzyyxx  )()()(   )();();( zzyyxx babababa   . 2. kajaiaa zyx    );;( zyx aaaa    Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 31. Тема 3. Векторная алгебра 31 Равенство векторов Два вектора a  и b  равны тогда и только тогда, когда x x y y z z a b а b a b a b          Коллинеарность векторов Выясним коллинеарность векторов a  и b  , заданными своими ко- ординатами. Так как a  параллелен b  , то можно записать a b  , где λ=const, то есть: ( )x y z x y z x y za i a j a k b i b j b k b i b j b k                   , отсюда: ах=λbх; аy =λby; аz= λbz, то есть: ; ;y yx xz z x y z x y z a aa aa a b b b b b b         Таким образом, проекции коллинеарных векторов пропорциональ- ны. Верно и обратное утверждение: вектора, имеющие пропорциональ- ные координаты, коллинеарны. Координаты вектора Найдем координаты вектора aAB   , если известны координаты то- чек А(x1, y1, z1) и В(x2, y2, z2). Из рисунка 3.2 видно, что kzzjyyixxkzjyixkzjyixOAOBAB  )()()()()( 121212111222  . Рис. 3.2 Следовательно, координаты вектора равны разности соответст- вующих координат конца и начала вектора. );;( 121212 zzyyxxAB  Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 32. Тема 3. Векторная алгебра 32 Базис системы векторов Определение. Система векторов 1a  , 2a  , 3a  называется линейно зависимой, если существуют такие константы 1 , 2 , 3 , не все равные нулю и имеет место равенство 0332211   aaa  . Если из этого равенства с необходимостью следует, что 1 = 2 = 3 =0, то система называется линейно независимой. Определение. Базисом в 3-мерной системе координат называется любая упорядоченная система из трех линейно независимых векторов пространства. Теорема. Векторы );( 1111 zyxa   , );( 2222 zyxa   , );( 3333 zyxa   обра- зуют базис, если 0, где 333 222 111 zyx zyx zyx  . Теорема. Координаты вектора относительно некоторого базиса определяются единственным образом. Пример. Даны три вектора (3,2,4)p  , (4,3,5)q  , (7,5, 2)r   . Показать, что они образуют базис и найти разложение вектора (4,3,2)a  в этом базисе. Решение. Покажем, что вектора p , q , r образуют базис. Вычислим опреде- литель, составленный из координат этих векторов: 3 2 4 4 3 5 18 70 80 84 75 16 11 0 7 5 2              . Так как 0, то векторы p , q , r образуют базис. По теореме, по- лучаем разложение вектора a по базисным векторам p , q , r : 1 2 3 a p q r      1 2 3 4 3 4 7 3 2 3 5 2 4 5 2                                            . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 33. Тема 3. Векторная алгебра 33 Чтобы найти координаты 1  , 2  , 3  вектора a в новом базисе, не- обходимо найти решение следующей системы уравнений: 1 2 3 1 2 3 1 2 3 3 4 7 4, 2 3 5 3, 4 5 2 2.                     Решим эту систему методом Крамера, имеем: 3 4 7 3 2 4 2 3 5 4 3 5 11 4 5 2 7 5 2        , 1 4 4 7 3 3 5 3 2 5 2     , 2 3 4 7 2 3 5 8 4 2 2      , 3 3 4 4 2 3 3 3 4 5 2     . Так как 0, то система совместна и имеет единственное решение: 1 3 11    , 2 8 11   , 3 3 11   . То есть, 3 8 3 + 11 11 11 a p q r   . Определение. Совокупность всех 3-мерных векторов с действи- тельными координатами, рассматриваемая с определенными в ней опе- рациями сложения векторов и умножения вектора на число, образует 3-мерное векторное пространство. Скалярное произведение векторов и его свойства Определение. Скалярным произведением (обозначается bа   или );( bа  ) двух ненулевых векторов а  и b  называется число, равное произве- дению длин этих векторов на косинус угла между ними. cos);( babаbа   , где φ – угол между векторами а и b То есть скалярное произведение двух векторов равно модулю од- ного из них, умноженного на проекцию другого на ось. Свойства скалярного произведения 1. baab   2. )()( abab    Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 34. Тема 3. Векторная алгебра 34 3. aсbсabс   )( 4. 22 0cos aaaa   5. Если вектора а  и b  ненулевые, взаимно перпендикулярны, то их ска- лярное произведение равно 0. Следствие. Если произведение векторов а  и b  равно 0, значит век- тора взаимно перпендикулярны. 6. Пусть заданы два вектора a  (ах; аy; аz) и b  (bх; by; bz), то скалярное произведение можно найти следующим образом zzyyxx babababa   Применение скалярного произведения Угол между векторами Определение угла φ между векторами a  (ах; аy; аz) и b  (bх; by; bz). 222222 cos zyxzyx zzyyxx bbbaaa bababa ba ba      Отсюда следует условие перпендикулярности ненулевых векторовa  и b  . ахbх +аyby +аzbz =0. Проекции вектора Нахождение проекции a  на направление, заданное вектором b  , может осуществляться по формуле: b ab aпрb  или a ab bпрa  , то есть 222 zyx zzyyxx b bbb bababa aпр    . Векторное произведение векторов и его свойства Определение. Три некомпланарные вектора a  , b  , c  , взятые в ука- занном порядке, образуют правую тройку, если с конца третьего векто- ра c  кратчайший поворот от первого вектора a  ко второму вектору b  виден совершающимся против часовой стрелки, и левую, если по часовой. правая тройка левая тройка Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 35. Тема 3. Векторная алгебра 35 Определение. Векторным произведением(обозначается bа   или  bа  ; ) вектора a  на b  называется вектор c  , который 1. перпендикулярен векторам a  и b  2. имеет длину численно равную площади параллелограмма, построенно- го на векторах a  и b  , sin bac  3. вектора a  , b  , c  образуют правую тройку Свойства векторного произведения 1. abba   2. )()()( bababa    3. Два ненулевых вектора a  и b  коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору. 4. cbcacba   )( 5. координаты векторного произведения векторов a  (ах; аy; аz) и b  (bх; by; bz) можно найти через определители следующим образом: yx x zx x zy y zyx yx bb aa k bb aa j bb aa i bbb aaa kji ba yzz z     Некоторые приложения векторного произведения 1. Установление коллинеарности векторов. 0 zyx zyx bbb aaa kji ba 2. Нахождение площади параллелограмма и треугольника. sin baSпарал  sin 2 1  baSтреуг  Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 36. Тема 3. Векторная алгебра 36 Смешанное произведение векторов Определение. Смешанным произведением трех векторов a  , b  , c  называется скалярное произведение векторного произведения первых двух векторов на третий. Обозначается смешанное произведение    );;(; cbacba   или просто cba   . Смешанное произведение cba   по модулю равно объему паралле- лепипеда, построенного на векторах a  , b  и c  . Свойства смешанного произведения 1. Смешанное произведение равно нулю, если: а) хоть один из векторов равен нулю; б) два из векторов коллинеарны; в) векторы компланарны. 2. )()( cbacba   3. ),,(),,(),,(),,(),,(),,( bcaabccabbacacbcba   4. ),,(),,(),,( 2121 cbacbacbaa    5. Объем треугольной пирамиды, образованной векторами a  , b  и c  , равен  cbaVпир  ,, 6 1  6. Если ),,( zyx aaaa   , ),,(),,,( ztxzyx ccccbbbb   , то zyx zyx zyx ccc bbb aaa cba ),,(  Некоторые приложения смешанного произведения 1. Определение взаимной ориентации векторов в пространстве. Если ),,( cba  >0 , то cba  ,, – правая тройка Если ),,( cba  <0, то cba  ,, – левая тройка Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 37. Тема 3. Векторная алгебра 37 2. Установление компланарности векторов. Три вектора компланарны, когда их смешанное произведение равно 0. 3. Определение объема параллелепипеда и треугольной пирамиды. ),,( cbaVпар   ; ),,( 6 1 cbaVпир   Пример. Вершинами пирамиды служат точки: А(1;2;3) B(0;–1;1) C(2;5;2) D(3;0;–2) Найти объем пирамиды. Решение.  ABa  (–1;–3;–2)  ACb  (1;3;–1)  ADc  (2;–2;–5) 4 522 131 231 6 1     пирV Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 38. Тема 4. Аналитическая геометрия на плоскости 38 ГЛАВА 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Тема 4. Аналитическая геометрия на плоскости 4.1. Основные понятия 4.2. Преобразование системы координат Основные определения Под системой координат на плоскости понимают способ, позво- ляющий численно описать положение любой ее точки. Одной из таких систем является декартова прямоугольная система координат. Прямоугольная система координат задается двумя взаимно пер- пендикулярными прямыми – осями, на которых выбрано положительное направление и задан единичный отрезок. Точку пересечения осей назы- вают началом координат (О). А сами оси называют: осью абсцисс (Ох) и ось ординат (Оу). Рассмотрим произвольную точку М на плоскости. Вектор OM на- зывается радиус-вектором точки М. Произвольной точке на плоскости ставится в соответствие два чис- ла: абсцисса точки – это проекция радиуса вектора точки на ось Ох, ордината – проекция этого же вектора на ось Оу. Эти два числа полно- стью определяют положение точки на плоскости. Другой практически важной системой координат является поляр- ная система координат. Полярная система координат задается точкой – называемой полюсом, лучом Оr, называемым полярной осью и единич- ным вектором того же направления, что и луч Оr. Положение произволь- ной точки М на плоскости определяется двумя числами: ее расстоянием r от полюса и углом φ, образованным отрезком ОМ с полярной осью (от- счет углов ведется в направлении, противоположном движению часовой стрелки). Числа r и φ называются полярными координатами точки М, пишут М(r,φ), при этом r называют полярным радиусом, φ – полярным углом. Можно установить связь между полярной системой координат и декартовой прямоугольной системой, если поместить начало декартовой Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 39. Тема 4. Аналитическая геометрия на плоскости 39 прямоугольной системы в полюс, а полярную ось направить вдоль поло- жительного направления оси Ох. Декартова система ко- ординат Полярная система коор- динат Тогда координаты произвольной точки в двух различных системах координат связываются соотношениями:        sin cos ry rx Полярные координаты точки М выражаются следующим обра- зом.        x y tg yxr  22 Определяя величину φ, следует установить (по знакам x и y) чет- верть, в которой лежит искомый угол, и учитывать, что   . Пример. Дана точка N (3; –3). Найти полярные координаты этой точки. Решение.          1 3 3 231833 22 tg r Так как точка находится в четвертой четверти, то 4    . N( 23 ; 4   ). Преобразование систем координат Определение. Переход от одной системы координат в какую-либо другую называется преобразованием системы координат. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 40. Тема 4. Аналитическая геометрия на плоскости 40 Параллельный перенос Определение. Под параллельным переносом осей координат по- нимают переход к новой системе координат О1x1y1, при котором меня- ется положение начала координат, а направление и масштаб остаются неизменными. Пусть оси O1x1 и O1y1 параллельны осям Ox и Oy. Допустим точка M(x;y) в системе координат О1x1y1 имеет координаты x’ и y’. А начало новой системы координат относительно старой имеет координаты (x0;y0). Установим связь между старыми и новыми координатами. Рис. 4.1. Параллельный перенос осей координат Из чертежа видно, что      '. ,' 0 0 yyy xxx (4.1) Полученные формулы позволяют находить старые координаты по известным новым и наоборот. Поворот осей координат Определение. Под поворотом понимают такое преобразование осей координат, при котором обе оси поворачиваются на один угол, а начало координат и масштаб остаются неизменными. Повернем ось координат Oxy на угол α, и пусть она займет поло- жение О1x1y1. Получим соотношения Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 41. Тема 4. Аналитическая геометрия на плоскости 41      .cos'sin' ,sin'cos'   yxy yxx (4.2) Рис. 4.2. Поворот осей координат Полученные формулы называют формулами поворота осей. Если новая система координат О1x1y1 получена из старой Оxy пу- тем параллельного переноса осей координат и последующим поворотом осей координат на угол α. Используя формулы (4.1) и (4.2), легко полу- чить формулы      .cos'sin' ,sin'cos' 0 0 yyxy xyxx   (4.3) Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 42. Тема 5. Линия на плоскости 42 Тема 5. Линия на плоскости 5.1. Основные определения 5.2. Прямая на плоскости Определение. Уравнением линии на плоскости Oxy называется такое уравнение F(x;y)=0, которому удовлетворяют координаты x и y каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой прямой. Уравнение линии позволяет изучение геометрических свойств ли- нии заменить исследованием ее уравнения. Определение. Уравнение F(r;φ)=0 называется уравнением линии в полярной системе координат. Определение. Линию на плоскости можно задать при помощи двух уравнений (параметрическое уравнение)      ).( ),( tyy txx Уравнение прямой на плоскости Простейшей из линий является прямая. Разным способам задания прямой, соответствуют в прямоугольной системе координат разные виды ее уравнений. Общее уравнение прямой Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ах+Ву+С=0, (5.1) причем постоянные А, В не равны нулю одновременно, т. е. А2 + В2  0. Это уравнение первого порядка называют общим уравнением прямой. Разрешим уравнение (5.1) относительно переменной y . B C x B A y  Обозначим B A k  и B C b  , тогда получим y=kx+b. (5.2) Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 43. Тема 5. Линия на плоскости 43 Из уравнения (5.2) видно, что точка N(0;b) точка пересечения с осью Oy. k называют угловым коэффициентом прямой ( tgk  ). Уравне- ние (5.2) называется уравнением прямой с угловым коэффициентом. В зависимости от значений постоянных А, В и С возможны сле- дующие частные случаи: C=0, А0, В0 – прямая проходит через начало координат; А=0, В0, С0 (By+C=0) – прямая параллельна оси Ох; В=0, А0, С0 (Аx+C=0) – прямая параллельна оси Оу; В=С=0, А0 – прямая совпадает с осью Оу; А=С=0, В0 – прямая совпадает с осью Ох. Уравнение прямой, проходящей через две точки Пусть в пространстве заданы две точки M1(x1; y1) и M2(x2; y2), тогда уравнение прямой, проходящей через эти точки: . 12 1 12 1 yy yy xx xx      Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. Дробь k xx yy    12 12 называется угловым коэффициентом прямой. Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4). Применяя записанную выше формулу, получаем: 34 , 2 3 2 4 , 31 3 42 4            xy xy xy 01  yx – общее уравнение прямой. 1 xy – уравнение прямой с угловым коэффициентом. Уравнение прямой в отрезках Если в общем уравнении прямой Ах+Ву+С=0 С0, то, разделив на С, получим: 1 у С В х С А или 1 b y a x , (5.3) где B C b A C a  ; . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 44. Тема 5. Линия на плоскости 44 Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – коор- динатой точки пересечения прямой с осью Оу. Замечание. Не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат. Пример. Задано общее уравнение прямой 2х–3у+5=0. Найти уравнение этой прямой в отрезках. .1 3525 ,1 5 3 5 2 ,532        yx yx yx Уравнение прямой, проходящей через точку с заданным угловым коэффициентом Пусть прямая проходит через точку M(x0;y0) и дан угловой коэф- фициент этой прямой k. ).( 00 xxkyy  Нормальное уравнение прямой Если обе части уравнения Ах+Ву+С=0 умножить на число 22 1 BA   , которое называется нормирующем множителем, то получим 0coscos  pyx  – нормальное уравнение прямой. Знак  нормирующего множителя надо выбирать так, чтобы С < 0.р – длина перпендикуляра, опущенного из начала координат на прямую, а  – угол, образованный этим перпендикуляром с положительным на- правлением оси Ох. Пример. Дано общее уравнение прямой 3х–4у–65=0. Найти нормальное уравнение прямой. Найдем нормирующий множитель 5 1 )4(3 1 22    , тогда 5 4 sin, 5 3 cos   , а р=13. Нормальное уравнение прямой будет иметь вид 013 5 4 5 3  yx Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 45. Тема 5. Линия на плоскости 45 Угол между прямыми на плоскости Пусть две прямые заданы уравнениями с угловыми коэффициентами y=k1x+b1, y=k2x+b2 (рис. 5.1) Рис. 5.1. Угол между двумя прямыми Требуется найти угол φ, на который надо повернуть в положитель- ном направлении первую прямую вокруг точки пересечения до совпаде- ния со второй прямой. . 1 )( 21 12 12 kk kk tgtg     (5.4) Если две прямые перпендикулярны, то . 2    Следовательно, 10 1 21 12 21     kk kk kk ctg ( 2 1 1 k k  ) Если две прямые параллельны, то .0 Следовательно, 012  kk или 12 kk  . Расстояние от точки до прямой Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах+Ву+С=0 определяется как 22 00 BA CByAx d    . (5.5) Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 46. Тема 6. Линии второго порядка 46 Тема 6. Линии второго порядка 6.1. Основные понятия 6.2. Окружность 6.3. Эллипс 6.4. Гипербола 6.5. Парабола Основные понятия Рассмотрим линии, определяемые уравнением второй степени от- носительно текущих координат Ах2 +2Вху+Су2 +2Dx+2Ey+F=0. (6.1) Коэффициенты уравнения действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Окружность Определение. Множество всех точек М(x;y) плоскости, равно- удаленных от центра О(x0;y0) называется окружностью. Пусть МО=R, тогда (x–x0)2 +(y–y0)2 =R2 – уравнение окружности. Рис. 6.1. Окружность Эллипс Определение. Эллипсом называется множество точек на плоско- сти, сумма расстояний от которых до двух фиксированных точек, на- зываемых фокусами, есть величина постоянная (равная 2a, a>0), боль- шая, чем расстояние между фокусами (2c). Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 47. Тема 6. Линии второго порядка 47 2a – большая (фокальная) ось; a – большая полуось; 2b – малая ось; b – малая полуось. Пусть точка M(x;y) принадлежит эллипсу, F1(-c;0) и F2 (c;0) – фо- кусы, тогда cFF 221  . Положим ,)( 22 11 ycxMFr  .)( 22 22 ycxMFr  (6.1) Рис. 6.2. К определению эллипса Определение. r1 и r2 называются фокальными радиус-векторами точки M(x;y). Из определения эллипса r1+r2=const. Подставим в это уравнение (6.1) aycxycx 2)()( 2222  Перенесем один из корней вправо: 2222 )(2)( ycxaycx  . Возведем обе части в квадрат, получим .)(4)(4)( 2222222 ycxaycxaycx  Приведем подобные. Перенесем корень влево, а все остальные сла- гаемые – вправо. .)( 222 xcaycxa  Возведем обе части в квадрат   ).()( , ,22 ,2)( 22222222 224222222 22242222222 2224222 caayacax cxayacaxa cxxcaayaxcacaxa cxxcaaycxa     Положим b2 =a2 -c2 , тогда ).( 2222222 caayaxb  Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 48. Тема 6. Линии второго порядка 48 Разделим на a2 b2 , получим каноническое уравнение эллипса 12 2 2 2  b y a x . (6.2) Теорема. Фокусное расстояние и полуоси эллипса связаны соот- ношением: a2 =b2 +c2 . Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом. . a c e  Так как по определению эллипса с<a, то е<1. Определение. Величина a b k  называется коэффициентом сжа- тия эллипса, а величина a ba k  1 называется сжатием эллипса. Коэффициент сжатия и эксцентриситет связаны соотношением: k2 =1–e2 .  Если a=b (c=0, e=0, фокусы сливаются), то эллипс превращается в ок- ружность.  Если для точки М(х1;у1) выполняется условие: 12 2 1 2 2 1  b y a x , то она нахо- дится внутри эллипса, а если 12 2 1 2 2 1  b y a x , то точка находится вне эллипса. Теорема. Для произвольной точки М(x;у), принадлежащей эллипсу верны соотношения:      . , 2 1 exar exar Определение. Директрисами эллипса называют две прямые, па- раллельные малой оси и отстоящие от нее на расстоянии, равном e a Теорема. Для того, чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»
  • 49. Тема 6. Линии второго порядка 49 Рис. 6.3. Эллипс с директрисами Касательная к эллипсу Уравнение касательной к эллипсу в точке касания M(x0;y0) имеет вид 12 0 2 0  b yy a xx . Гипербола Определение. Гиперболой называется множество точек плоско- сти, для которых модуль разности расстояний от двух фиксированных точек, называемых фокусами есть величина постоянная, меньшая рас- стояния между фокусами. 2а называется действительной осью гиперболы, а называется дей- ствительной полуосью гиперболы 2b называется мнимой осью гиперболы, b называется мнимой по- луосью гиперболы Пусть точка M(x;y) принадлежит эллипсу, F1(–c;0) и F2 (c;0) – фо- кусы, тогда cFF 221  . ,)( 22 11 ycxMFr  .)( 22 22 ycxMFr  По определению r1–r2= 2a. По аналогии с выводом канонического уравнения для эллипса получим. aycxycx 2)()( 2222  2222222 )()(44)( ycxycxaaycx  xcaycxa 44)(4 222  22242222 2)( cxxcaayacxa  22242222222 22 cxxcaayacaxcaxa  Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»