SlideShare a Scribd company logo
1 of 12
Group, Ring, Field
Finite (Galois) Fields
• finite fields play a key role in cryptography
• can show number of elements in a finite field
must be a power of a prime pn
• known as Galois fields
• denoted GF(pn)
• in particular often use the fields:
– GF(p)
– GF(2n)
Galois Fields GF(p)
• GF(p) is the set of integers {0,1, … , p-1} with
arithmetic operations modulo prime p
• these form a finite field
– since have multiplicative inverses
– find inverse with Extended Euclidean algorithm
• hence arithmetic is “well-behaved” and can do
addition, subtraction, multiplication, and
division without leaving the field GF(p)
GF(7) Multiplication Example
 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1
Polynomial Arithmetic
• can compute using polynomials
f(x) = anxn + an-1xn-1 + … + a1x + a0 = ∑ aixi
• nb. not interested in any specific value of x
• which is known as the indeterminate
• several alternatives available
– ordinary polynomial arithmetic
– poly arithmetic with coords mod p
– poly arithmetic with coords mod p and
polynomials mod m(x)
Ordinary Polynomial Arithmetic
• add or subtract corresponding coefficients
• multiply all terms by each other
• eg
let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1
f(x) + g(x) = x3 + 2x2 – x + 3
f(x) – g(x) = x3 + x + 1
f(x) x g(x) = x5 + 3x2 – 2x + 2
Polynomial Arithmetic with Modulo
Coefficients
when computing value of each coefficient do
calculation modulo some value
forms a polynomial ring
could be modulo any prime
but we are most interested in mod 2
ie all coefficients are 0 or 1
eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1
f(x) + g(x) = x3 + x + 1
f(x) x g(x) = x5 + x2
Polynomial Division
• can write any polynomial in the form:
– f(x) = q(x) g(x) + r(x)
– can interpret r(x) as being a remainder
– r(x) = f(x) mod g(x)
• if have no remainder say g(x) divides f(x)
• if g(x) has no divisors other than itself & 1 say
it is irreducible (or prime) polynomial
• arithmetic modulo an irreducible polynomial
forms a field
Polynomial GCD
• can find greatest common divisor for polys
– c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree
which divides both a(x), b(x)
• can adapt Euclid’s Algorithm to find it:
Euclid(a(x), b(x))
if (b(x)=0) then return a(x);
else return
Euclid(b(x), a(x) mod b(x));
Problem: Find the GCD of 3x6 + 2x2+x +5 and 6x4 + x3 + 2x +4 in
F7[x]
Solution: Divide
3x6 + 2x2+x +5 by 6x4 + x3 + 2x +4
Q: 4x2+ 4x +4 R: 2x3 +6x2+5x +3
Divide
3x6 + 2x2+x +5 by 2x3 +6x2+5x +3
Q: 3x +2 R: x2+4x+5
Divide 2x3 +6x2+5x +3 by x2+4x+5
Q: 2x +5 R: 3x +6
Divide x2+4x+5 by 3x +6
Q: 5x +3 R: 1
Problem: determine the GCD for the pair of
polynomials X3 + x +1 and x2 + x +1 over GF(2).
Ans: 1

More Related Content

Similar to 23.ppt

Logarithms
LogarithmsLogarithms
Logarithms
supoteta
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functions
timschmitz
 
The Algebric Functions
The Algebric FunctionsThe Algebric Functions
The Algebric Functions
itutor
 
Functions
FunctionsFunctions
Functions
SPSV
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
timschmitz
 

Similar to 23.ppt (20)

Logarithms
LogarithmsLogarithms
Logarithms
 
Number theory lecture (part 2)
Number theory lecture (part 2)Number theory lecture (part 2)
Number theory lecture (part 2)
 
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functions
 
Higher Maths 121 Sets And Functions 1205778086374356 2
Higher Maths 121 Sets And Functions 1205778086374356 2Higher Maths 121 Sets And Functions 1205778086374356 2
Higher Maths 121 Sets And Functions 1205778086374356 2
 
Number theory
Number theoryNumber theory
Number theory
 
The Algebric Functions
The Algebric FunctionsThe Algebric Functions
The Algebric Functions
 
Functions
FunctionsFunctions
Functions
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
 
Graph of functions
Graph of functionsGraph of functions
Graph of functions
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Error control coding bch, reed-solomon etc..
Error control coding   bch, reed-solomon etc..Error control coding   bch, reed-solomon etc..
Error control coding bch, reed-solomon etc..
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
Ecc2
Ecc2Ecc2
Ecc2
 
2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptx2. Fixed Point Iteration.pptx
2. Fixed Point Iteration.pptx
 
gbapplfinal.pdf
gbapplfinal.pdfgbapplfinal.pdf
gbapplfinal.pdf
 
composite functions
composite functionscomposite functions
composite functions
 
Function evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etcFunction evaluation, termination, vertical line test etc
Function evaluation, termination, vertical line test etc
 

More from TapodhirAcharjee2 (8)

Wireless-4.pptx
Wireless-4.pptxWireless-4.pptx
Wireless-4.pptx
 
41.ppt
41.ppt41.ppt
41.ppt
 
32.pptx
32.pptx32.pptx
32.pptx
 
new 2.ppt
new 2.pptnew 2.ppt
new 2.ppt
 
MANET.ppt
MANET.pptMANET.ppt
MANET.ppt
 
2.ppt
2.ppt2.ppt
2.ppt
 
3.pptx
3.pptx3.pptx
3.pptx
 
4.ppt
4.ppt4.ppt
4.ppt
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

23.ppt

  • 2. Finite (Galois) Fields • finite fields play a key role in cryptography • can show number of elements in a finite field must be a power of a prime pn • known as Galois fields • denoted GF(pn) • in particular often use the fields: – GF(p) – GF(2n)
  • 3. Galois Fields GF(p) • GF(p) is the set of integers {0,1, … , p-1} with arithmetic operations modulo prime p • these form a finite field – since have multiplicative inverses – find inverse with Extended Euclidean algorithm • hence arithmetic is “well-behaved” and can do addition, subtraction, multiplication, and division without leaving the field GF(p)
  • 4. GF(7) Multiplication Example  0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0 2 4 6 1 3 5 3 0 3 6 2 5 1 4 4 0 4 1 5 2 6 3 5 0 5 3 1 6 4 2 6 0 6 5 4 3 2 1
  • 5. Polynomial Arithmetic • can compute using polynomials f(x) = anxn + an-1xn-1 + … + a1x + a0 = ∑ aixi • nb. not interested in any specific value of x • which is known as the indeterminate • several alternatives available – ordinary polynomial arithmetic – poly arithmetic with coords mod p – poly arithmetic with coords mod p and polynomials mod m(x)
  • 6. Ordinary Polynomial Arithmetic • add or subtract corresponding coefficients • multiply all terms by each other • eg let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1 f(x) + g(x) = x3 + 2x2 – x + 3 f(x) – g(x) = x3 + x + 1 f(x) x g(x) = x5 + 3x2 – 2x + 2
  • 7. Polynomial Arithmetic with Modulo Coefficients when computing value of each coefficient do calculation modulo some value forms a polynomial ring could be modulo any prime but we are most interested in mod 2 ie all coefficients are 0 or 1 eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1 f(x) + g(x) = x3 + x + 1 f(x) x g(x) = x5 + x2
  • 8. Polynomial Division • can write any polynomial in the form: – f(x) = q(x) g(x) + r(x) – can interpret r(x) as being a remainder – r(x) = f(x) mod g(x) • if have no remainder say g(x) divides f(x) • if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial • arithmetic modulo an irreducible polynomial forms a field
  • 9. Polynomial GCD • can find greatest common divisor for polys – c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x) • can adapt Euclid’s Algorithm to find it: Euclid(a(x), b(x)) if (b(x)=0) then return a(x); else return Euclid(b(x), a(x) mod b(x));
  • 10.
  • 11. Problem: Find the GCD of 3x6 + 2x2+x +5 and 6x4 + x3 + 2x +4 in F7[x] Solution: Divide 3x6 + 2x2+x +5 by 6x4 + x3 + 2x +4 Q: 4x2+ 4x +4 R: 2x3 +6x2+5x +3 Divide 3x6 + 2x2+x +5 by 2x3 +6x2+5x +3 Q: 3x +2 R: x2+4x+5 Divide 2x3 +6x2+5x +3 by x2+4x+5 Q: 2x +5 R: 3x +6 Divide x2+4x+5 by 3x +6 Q: 5x +3 R: 1
  • 12. Problem: determine the GCD for the pair of polynomials X3 + x +1 and x2 + x +1 over GF(2). Ans: 1