SlideShare a Scribd company logo
2.3 Operations that preserve convexity
& 2.4 Generalized inequalities
Reading circle on Convex Optimization - Boyd & Vandenberghe
Presenter Ryotaro Tsukada
Nov. 13, 2019
1
2.3 Operations that preserve convexity
How to establish convexity of a set C ?
1. Apply definition
x1, x2 ∈ C, 0 ≤ θ ≤ 1 ⇒ θx1 + (1 − θ)x2 ∈ C
2. Show that C can be built from simple convex
sets by operations that preserve convexity
• Intersection
• Affine function
• Perspective function
• Linear-fractional function
2
Intersection
The intersection of convex sets is convex
Example 2.8 (for m = 2)
S = {x ∈ R2
| |p(t)| ≤ 1 for |t| ≤ 3/π}
where p(t) = x1 cos t + x2 cos 2t
is convex because:
S =
∩
|t|≤3/π
{x| − 1 ≤ x1 cos t + x2 cos 2t ≤ 1}
halfspace
3
Affine function (1/3)
Suppose
• S ⊆ Rn
, C ⊆ Rm
are convex
• f : Rn
→ Rm
is affine (f(x) = Ax + b)
Then
• the image of S under f is convex
f(S) = {f(x) | x ∈ S}
• the inverse image of C under f is convex
f−1
(C) = {f−1
(x) | x ∈ C}
4
Affine function (2/3)
Example 2.10
The solution set of a linear matrix inequality
{x | A(x) = x1A1 + · · · + xnAn ⪯ B}
where B, Ai ∈ Sm
is convex because it is the inverse image of
{f(x) | f(x) = B − A(x) ⪰ 0} (positive semidefinite cone)
under the affine function f : Rn
→ Sm
5
Affine function (3/3)
Example 2.11
The set
{x | xT
Px ≤ (cT
x)2
, cT
x ≥ 0} (hyperbolic cone)
where P ∈ Sn
+ and c ∈ Rn
is convex because it is the inverse image of
{(z, t) | zT
z ≤ t2
, t ≥ 0} (second-order cone)
under the affine function f(x) = (P1/2
x, cT
x)
6
Perspective function
Define the perspective function P : Rn+1
→ Rn
as
P(z, t) = z/t, dom P = {(z, t) | t > 0}
Then the image of a convex set C ⊆ dom P is convex
P(C) = {P(x) | x ∈ C}
7
Pin-hole camera interpretation of P
P : R3
→ R2
is just like a pin-hole camera:
• an opaque horizontal plane x3 = 0,
a horizontal image plane x3 = −1
• an object at x (x3 > 0) forms an image at
−(x1/x3, x2/x3, 1) = −(P(x), 1)
8
P(line segments) = line segments
Suppose
x = (˜x, xn+1), y = (˜y, yn+1) ∈ Rn+1
, xn+1 > 0, yn+1 > 0
Then
P(
line segments [x,y]
θx + (1 − θ)y) =
θ˜x + (1 − θ)˜y
θxn+1 + (1 − θ)yn+1
= µP(x) + (1 − µ)P(y)
line segments [P(x),P(y)]
where
µ =
θxn+1
θxn+1 + (1 − θ)yn+1
∈ [0, 1]
9
Linear-fractional function (1/3)
Suppose g : Rn
→ Rm+1
is affine, i.e.,
g(x) =
[
A
cT
]
x +
[
b
d
]
where A ∈ Rm×n
, b ∈ Rm
, c ∈ Rn
, d ∈ R
10
Linear-fractional function (1/3)
Suppose g : Rn
→ Rm+1
is affine, i.e.,
g(x) =
[
A
cT
]
x +
[
b
d
]
where A ∈ Rm×n
, b ∈ Rm
, c ∈ Rn
, d ∈ R
Then the linear-fractional function f : Rn
→ Rm
is
given by f = P ◦ g, i.e,
f(x) =
Ax + b
cT + d
, dom f = {x | cT
x + d > 0}
10
Linear-fractional function (2/3)
Example 2.13
Suppose
• u and v are random variables that take on
values in {1, · · · , n} and {1, · · · , m}, respectively
• pij := prob(u = i, v = j)
• fij := prob(u = i | v = j)
• C := {p | p ∈ all possible discrete distributions}
11
Linear-fractional function (3/3)
Example 2.13
Then the associated set of conditional probabilities
{f(p) | p ∈ C} is convex because:
• C is a convex set (by definition)
• f is a linear-fractional mapping from p
(fij =
pij
∑n
k=1 pkj
)
12
2.4 Generalized inequalities
Preliminary: proper cone
A cone K ⊆ Rn
is a proper cone if
• K is convex
• K is closed
• K is solid (int K ̸= ∅)
• K is pointed (x ∈ K, −x ∈ K ⇒ x = 0)
13
Generalized inequality
Associate with the proper cone K:
• the partial ordering on Rn
defined by
x ⪯K y ⇐⇒ y − x ∈ K
• the strict partial ordering on Rn
defined by
x ≺K y ⇐⇒ y − x ∈ int K
14
Why ‘generalized’?
When K = R+:
• the partial ordering ⪯K is the usual ≤ on R
x ⪯R+
y ⇐⇒ y − x ∈ R+ ⇐⇒ x ≤ y
• the strict partial ordering ≺K is the usual < on R
x ≺R+
y ⇐⇒ y − x ∈ int R+ ⇐⇒ x < y
15
Componentwise inequality
Example 2.14
When K = Rn
+ (nonnegative orthant):
x ⪯Rn
+
y ⇐⇒ xi ≤ yi, i = 1, · · · , n
x ≺Rn
+
y ⇐⇒ xi < yi, i = 1, · · · , n
This partial ordering is so common that we drop the
subscript: x ⪯ y, x ≺ y
16
Matrix inequality
Example 2.15
When K = Sn
+ (positive semidefinite cone):
X ⪯Sn
+
Y ⇐⇒ Y − X is positive semidefinite
X ≺Sn
+
Y ⇐⇒ Y − X is positive definite
This partial ordering is so common that we drop the
subscript: X ⪯ Y, X ≺ Y
17
Properties of generalized inequalities
Many properties of ⪯K are similar to ≤ on R:
• if x ⪯K y and u ⪯K v, then x + u ⪯K y + v
• if x ⪯K y and y ⪯K z, then x ⪯K z
• if x ⪯K y and α ≥ 0, then αx ⪯K αy
• x ⪯K x
• if x ⪯K y and y ⪯K x, then x = y
• · · ·
18
⪯K is not in general a linear ordering
When K = R2
+:
x1
x2
x3
⪯K is not in general a linear ordering
When K = R2
+:
x1
x2
x3
x1 ⪯R2
+
x2
⪯K is not in general a linear ordering
When K = R2
+:
x1
x2
x3
x1 ⪯R2
+
x2
?
19
Minimum and minimal elements (1/2)
With respect to ⪯K:
• x ∈ S is the minimum element of S if
y ∈ S ⇒ x ⪯K y
(the element that is smaller than everything else)
• x ∈ S is a minimal element of S if
y ∈ S, y ⪯K x ⇒ y = x
(an element that has nothing smaller than it)
20
Minimum and minimal elements (2/2)
Example 2.17
When K = R2
+ (componentwise inequality in R2
):
x ⪯R2
+
y ⇐⇒ y is above and to the right of x
Then x1 is the minimum of S1, x2 is a minimal of S2
21

More Related Content

Similar to 2.3 Operations that preserve convexity & 2.4 Generalized inequalities

Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
Tarun Gehlot
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Topic5
Topic5Topic5
Topic5
HAM Karim
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
Another possibility
Another possibilityAnother possibility
Another possibility
Css Founder
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
Elliptic Curves
Elliptic CurvesElliptic Curves
Elliptic Curves
AlexanderWei11
 
Integration
IntegrationIntegration
Integration
RipaBiba
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-center
Frank Nielsen
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
Edhole.com
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Tasuku Soma
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...
BernardMourrain
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3neenos
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Frank Nielsen
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
Alexander Litvinenko
 

Similar to 2.3 Operations that preserve convexity & 2.4 Generalized inequalities (20)

Cse41
Cse41Cse41
Cse41
 
Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Topic5
Topic5Topic5
Topic5
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Contour
ContourContour
Contour
 
Another possibility
Another possibilityAnother possibility
Another possibility
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Elliptic Curves
Elliptic CurvesElliptic Curves
Elliptic Curves
 
Integration
IntegrationIntegration
Integration
 
The integral
The integralThe integral
The integral
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-center
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Nonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares MethodNonconvex Compressed Sensing with the Sum-of-Squares Method
Nonconvex Compressed Sensing with the Sum-of-Squares Method
 
From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...From moments to sparse representations, a geometric, algebraic and algorithmi...
From moments to sparse representations, a geometric, algebraic and algorithmi...
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 

Recently uploaded

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
ewymefz
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
slg6lamcq
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
ewymefz
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Linda486226
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Boston Institute of Analytics
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
yhkoc
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
vcaxypu
 
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
Tiktokethiodaily
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
TravisMalana
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
enxupq
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
enxupq
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
mbawufebxi
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
ewymefz
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
benishzehra469
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单
ewymefz
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
ahzuo
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
Subhajit Sahu
 
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
John Andrews
 

Recently uploaded (20)

一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
 
SOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape ReportSOCRadar Germany 2024 Threat Landscape Report
SOCRadar Germany 2024 Threat Landscape Report
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单
 
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
一比一原版(CBU毕业证)卡普顿大学毕业证如何办理
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
 
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
Chatty Kathy - UNC Bootcamp Final Project Presentation - Final Version - 5.23...
 

2.3 Operations that preserve convexity & 2.4 Generalized inequalities

  • 1. 2.3 Operations that preserve convexity & 2.4 Generalized inequalities Reading circle on Convex Optimization - Boyd & Vandenberghe Presenter Ryotaro Tsukada Nov. 13, 2019 1
  • 2. 2.3 Operations that preserve convexity
  • 3. How to establish convexity of a set C ? 1. Apply definition x1, x2 ∈ C, 0 ≤ θ ≤ 1 ⇒ θx1 + (1 − θ)x2 ∈ C 2. Show that C can be built from simple convex sets by operations that preserve convexity • Intersection • Affine function • Perspective function • Linear-fractional function 2
  • 4. Intersection The intersection of convex sets is convex Example 2.8 (for m = 2) S = {x ∈ R2 | |p(t)| ≤ 1 for |t| ≤ 3/π} where p(t) = x1 cos t + x2 cos 2t is convex because: S = ∩ |t|≤3/π {x| − 1 ≤ x1 cos t + x2 cos 2t ≤ 1} halfspace 3
  • 5. Affine function (1/3) Suppose • S ⊆ Rn , C ⊆ Rm are convex • f : Rn → Rm is affine (f(x) = Ax + b) Then • the image of S under f is convex f(S) = {f(x) | x ∈ S} • the inverse image of C under f is convex f−1 (C) = {f−1 (x) | x ∈ C} 4
  • 6. Affine function (2/3) Example 2.10 The solution set of a linear matrix inequality {x | A(x) = x1A1 + · · · + xnAn ⪯ B} where B, Ai ∈ Sm is convex because it is the inverse image of {f(x) | f(x) = B − A(x) ⪰ 0} (positive semidefinite cone) under the affine function f : Rn → Sm 5
  • 7. Affine function (3/3) Example 2.11 The set {x | xT Px ≤ (cT x)2 , cT x ≥ 0} (hyperbolic cone) where P ∈ Sn + and c ∈ Rn is convex because it is the inverse image of {(z, t) | zT z ≤ t2 , t ≥ 0} (second-order cone) under the affine function f(x) = (P1/2 x, cT x) 6
  • 8. Perspective function Define the perspective function P : Rn+1 → Rn as P(z, t) = z/t, dom P = {(z, t) | t > 0} Then the image of a convex set C ⊆ dom P is convex P(C) = {P(x) | x ∈ C} 7
  • 9. Pin-hole camera interpretation of P P : R3 → R2 is just like a pin-hole camera: • an opaque horizontal plane x3 = 0, a horizontal image plane x3 = −1 • an object at x (x3 > 0) forms an image at −(x1/x3, x2/x3, 1) = −(P(x), 1) 8
  • 10. P(line segments) = line segments Suppose x = (˜x, xn+1), y = (˜y, yn+1) ∈ Rn+1 , xn+1 > 0, yn+1 > 0 Then P( line segments [x,y] θx + (1 − θ)y) = θ˜x + (1 − θ)˜y θxn+1 + (1 − θ)yn+1 = µP(x) + (1 − µ)P(y) line segments [P(x),P(y)] where µ = θxn+1 θxn+1 + (1 − θ)yn+1 ∈ [0, 1] 9
  • 11. Linear-fractional function (1/3) Suppose g : Rn → Rm+1 is affine, i.e., g(x) = [ A cT ] x + [ b d ] where A ∈ Rm×n , b ∈ Rm , c ∈ Rn , d ∈ R 10
  • 12. Linear-fractional function (1/3) Suppose g : Rn → Rm+1 is affine, i.e., g(x) = [ A cT ] x + [ b d ] where A ∈ Rm×n , b ∈ Rm , c ∈ Rn , d ∈ R Then the linear-fractional function f : Rn → Rm is given by f = P ◦ g, i.e, f(x) = Ax + b cT + d , dom f = {x | cT x + d > 0} 10
  • 13. Linear-fractional function (2/3) Example 2.13 Suppose • u and v are random variables that take on values in {1, · · · , n} and {1, · · · , m}, respectively • pij := prob(u = i, v = j) • fij := prob(u = i | v = j) • C := {p | p ∈ all possible discrete distributions} 11
  • 14. Linear-fractional function (3/3) Example 2.13 Then the associated set of conditional probabilities {f(p) | p ∈ C} is convex because: • C is a convex set (by definition) • f is a linear-fractional mapping from p (fij = pij ∑n k=1 pkj ) 12
  • 16. Preliminary: proper cone A cone K ⊆ Rn is a proper cone if • K is convex • K is closed • K is solid (int K ̸= ∅) • K is pointed (x ∈ K, −x ∈ K ⇒ x = 0) 13
  • 17. Generalized inequality Associate with the proper cone K: • the partial ordering on Rn defined by x ⪯K y ⇐⇒ y − x ∈ K • the strict partial ordering on Rn defined by x ≺K y ⇐⇒ y − x ∈ int K 14
  • 18. Why ‘generalized’? When K = R+: • the partial ordering ⪯K is the usual ≤ on R x ⪯R+ y ⇐⇒ y − x ∈ R+ ⇐⇒ x ≤ y • the strict partial ordering ≺K is the usual < on R x ≺R+ y ⇐⇒ y − x ∈ int R+ ⇐⇒ x < y 15
  • 19. Componentwise inequality Example 2.14 When K = Rn + (nonnegative orthant): x ⪯Rn + y ⇐⇒ xi ≤ yi, i = 1, · · · , n x ≺Rn + y ⇐⇒ xi < yi, i = 1, · · · , n This partial ordering is so common that we drop the subscript: x ⪯ y, x ≺ y 16
  • 20. Matrix inequality Example 2.15 When K = Sn + (positive semidefinite cone): X ⪯Sn + Y ⇐⇒ Y − X is positive semidefinite X ≺Sn + Y ⇐⇒ Y − X is positive definite This partial ordering is so common that we drop the subscript: X ⪯ Y, X ≺ Y 17
  • 21. Properties of generalized inequalities Many properties of ⪯K are similar to ≤ on R: • if x ⪯K y and u ⪯K v, then x + u ⪯K y + v • if x ⪯K y and y ⪯K z, then x ⪯K z • if x ⪯K y and α ≥ 0, then αx ⪯K αy • x ⪯K x • if x ⪯K y and y ⪯K x, then x = y • · · · 18
  • 22. ⪯K is not in general a linear ordering When K = R2 +: x1 x2 x3
  • 23. ⪯K is not in general a linear ordering When K = R2 +: x1 x2 x3 x1 ⪯R2 + x2
  • 24. ⪯K is not in general a linear ordering When K = R2 +: x1 x2 x3 x1 ⪯R2 + x2 ? 19
  • 25. Minimum and minimal elements (1/2) With respect to ⪯K: • x ∈ S is the minimum element of S if y ∈ S ⇒ x ⪯K y (the element that is smaller than everything else) • x ∈ S is a minimal element of S if y ∈ S, y ⪯K x ⇒ y = x (an element that has nothing smaller than it) 20
  • 26. Minimum and minimal elements (2/2) Example 2.17 When K = R2 + (componentwise inequality in R2 ): x ⪯R2 + y ⇐⇒ y is above and to the right of x Then x1 is the minimum of S1, x2 is a minimal of S2 21