SlideShare a Scribd company logo
1 of 70
Download to read offline
L o g o
라이브드론맵 (Live Drone Map)
– 실시간 드론 매핑 솔루션
May 20, 2017
서울시립대학교 공간정보공학과 센서및모델링연구실
도시과학연구원 대도시무인이동체연구센터
천장우, 함상우, 최경아, 이임평*
OSGeo한국어지부 드론세미나
L o g o
Contents
Intro. to UAV Mapping1
Live Drone Map2
4
2
L o g o
3
Intro. to UAV Mapping1
L o g o
What is a UAV?
 UAVs: Unmanned Aerial Vehicles
 “UAVs are to be understood as uninhabited and reusable
motorized aerial vehicles” (Blyenburg, 1999). These vehicles
are remotely controlled, semi-autonomous, autonomous, or
have a combination of these capabilities.
 Main communities
 Military, Artificial Intelligence, Computer Vision, Robotics,
Aeronautics, …
 Geomatics (Photogrammetry, Remote Sensing and Surveying)
4
L o g o
UAV Mapping / Photogrammetry
 UAV mapping / photogrammetry
 opens various new applications in the close range domain,
combining aerial and terrestrial photogrammetry, but also
introduces low-cost alternatives to the classical manned aerial
photogrammtery.
 In the context of mapping
 Geospatial data collection with high geometric and temporal
resolution
(large scale data)
 Generation of elevation models, orthophotos, maps, 3D
models etc.
5
L o g o
Motivation for the Use of UAVs
 Advantages of UAVs
 Use in high risk situations and inaccessible areas
 Data acquisition with high temporal and spatial resolution
 Autonomous and stabilized
 Low-cost
 Limitations in the use of UAVs
 Limitations of the payload
 Regulations and insurance
 Use of Low-cost Sensors
6
L o g o
The accuracy of measurement methods in relation to the object/area size. Modified from
Fig. 1.4 in Luhmann, et al., 2006.
UAV Mapping vs. Others
7
L o g o
UAV Market Status and Prospects
 Commercial drone market is growing due to
increasing demand of private sector
 World commercial drone market size: Predicted to
grow up to 4 times larger (2016-2025)
 Leisure: 2.2 Billion$ → 3.9 Billion$ - Large but saturated
 Public: 36 Million$ → 464 Million$ – Small but growing fast
 Commercial: 390 Million$ → 6.5 Billion$ – Biggest soon
8
L o g o
UAV Platform_DJI
 DJI Drones
 DJI’s products are intended for amateur as well as professional
use
 Phantom series are the most popular product, and since
launch, have evolved to integrated flight programming with a
camera, WiFi connectivity, and the pilot’s mobile device.
9
L o g o
UAV Platform_Falcon8
 Developed by Intel company
 Automatic sensor data verification
 3 flight modes for any circumstances
 GPS mode, altitude mode, manual mode
 Weight & Payload : 2.3kg / 0.8kg
 Flight time : 16 min
10
L o g o
UAV Platform_Indago
 Developed by Lockheed martin company
 Flight time : 45 min (Maximum)
 Sensor : Optical and infrared ray camera
 Apply for Lifesave Project; find people who are
dementia patient
11
L o g o
UAV Platform_Skyranger
 Developed by Aeryon company
 Sustain extreme weather condition
 Tolerate temperatures from 22 below zero to 122
degrees Faherenheit
 Maneuver with wind gusts up to 55 miles per hour
 Sensor HD camera(with infrared filters in low-light)
12
L o g o
UAV Platform_Sensefly
 Developed by Parrot company
 Cover up to 12km2 in a single automated flight
 Weight : 500g
 Sensors : image sensor, u-BLOX GPS chip, attitude
sensor, radio transmitter, autopilot circuit board
 Flight time : 30 min
13
L o g o
Commercial Software
Software PhotoScan PhotoModeler Pix4D EnsoMOSAIC
Platform Linux, OS X,
Microsoft
Windows
Microsoft
Windows
Microsoft
Windows,
MacOS, Cloud
Microsoft
Windows
Automatic Yes Yes Yes Yes
Scalability Multiple
images
Multiple
images
Multiple
images
Multiple
images
Data source images images images images
Price $179~3499 $1145 $2000 $900
Online Service - - - -
14
L o g o
Opensource Software
Software MicMac OpenDroneM
ap
openMVG DroneMapper
Platform Linux, OS X,
Microsoft
Windows
Linux, OS X,
Microsoft
Windows
Linux, OS X,
Microsoft
Windows
Web-Based
Automatic Semi-
automatic
Yes Yes Yes
Scalability Multiple
images
Multiple
images
Multiple
images
Multiple
images
Data source images images images images
Price free free free free
Online Service Yes - - -
15
L o g o
Typical Products from UAV Mapping
16
L o g o
DEM (Digital Elevation Model)
17
 DEM(Digital Elevation Model)
 is a digital 3D model created from
terrain elevation data.
 can be represented as a grid or TIN
 is often used as a generic term for
DSMs and DTMs.
 DSM(Digital Surface Model)
 represents the earth's surface and
includes all objects on it.
 DTM(Digital Terrain Model)
 represents the bare ground surface
without any objects like plants and
buildings.
GRID
TIN
L o g o
Orthoimage
18
 Aerial images geometrically corrected (orthorectified)
such that the scale is uniform
 adjusted for relief displacement, lens distortion, and camera
tilt.
 overlapped with maps and used to measure true distances.
 commonly used in GIS as a "map" background image.
(Row, Column, Color)
(Northing, Easting, Color)
+ Height
L o g o
3D Model
 Represents terrain surfaces, sites, buildings, vegetation,
infrastructure and landscape elements as well as
related objects belonging to interested of areas.
19
 Supports presentation,
exploration, analysis, and
management tasks in a large
number of different
application domains.
 Allows "for visually
integrating heterogeneous
geoinformation within a
single framework”.
L o g o
Data Processing
20
Geo-
referncing
Dense
Matching
Meshing Texturing
Textured
3D
Model
EOPs
IOPs
Point
Clouds
Griding &
Interpolation
DSM
Rectification
Ortho-
image
L o g o
21
Live Drone Map2
UAV Based Rapid Mapping & Sharing Solution
L o g o
Background
 UN has performed field operations such as
 Peace keeping to monitor peace agreements
 SAR(Search and Rescue) and restoring in disaster areas
 Needs a GIS customized to a specific operation
 The DPKO (Department of Peacekeeping Operation) develops
and implements field activities strategy based on the GIS.
 The GIS should be established rapidly and applied to field
operations immediately.
 The UNGSC (UN Global Service Centre) provides the mission
specific and adaptive GIS to the DPKO.
 They used to employ existing sensory data such as satellite
images.
22
L o g o
Objectives
 Usually, these existing images are out-of-date and
retain low resolution.
 The mission areas may not have the existing data and
acquiring data newly takes time (4-6 weeks).
 UAV mapping systems are very expeditious means to
acquire high resolution data on the mission areas.
 We propose an automatic mapping system based on a
UAV, which can operate in a fully automatic way from
the data acquisition to the data processing.
23
L o g o
Role of UAV mapping system
 The system is to provide the updated geo-spatial data
of a target area in a rapid and automatic way using a
UAV based multi-sensor system.
 Input: the region of interests and the output options (types)
with the resolutions (1 cm~1 m)
 Output: geo-spatial data such as orthoimage, DSM with a
user-specified resolution
24
L o g o
Key Advantages – Rapid & Automatic
 A user just specifies the region of interests on a map
and the output options (types) with the required
resolutions.
 The final product will be generated within less than
several hours (TBD) after the data acquisition.
 All the remaining processes from the data acquisition
through data processing to final product generation
can be performed automatically.
 The user does NOT require expert knowledge about
UAV flight planning and operation or
photogrammetric data processing.
25
L o g o
Concept of Operations
2. Data Acquisition
5. Geo-data Generation
3. Data Transfer
26
1. Preparation
4. Georeferencing6. Delivery
L o g o
Implementation Strategy
 Plug-and-Play
 We will develop a fully integrated multi-sensor payload
system by minimizing its dependency on a UAV platform.
 The system does not heavily depends on a certain UAV
platform.
 If certain requirements (max. payload weight) are met, we can
easily plug the payload system into the UAV and play its roles.
 Hierarchical Modular Design
 The system will be configured with a hierarchical modular
design approach.
 Each module can be easily replaced for upgrade or
customization.
27
L o g o
Implementation Strategy
 Low Cost / Open Source
 Affordable commercial or low cost Open Source HW and SW
can be employed.
 Hardware :
• UAV platforms: 3DR, DJI, DIY Kits, etc.
• Sensor control & integration: Arduino, Raspberry Pi
 Software : Customized from Open-Source
• Flight control & planning
• Photogrammetric Data processing: Photoscan / OpenDroneMap
28
L o g o
UN Geo-Cloud Arch.- Data Collection
29
Proposed by Prof. K. Lee, Oct/01/2015
Secure and High Performance Storage
Data Collector
Applications
Metadata Imagery Data
Geo-Portal
Server
Vector Data Feature Data
1. UAV Collector
3. Map
Generalization
Field Collector
(Mil. Observer)
Trajectory
Collector
Geo-MM
Collector
2. Crowdsourcing Collector
Processing
Server
Feature
ServerImage
Server
GeoMM
Server
4. 3D
Collector
L o g o
Configuration of UAV Collector
Flight Planning Data Quality Check
Georeferencing Orthorectification
30
UAV Mapping System
UAV Platform
SensorsSensor Support
L o g o
Data Acquisition System
31
L o g o
Platforms
32
UAV(TAM GD 14000) UAV(D5) UAV (Q-TILT)
Model
A: Current Version
B: Upgrade by 2017
Spec.
Flight time
~60 minutes
(Average 35 minutes)
Flight time ~30min Flight time
A: 30 minutes
B: >60 minutes
Maximum
Payload
6,000g
Maximum
Payload
10kg Maximum Payload
A: 1,000g
B: > 2,000g
Speed
Rate of climb : 7.5 m/s
Cruising speed : 12.0
m/s
Speed 18m/s Speed
Rate of climb : 7.0
m/s
Cruising speed :
25.0 m/s
Operating
radius
1,000 m Wind limit 15m/s
Operating
radius
A: 5,000 m
B: >15,000 m
Weight 8,650g Weight 35kg Weight
A: 12,000 g
B: 20,000 g
Dimensions
140cm X 140cm X
70cm
Battery Size 44,000mAh / 44V Dimensions
140cm X 140cm X
70cm
Temperatur
e
-10°C ~ 50°C Temperature -10°C ~ 50°C
L o g o
Q-Tilt (Fixed Wing & VTOL)
33
L o g o
Sensors
34
Digital Camera (& Lens) GPS/INS Lidar
Model
Sony A7 II SONY Sonnar T*
FE 35mm F2.8 ZA
APX-15
(Applanix single board GNSS-Inertial solution)
Velodyne
Spec.
Resolutions 6000x4000
- SBAS
- Support PPS time synchronization
16 channel
Pixel size 5.97um Operating Temp 40° ~ 75° Measurement
Range : ~100m
ISO 100~25600 Dimensions 67 x 60 x 15mm
Maximum Shutter
speed
1/8000sec Weight 60g ±3cm Accuracy
Weight(Camera) 599g Accuracy SPS DGPS RTK4
Post-
Processe
d5 FOV : ±15
Degree (Vertical)
360 Degree
(Horizontal)
Focal length 35mm Position(m) 1.5-3.0 0.5-2.0 0.02-0.05 0.02-0.05
Size 61.5x36.5mm
Velocity(m/s) 0.05 0.05 0.02 0.015
Roll&Pitch(deg) 0.04 0.03 0.03 0.025
Wavelenth :
903nm
Weight(Lens) 120g True Heading3(deg) 0.30 0.28 0.18 0.080
Single and Dual
Returns
L o g o
Sensor Control & Data Transmission
 To control sensors, collect the sensory data (images)
with time tags and transmit them to the ground.
 Based on open source HW such as Latte (single board
computer) & long-range WiFi
 Time accuracy: < 10ms
35
Latte (single board computer)
Long-range WiFi
L o g o
Data Processing SW
36
 Produce individual orthoimages and mosaics of
mission areas automatically and rapidly
PA Data
Data
Processing
SW
Individually
Geo-rectified
Images
Images
Ref.
Data
Mosaic
Orthoimage
DSM
Rapidly &
Automatically
UAV Pos/Att from GPS/INS
from Cameras
Existing Geo-data
(GCPs, DEMs, Ortho-images)
Real-time Data Processing
in several seconds after each image acquisition
Rapid Post-Processing
in several hours after a flight mission
L o g o
SW at GitHub
 Real-time Data Processing
 A subset for Live Drone Map
 Download sensory data
 Process them to generate individual orthoimage
 Upload the orthoimage to a cloud server (Mago3D)
 https://github.com/flyhamsw/UN_symposium_v1.2
 Rapid Post-processing
 Georeferencing SW
 https://github.com/flyhamsw/Georeferencing
 Ortho-mosaic Generation SW
 https://github.com/flyhamsw/Orthophoto-generation
37
L o g o
Real-time Data Processing
38
L o g o
Rapid Post-Processing
39
L o g o
Live Drone Map
40
 UAV Based Real-time Mapping & Sharing Solution
 We combine the real-time mapping solution (UAV
collector) with a cloud based geo-data sharing
solution (Mago3D).
 Users in distant areas with Internet can access the
image maps updated in real-time using UAV systems
during its flight.
 The image maps are visualized in 2D/3D with existing
geo-data without any plug-in software through a
standard web-browser on a desktop computer or even
mobile devices.
 Smartphone images can be uploaded and shared.
L o g o
Visualization in Live Drone Map
41
3D on a Desktop Computer 2D on a Smartphone
L o g o
Applications of Live Drone Map
42
2. Real-time Data Collection 4. All-source Situation Room
1. Disaster
Occurance
UAV + Sensor payload(camera+GPS/INS)
Real-time transmission
of images and Pos./Att.
Real-time transmission
of imagery maps
3. Real-time Mapping
L o g o
1st Demonstration in Korea
43
 In Seoul on Nov. 9, 2016.
 3rd International Symposium
 Partnership for Technology in Peacekeeping
 Information and Communications Technology Division
 United Nations Department of Field Support
 Indoor demonstration
 inside Seoul City Hall
L o g o
1st Demonstration in Korea
44
L o g o
2nd Demonstration in Korea
45
 In Seoul on Feb. 21, 2017.
L o g o
2nd Demonstration in Korea
 Digital Times
 https://www.youtube.com/watch?v=yTrdPNbn_LY&feature=you
tu.be
 YTN news
 http://m.ytn.co.kr/news_view.php?key=201702212159482174&s
_mcd=0102
46
L o g o
 Integrated with MCC on Apr. 27, 2017.
3rd Demonstration at UN GSC in Italy
47
Mission Area
(GIS team/patrol)
MCC
Mission HQ
(Commander)
San Pancrazio Airfield
UN GCS, Brindisi
New York 40 km
> 10 hour via flight
L o g o
3rd Demonstration: Configuration
48
Reception
& Archiving
Processing
Acquisition &
Transmission
Geo-rectified
Image
Sensory
Data
UAV Collector
Updating
(Geo-portal)
Delivery /
Visualization
(Users)
Mago3D
Smartphone
Crowd sourcing
MCC
L o g o
3rd Demonstration : UAV Air Field
49
L o g o
3rd Demonstration : UAV Air Field
50
L o g o
3rd Demonstration : UAV Air Field
51
L o g o
3rd Demonstration : MCC
52
L o g o
3rd Demonstration : Day 1 (Apr. 20)
53
 시험, 시연, 교육, 워크숍 등 세부 일정 협의
 무인기 비행허가 및 장비 배송 확인
 시연 시나리오 확인
 라이브 드론맵 개발과정, 무인기 매핑 워크숍 일정 확인
 Air Field로 이동하여 실험 진행
 지상 SW 실험 : 기존 데이터를 저장소에 전송하여 영상처리를
진행하고 지오포털 상에 가시화 되는 것을 확인
 무인기 비행을 제외하고 실내에서 센서 탑재체의 데이터가 WiFi
통신을 통하여 저장소로 전송되는 것 확인
 문제점 확인
 이탈리아 현지의 통신 상태가 불안정하여 핸드폰 테더링을 통해
LTE 통신 이용
L o g o
3rd Demonstration : Day 1 (Apr. 20)
54
L o g o
3rd Demonstration : Day 2 (Apr. 21)
55
 지상 SW 점검
 테더링 스마트폰을 이용하여 네트워크 설정
 GSD를 변경하며 업로드 시간 체크
 센서 탑재체 실외시험 진행
 긴 멀티텝을 사용하여 실외에서 센서 데이터가 저장소로 전송되
는 것을 확인
 MCC와의 협의
 MCC : 통신과 전력이 고립된 지역에서도 운영이 가능하도록 설
계된 컨테이너 박스 형태의 시스템
 MCC 내부에 있는 컴퓨터를 이용하여 클라우드 서버 접속 후 갱
신되는 지도 확인
 GIS 부서 견학
L o g o
3rd Demonstration : Day 2 (Apr. 21)
56
L o g o
3rd Demonstration : Day 3 (Apr. 24)
57
 무인기 비행 테스트 진행(Apr. 24)
 이착륙 및 1차 수동 비행 시험
 Waypoint 경로 설정 후 2차 자율 비행 시험
 탑재체 장착 후 3차 자율 비행 시험
 지상 SW 점검
 기존 데이터를 저장소에 전송하여 영상처리를 진행하고 지오포
털 상에 가시화 되는 것을 확인
 워크숍 진행
 사진측량 및 무인기 매핑 사례 소개
 라이브 드론맵의 개발과정 및 구성과 동작원리
L o g o
3rd Demonstration : Day 3 (Apr. 24)
58
L o g o
3rd Demonstration : Day 4 (Apr. 25)
59
 1차 통합 비행 시험
 AR Works에서 보유한 무인기 2대 비행시험
• 이탈리아 현지 바람이 너무 강하게 불어 크기가 작은 무인기를 이용
하여 시연하기로 결정
 Apx data의 문제점 확인 : 보드 문제
 MCC와의 통신 확인
 UN 실무자 견학
 무인기 매핑 실습 진행
 WebODM 설치 및 실행과정 설명
 Client 서버 상에 설치된 WebODM에 데이터를 전송하여 영상
처리를 진행하고 결과(3D point cloud, 정사영상) 확인
L o g o
3rd Demonstration : Day 4 (Apr. 25)
60
L o g o
3rd Demonstration : Day 5 (Apr. 26)
61
 지상 SW 점검
 지상 SW와 MCC 통합 시험
 MCC 인터넷망(위성 기반)의 속도를 고려하여 2D 환경에서 4초
마다 영상을 갱신하기로 결정
 센서 탑재체 확인 및 문제점 체크
 무인기 정류장치 대신 외장 배터리를 이용하여 전원 공급
 통합 비행 시험
 MCC 팀과 연계하여 2차 통합 비행 시험
L o g o
3rd Demonstration : Day 5 (Apr. 26)
62
L o g o
3rd Demonstration : Day 5 (Apr. 26)
L o g o
3rd Demonstration : Day 6 (Apr. 27)
64
 San Pancrazio Airfield 현장에서
무인기 이륙
 영상 촬영 후 지상으로 전송
 지상 SW에서 지오레퍼런싱 수행 후
클라우드 서버로 전송
 MCC에서 위성 인터넷으로 클라우드
서버에 접속, Mago3D를 통해 실시간
으로 가시화
L o g o
3rd Demonstration : Day 6 (Apr. 27)
L o g o
3rd Demonstration : Day 6 (Apr. 27)
66
L o g o
3rd Demonstration : Day 6 (Apr. 27)
67
L o g o
Conclusions
 Live Drone Map can acquire multi-sensory data and
produce high resolution geospatial information in real-
time and visualize them rapidly.
 With Live Drone Map, we can quickly acquire high
resolution image maps of mission areas with no maps
or old maps only.
 The accuracy of the image maps are about 1~5 m
depending on the flight altitude without any GCP.
 These latest maps will be useful for many important
tasks in UN field operations, such as monitoring
disputed areas and restoring disaster areas.
68
L o g o
Future Work
 We need to apply our Live Drone Map to real mission
areas such as Lebanon and improve it for more
practical use.
 We are currently using WiFi and LTE networks, but we
will employ RF links and mobile networks of the
mission areas.
 We are currently processing data on the computers in
mission areas, but we will also perform the data
processing on a cloud server.
 We will test with cheaper drones such as DJI ones,
which are widely used in the field.
69
L o g o
lsm.uos.ac.kr

More Related Content

What's hot

3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향
3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향
3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향SANGHEE SHIN
 
오픈소스GIS 개발 일반 강의자료
오픈소스GIS 개발 일반 강의자료오픈소스GIS 개발 일반 강의자료
오픈소스GIS 개발 일반 강의자료BJ Jang
 
디지털트윈, 스마트시티, 메타버스
디지털트윈, 스마트시티, 메타버스디지털트윈, 스마트시티, 메타버스
디지털트윈, 스마트시티, 메타버스SANGHEE SHIN
 
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)SANGHEE SHIN
 
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고SANGHEE SHIN
 
다분야 공동활용 디지털 플랫폼 사례 공유
다분야 공동활용 디지털 플랫폼 사례 공유다분야 공동활용 디지털 플랫폼 사례 공유
다분야 공동활용 디지털 플랫폼 사례 공유SANGHEE SHIN
 
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개Byeong-Hyeok Yu
 
UX Discovery_Metaverse_RightBrain_Seminar
UX Discovery_Metaverse_RightBrain_SeminarUX Discovery_Metaverse_RightBrain_Seminar
UX Discovery_Metaverse_RightBrain_SeminarRightBrain inc.
 
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계디지털 트윈:현실 세계의 미러링, 그 가능성과 한계
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계SANGHEE SHIN
 
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈SANGHEE SHIN
 
요즘 유행하는 AI 나도 해보자 (feat. CoreML)
요즘 유행하는 AI 나도 해보자 (feat. CoreML)요즘 유행하는 AI 나도 해보자 (feat. CoreML)
요즘 유행하는 AI 나도 해보자 (feat. CoreML)Chiwon Song
 
[공간정보시스템 개론] L01 공간정보시스템개요
[공간정보시스템 개론] L01 공간정보시스템개요[공간정보시스템 개론] L01 공간정보시스템개요
[공간정보시스템 개론] L01 공간정보시스템개요Kwang Woo NAM
 
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개Byeong-Hyeok Yu
 
오픈소스 GIS의 이해와 활용(육군사관학교 특강)
오픈소스 GIS의 이해와 활용(육군사관학교 특강)오픈소스 GIS의 이해와 활용(육군사관학교 특강)
오픈소스 GIS의 이해와 활용(육군사관학교 특강)SANGHEE SHIN
 
좌충우돌 디지털트윈 구축기
좌충우돌 디지털트윈 구축기좌충우돌 디지털트윈 구축기
좌충우돌 디지털트윈 구축기SANGHEE SHIN
 
야생동물(Brown bear) 행동권 · 서식지 분석하기
야생동물(Brown bear) 행동권 · 서식지 분석하기야생동물(Brown bear) 행동권 · 서식지 분석하기
야생동물(Brown bear) 행동권 · 서식지 분석하기Byeong-Hyeok Yu
 
[공간정보시스템 개론] L03 지구의형상과좌표체계
[공간정보시스템 개론] L03 지구의형상과좌표체계[공간정보시스템 개론] L03 지구의형상과좌표체계
[공간정보시스템 개론] L03 지구의형상과좌표체계Kwang Woo NAM
 
공간정보, 디지털트윈, 그리고 스마트시티
공간정보, 디지털트윈, 그리고 스마트시티 공간정보, 디지털트윈, 그리고 스마트시티
공간정보, 디지털트윈, 그리고 스마트시티 SANGHEE SHIN
 
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)디지털 트윈 플랫폼 기술과 사례(LX공사 특강)
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)SANGHEE SHIN
 

What's hot (20)

3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향
3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향
3차원 위치 기반의 CAD/BIM/GIS 융합 활용 방향
 
오픈소스GIS 개발 일반 강의자료
오픈소스GIS 개발 일반 강의자료오픈소스GIS 개발 일반 강의자료
오픈소스GIS 개발 일반 강의자료
 
디지털트윈, 스마트시티, 메타버스
디지털트윈, 스마트시티, 메타버스디지털트윈, 스마트시티, 메타버스
디지털트윈, 스마트시티, 메타버스
 
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)
공간정보와 도시 디지털트윈(부산DX컨퍼런스 발표자료)
 
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고
디지털트윈 기술 동향과 전망 - 국토연구원 월간국토 4월호 기고
 
다분야 공동활용 디지털 플랫폼 사례 공유
다분야 공동활용 디지털 플랫폼 사례 공유다분야 공동활용 디지털 플랫폼 사례 공유
다분야 공동활용 디지털 플랫폼 사례 공유
 
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개
공간정보 분야 드론 활용사례 및 오픈드론맵(OpenDroneMap) 소개
 
UX Discovery_Metaverse_RightBrain_Seminar
UX Discovery_Metaverse_RightBrain_SeminarUX Discovery_Metaverse_RightBrain_Seminar
UX Discovery_Metaverse_RightBrain_Seminar
 
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계디지털 트윈:현실 세계의 미러링, 그 가능성과 한계
디지털 트윈:현실 세계의 미러링, 그 가능성과 한계
 
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈
CAD/BIM/GIS 융복합 활용 방향과 디지털 트윈
 
요즘 유행하는 AI 나도 해보자 (feat. CoreML)
요즘 유행하는 AI 나도 해보자 (feat. CoreML)요즘 유행하는 AI 나도 해보자 (feat. CoreML)
요즘 유행하는 AI 나도 해보자 (feat. CoreML)
 
[공간정보시스템 개론] L01 공간정보시스템개요
[공간정보시스템 개론] L01 공간정보시스템개요[공간정보시스템 개론] L01 공간정보시스템개요
[공간정보시스템 개론] L01 공간정보시스템개요
 
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개
OpenDroneMap과 QGIS를 이용한 드론 영상처리 소개
 
오픈소스 GIS의 이해와 활용(육군사관학교 특강)
오픈소스 GIS의 이해와 활용(육군사관학교 특강)오픈소스 GIS의 이해와 활용(육군사관학교 특강)
오픈소스 GIS의 이해와 활용(육군사관학교 특강)
 
좌충우돌 디지털트윈 구축기
좌충우돌 디지털트윈 구축기좌충우돌 디지털트윈 구축기
좌충우돌 디지털트윈 구축기
 
Gis개론
Gis개론Gis개론
Gis개론
 
야생동물(Brown bear) 행동권 · 서식지 분석하기
야생동물(Brown bear) 행동권 · 서식지 분석하기야생동물(Brown bear) 행동권 · 서식지 분석하기
야생동물(Brown bear) 행동권 · 서식지 분석하기
 
[공간정보시스템 개론] L03 지구의형상과좌표체계
[공간정보시스템 개론] L03 지구의형상과좌표체계[공간정보시스템 개론] L03 지구의형상과좌표체계
[공간정보시스템 개론] L03 지구의형상과좌표체계
 
공간정보, 디지털트윈, 그리고 스마트시티
공간정보, 디지털트윈, 그리고 스마트시티 공간정보, 디지털트윈, 그리고 스마트시티
공간정보, 디지털트윈, 그리고 스마트시티
 
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)디지털 트윈 플랫폼 기술과 사례(LX공사 특강)
디지털 트윈 플랫폼 기술과 사례(LX공사 특강)
 

Similar to Live Drone Map UAV Mapping Solution

Frank van diggelen keynote, android gnss measurements update
Frank van diggelen keynote, android gnss measurements updateFrank van diggelen keynote, android gnss measurements update
Frank van diggelen keynote, android gnss measurements updateThe European GNSS Agency (GSA)
 
Laser navigation 2016 technology overview short final
Laser navigation 2016 technology overview short finalLaser navigation 2016 technology overview short final
Laser navigation 2016 technology overview short finalRoberto Navoni
 
GWT 2014: Emergency Conference - 01 Introduzione
GWT 2014: Emergency Conference - 01 IntroduzioneGWT 2014: Emergency Conference - 01 Introduzione
GWT 2014: Emergency Conference - 01 IntroduzionePlanetek Italia Srl
 
fyp presentation of group 43011 final.pptx
fyp presentation of group 43011 final.pptxfyp presentation of group 43011 final.pptx
fyp presentation of group 43011 final.pptxIIEE - NEDUET
 
3D Perception for Autonomous Driving - Datasets and Algorithms -
3D Perception for Autonomous Driving - Datasets and Algorithms -3D Perception for Autonomous Driving - Datasets and Algorithms -
3D Perception for Autonomous Driving - Datasets and Algorithms -Kazuyuki Miyazawa
 
GWT 2014: Energy Conference - 01 Introduzione
GWT 2014: Energy Conference - 01 IntroduzioneGWT 2014: Energy Conference - 01 Introduzione
GWT 2014: Energy Conference - 01 IntroduzionePlanetek Italia Srl
 
Business prezentaciya az-en
Business prezentaciya az-enBusiness prezentaciya az-en
Business prezentaciya az-enOleg Kupervasser
 
VizDyn and spatial utility Dec 2014
VizDyn and spatial utility Dec 2014VizDyn and spatial utility Dec 2014
VizDyn and spatial utility Dec 2014Jim Head
 
Critical Infrastructure Monitoring Using UAV Imagery
Critical Infrastructure Monitoring Using UAV ImageryCritical Infrastructure Monitoring Using UAV Imagery
Critical Infrastructure Monitoring Using UAV Imageryaditess
 
IRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET Journal
 
Immersive 3 d visualization of remote sensing data
Immersive 3 d visualization of remote sensing dataImmersive 3 d visualization of remote sensing data
Immersive 3 d visualization of remote sensing datasipij
 
The Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingThe Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingPeter Sydoruk, P.Eng.
 
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"Poster Presentation "Generation of High Resolution DSM Usin UAV Images"
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"Nepal Flying Labs
 
Land vehicle tracking system using java on android platform
Land vehicle tracking system using java on android platformLand vehicle tracking system using java on android platform
Land vehicle tracking system using java on android platformAlexander Decker
 
IRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET Journal
 

Similar to Live Drone Map UAV Mapping Solution (20)

Frank van diggelen keynote, android gnss measurements update
Frank van diggelen keynote, android gnss measurements updateFrank van diggelen keynote, android gnss measurements update
Frank van diggelen keynote, android gnss measurements update
 
MSI UI Software Design Report
MSI UI Software Design ReportMSI UI Software Design Report
MSI UI Software Design Report
 
Laser navigation 2016 technology overview short final
Laser navigation 2016 technology overview short finalLaser navigation 2016 technology overview short final
Laser navigation 2016 technology overview short final
 
GWT 2014: Emergency Conference - 01 Introduzione
GWT 2014: Emergency Conference - 01 IntroduzioneGWT 2014: Emergency Conference - 01 Introduzione
GWT 2014: Emergency Conference - 01 Introduzione
 
fyp presentation of group 43011 final.pptx
fyp presentation of group 43011 final.pptxfyp presentation of group 43011 final.pptx
fyp presentation of group 43011 final.pptx
 
3D Perception for Autonomous Driving - Datasets and Algorithms -
3D Perception for Autonomous Driving - Datasets and Algorithms -3D Perception for Autonomous Driving - Datasets and Algorithms -
3D Perception for Autonomous Driving - Datasets and Algorithms -
 
DroneSurvey.pdf
DroneSurvey.pdfDroneSurvey.pdf
DroneSurvey.pdf
 
GWT 2014: Energy Conference - 01 Introduzione
GWT 2014: Energy Conference - 01 IntroduzioneGWT 2014: Energy Conference - 01 Introduzione
GWT 2014: Energy Conference - 01 Introduzione
 
Business prezentaciya az-en
Business prezentaciya az-enBusiness prezentaciya az-en
Business prezentaciya az-en
 
Ijetcas14 308
Ijetcas14 308Ijetcas14 308
Ijetcas14 308
 
VizDyn and spatial utility Dec 2014
VizDyn and spatial utility Dec 2014VizDyn and spatial utility Dec 2014
VizDyn and spatial utility Dec 2014
 
Critical Infrastructure Monitoring Using UAV Imagery
Critical Infrastructure Monitoring Using UAV ImageryCritical Infrastructure Monitoring Using UAV Imagery
Critical Infrastructure Monitoring Using UAV Imagery
 
IRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAVIRJET- Proposed Design for 3D Map Generation using UAV
IRJET- Proposed Design for 3D Map Generation using UAV
 
Immersive 3 d visualization of remote sensing data
Immersive 3 d visualization of remote sensing dataImmersive 3 d visualization of remote sensing data
Immersive 3 d visualization of remote sensing data
 
The Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and SurveyingThe Truth About Drones in Mapping and Surveying
The Truth About Drones in Mapping and Surveying
 
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"Poster Presentation "Generation of High Resolution DSM Usin UAV Images"
Poster Presentation "Generation of High Resolution DSM Usin UAV Images"
 
Land vehicle tracking system using java on android platform
Land vehicle tracking system using java on android platformLand vehicle tracking system using java on android platform
Land vehicle tracking system using java on android platform
 
Paper
PaperPaper
Paper
 
Remote surveillance of enclosed and open architectures using unmanned vehicl...
Remote surveillance of enclosed and open architectures using  unmanned vehicl...Remote surveillance of enclosed and open architectures using  unmanned vehicl...
Remote surveillance of enclosed and open architectures using unmanned vehicl...
 
IRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A ReviewIRJET - Drone Delivery System: A Review
IRJET - Drone Delivery System: A Review
 

Recently uploaded

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 

Recently uploaded (20)

young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 

Live Drone Map UAV Mapping Solution

  • 1. L o g o 라이브드론맵 (Live Drone Map) – 실시간 드론 매핑 솔루션 May 20, 2017 서울시립대학교 공간정보공학과 센서및모델링연구실 도시과학연구원 대도시무인이동체연구센터 천장우, 함상우, 최경아, 이임평* OSGeo한국어지부 드론세미나
  • 2. L o g o Contents Intro. to UAV Mapping1 Live Drone Map2 4 2
  • 3. L o g o 3 Intro. to UAV Mapping1
  • 4. L o g o What is a UAV?  UAVs: Unmanned Aerial Vehicles  “UAVs are to be understood as uninhabited and reusable motorized aerial vehicles” (Blyenburg, 1999). These vehicles are remotely controlled, semi-autonomous, autonomous, or have a combination of these capabilities.  Main communities  Military, Artificial Intelligence, Computer Vision, Robotics, Aeronautics, …  Geomatics (Photogrammetry, Remote Sensing and Surveying) 4
  • 5. L o g o UAV Mapping / Photogrammetry  UAV mapping / photogrammetry  opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammtery.  In the context of mapping  Geospatial data collection with high geometric and temporal resolution (large scale data)  Generation of elevation models, orthophotos, maps, 3D models etc. 5
  • 6. L o g o Motivation for the Use of UAVs  Advantages of UAVs  Use in high risk situations and inaccessible areas  Data acquisition with high temporal and spatial resolution  Autonomous and stabilized  Low-cost  Limitations in the use of UAVs  Limitations of the payload  Regulations and insurance  Use of Low-cost Sensors 6
  • 7. L o g o The accuracy of measurement methods in relation to the object/area size. Modified from Fig. 1.4 in Luhmann, et al., 2006. UAV Mapping vs. Others 7
  • 8. L o g o UAV Market Status and Prospects  Commercial drone market is growing due to increasing demand of private sector  World commercial drone market size: Predicted to grow up to 4 times larger (2016-2025)  Leisure: 2.2 Billion$ → 3.9 Billion$ - Large but saturated  Public: 36 Million$ → 464 Million$ – Small but growing fast  Commercial: 390 Million$ → 6.5 Billion$ – Biggest soon 8
  • 9. L o g o UAV Platform_DJI  DJI Drones  DJI’s products are intended for amateur as well as professional use  Phantom series are the most popular product, and since launch, have evolved to integrated flight programming with a camera, WiFi connectivity, and the pilot’s mobile device. 9
  • 10. L o g o UAV Platform_Falcon8  Developed by Intel company  Automatic sensor data verification  3 flight modes for any circumstances  GPS mode, altitude mode, manual mode  Weight & Payload : 2.3kg / 0.8kg  Flight time : 16 min 10
  • 11. L o g o UAV Platform_Indago  Developed by Lockheed martin company  Flight time : 45 min (Maximum)  Sensor : Optical and infrared ray camera  Apply for Lifesave Project; find people who are dementia patient 11
  • 12. L o g o UAV Platform_Skyranger  Developed by Aeryon company  Sustain extreme weather condition  Tolerate temperatures from 22 below zero to 122 degrees Faherenheit  Maneuver with wind gusts up to 55 miles per hour  Sensor HD camera(with infrared filters in low-light) 12
  • 13. L o g o UAV Platform_Sensefly  Developed by Parrot company  Cover up to 12km2 in a single automated flight  Weight : 500g  Sensors : image sensor, u-BLOX GPS chip, attitude sensor, radio transmitter, autopilot circuit board  Flight time : 30 min 13
  • 14. L o g o Commercial Software Software PhotoScan PhotoModeler Pix4D EnsoMOSAIC Platform Linux, OS X, Microsoft Windows Microsoft Windows Microsoft Windows, MacOS, Cloud Microsoft Windows Automatic Yes Yes Yes Yes Scalability Multiple images Multiple images Multiple images Multiple images Data source images images images images Price $179~3499 $1145 $2000 $900 Online Service - - - - 14
  • 15. L o g o Opensource Software Software MicMac OpenDroneM ap openMVG DroneMapper Platform Linux, OS X, Microsoft Windows Linux, OS X, Microsoft Windows Linux, OS X, Microsoft Windows Web-Based Automatic Semi- automatic Yes Yes Yes Scalability Multiple images Multiple images Multiple images Multiple images Data source images images images images Price free free free free Online Service Yes - - - 15
  • 16. L o g o Typical Products from UAV Mapping 16
  • 17. L o g o DEM (Digital Elevation Model) 17  DEM(Digital Elevation Model)  is a digital 3D model created from terrain elevation data.  can be represented as a grid or TIN  is often used as a generic term for DSMs and DTMs.  DSM(Digital Surface Model)  represents the earth's surface and includes all objects on it.  DTM(Digital Terrain Model)  represents the bare ground surface without any objects like plants and buildings. GRID TIN
  • 18. L o g o Orthoimage 18  Aerial images geometrically corrected (orthorectified) such that the scale is uniform  adjusted for relief displacement, lens distortion, and camera tilt.  overlapped with maps and used to measure true distances.  commonly used in GIS as a "map" background image. (Row, Column, Color) (Northing, Easting, Color) + Height
  • 19. L o g o 3D Model  Represents terrain surfaces, sites, buildings, vegetation, infrastructure and landscape elements as well as related objects belonging to interested of areas. 19  Supports presentation, exploration, analysis, and management tasks in a large number of different application domains.  Allows "for visually integrating heterogeneous geoinformation within a single framework”.
  • 20. L o g o Data Processing 20 Geo- referncing Dense Matching Meshing Texturing Textured 3D Model EOPs IOPs Point Clouds Griding & Interpolation DSM Rectification Ortho- image
  • 21. L o g o 21 Live Drone Map2 UAV Based Rapid Mapping & Sharing Solution
  • 22. L o g o Background  UN has performed field operations such as  Peace keeping to monitor peace agreements  SAR(Search and Rescue) and restoring in disaster areas  Needs a GIS customized to a specific operation  The DPKO (Department of Peacekeeping Operation) develops and implements field activities strategy based on the GIS.  The GIS should be established rapidly and applied to field operations immediately.  The UNGSC (UN Global Service Centre) provides the mission specific and adaptive GIS to the DPKO.  They used to employ existing sensory data such as satellite images. 22
  • 23. L o g o Objectives  Usually, these existing images are out-of-date and retain low resolution.  The mission areas may not have the existing data and acquiring data newly takes time (4-6 weeks).  UAV mapping systems are very expeditious means to acquire high resolution data on the mission areas.  We propose an automatic mapping system based on a UAV, which can operate in a fully automatic way from the data acquisition to the data processing. 23
  • 24. L o g o Role of UAV mapping system  The system is to provide the updated geo-spatial data of a target area in a rapid and automatic way using a UAV based multi-sensor system.  Input: the region of interests and the output options (types) with the resolutions (1 cm~1 m)  Output: geo-spatial data such as orthoimage, DSM with a user-specified resolution 24
  • 25. L o g o Key Advantages – Rapid & Automatic  A user just specifies the region of interests on a map and the output options (types) with the required resolutions.  The final product will be generated within less than several hours (TBD) after the data acquisition.  All the remaining processes from the data acquisition through data processing to final product generation can be performed automatically.  The user does NOT require expert knowledge about UAV flight planning and operation or photogrammetric data processing. 25
  • 26. L o g o Concept of Operations 2. Data Acquisition 5. Geo-data Generation 3. Data Transfer 26 1. Preparation 4. Georeferencing6. Delivery
  • 27. L o g o Implementation Strategy  Plug-and-Play  We will develop a fully integrated multi-sensor payload system by minimizing its dependency on a UAV platform.  The system does not heavily depends on a certain UAV platform.  If certain requirements (max. payload weight) are met, we can easily plug the payload system into the UAV and play its roles.  Hierarchical Modular Design  The system will be configured with a hierarchical modular design approach.  Each module can be easily replaced for upgrade or customization. 27
  • 28. L o g o Implementation Strategy  Low Cost / Open Source  Affordable commercial or low cost Open Source HW and SW can be employed.  Hardware : • UAV platforms: 3DR, DJI, DIY Kits, etc. • Sensor control & integration: Arduino, Raspberry Pi  Software : Customized from Open-Source • Flight control & planning • Photogrammetric Data processing: Photoscan / OpenDroneMap 28
  • 29. L o g o UN Geo-Cloud Arch.- Data Collection 29 Proposed by Prof. K. Lee, Oct/01/2015 Secure and High Performance Storage Data Collector Applications Metadata Imagery Data Geo-Portal Server Vector Data Feature Data 1. UAV Collector 3. Map Generalization Field Collector (Mil. Observer) Trajectory Collector Geo-MM Collector 2. Crowdsourcing Collector Processing Server Feature ServerImage Server GeoMM Server 4. 3D Collector
  • 30. L o g o Configuration of UAV Collector Flight Planning Data Quality Check Georeferencing Orthorectification 30 UAV Mapping System UAV Platform SensorsSensor Support
  • 31. L o g o Data Acquisition System 31
  • 32. L o g o Platforms 32 UAV(TAM GD 14000) UAV(D5) UAV (Q-TILT) Model A: Current Version B: Upgrade by 2017 Spec. Flight time ~60 minutes (Average 35 minutes) Flight time ~30min Flight time A: 30 minutes B: >60 minutes Maximum Payload 6,000g Maximum Payload 10kg Maximum Payload A: 1,000g B: > 2,000g Speed Rate of climb : 7.5 m/s Cruising speed : 12.0 m/s Speed 18m/s Speed Rate of climb : 7.0 m/s Cruising speed : 25.0 m/s Operating radius 1,000 m Wind limit 15m/s Operating radius A: 5,000 m B: >15,000 m Weight 8,650g Weight 35kg Weight A: 12,000 g B: 20,000 g Dimensions 140cm X 140cm X 70cm Battery Size 44,000mAh / 44V Dimensions 140cm X 140cm X 70cm Temperatur e -10°C ~ 50°C Temperature -10°C ~ 50°C
  • 33. L o g o Q-Tilt (Fixed Wing & VTOL) 33
  • 34. L o g o Sensors 34 Digital Camera (& Lens) GPS/INS Lidar Model Sony A7 II SONY Sonnar T* FE 35mm F2.8 ZA APX-15 (Applanix single board GNSS-Inertial solution) Velodyne Spec. Resolutions 6000x4000 - SBAS - Support PPS time synchronization 16 channel Pixel size 5.97um Operating Temp 40° ~ 75° Measurement Range : ~100m ISO 100~25600 Dimensions 67 x 60 x 15mm Maximum Shutter speed 1/8000sec Weight 60g ±3cm Accuracy Weight(Camera) 599g Accuracy SPS DGPS RTK4 Post- Processe d5 FOV : ±15 Degree (Vertical) 360 Degree (Horizontal) Focal length 35mm Position(m) 1.5-3.0 0.5-2.0 0.02-0.05 0.02-0.05 Size 61.5x36.5mm Velocity(m/s) 0.05 0.05 0.02 0.015 Roll&Pitch(deg) 0.04 0.03 0.03 0.025 Wavelenth : 903nm Weight(Lens) 120g True Heading3(deg) 0.30 0.28 0.18 0.080 Single and Dual Returns
  • 35. L o g o Sensor Control & Data Transmission  To control sensors, collect the sensory data (images) with time tags and transmit them to the ground.  Based on open source HW such as Latte (single board computer) & long-range WiFi  Time accuracy: < 10ms 35 Latte (single board computer) Long-range WiFi
  • 36. L o g o Data Processing SW 36  Produce individual orthoimages and mosaics of mission areas automatically and rapidly PA Data Data Processing SW Individually Geo-rectified Images Images Ref. Data Mosaic Orthoimage DSM Rapidly & Automatically UAV Pos/Att from GPS/INS from Cameras Existing Geo-data (GCPs, DEMs, Ortho-images) Real-time Data Processing in several seconds after each image acquisition Rapid Post-Processing in several hours after a flight mission
  • 37. L o g o SW at GitHub  Real-time Data Processing  A subset for Live Drone Map  Download sensory data  Process them to generate individual orthoimage  Upload the orthoimage to a cloud server (Mago3D)  https://github.com/flyhamsw/UN_symposium_v1.2  Rapid Post-processing  Georeferencing SW  https://github.com/flyhamsw/Georeferencing  Ortho-mosaic Generation SW  https://github.com/flyhamsw/Orthophoto-generation 37
  • 38. L o g o Real-time Data Processing 38
  • 39. L o g o Rapid Post-Processing 39
  • 40. L o g o Live Drone Map 40  UAV Based Real-time Mapping & Sharing Solution  We combine the real-time mapping solution (UAV collector) with a cloud based geo-data sharing solution (Mago3D).  Users in distant areas with Internet can access the image maps updated in real-time using UAV systems during its flight.  The image maps are visualized in 2D/3D with existing geo-data without any plug-in software through a standard web-browser on a desktop computer or even mobile devices.  Smartphone images can be uploaded and shared.
  • 41. L o g o Visualization in Live Drone Map 41 3D on a Desktop Computer 2D on a Smartphone
  • 42. L o g o Applications of Live Drone Map 42 2. Real-time Data Collection 4. All-source Situation Room 1. Disaster Occurance UAV + Sensor payload(camera+GPS/INS) Real-time transmission of images and Pos./Att. Real-time transmission of imagery maps 3. Real-time Mapping
  • 43. L o g o 1st Demonstration in Korea 43  In Seoul on Nov. 9, 2016.  3rd International Symposium  Partnership for Technology in Peacekeeping  Information and Communications Technology Division  United Nations Department of Field Support  Indoor demonstration  inside Seoul City Hall
  • 44. L o g o 1st Demonstration in Korea 44
  • 45. L o g o 2nd Demonstration in Korea 45  In Seoul on Feb. 21, 2017.
  • 46. L o g o 2nd Demonstration in Korea  Digital Times  https://www.youtube.com/watch?v=yTrdPNbn_LY&feature=you tu.be  YTN news  http://m.ytn.co.kr/news_view.php?key=201702212159482174&s _mcd=0102 46
  • 47. L o g o  Integrated with MCC on Apr. 27, 2017. 3rd Demonstration at UN GSC in Italy 47 Mission Area (GIS team/patrol) MCC Mission HQ (Commander) San Pancrazio Airfield UN GCS, Brindisi New York 40 km > 10 hour via flight
  • 48. L o g o 3rd Demonstration: Configuration 48 Reception & Archiving Processing Acquisition & Transmission Geo-rectified Image Sensory Data UAV Collector Updating (Geo-portal) Delivery / Visualization (Users) Mago3D Smartphone Crowd sourcing MCC
  • 49. L o g o 3rd Demonstration : UAV Air Field 49
  • 50. L o g o 3rd Demonstration : UAV Air Field 50
  • 51. L o g o 3rd Demonstration : UAV Air Field 51
  • 52. L o g o 3rd Demonstration : MCC 52
  • 53. L o g o 3rd Demonstration : Day 1 (Apr. 20) 53  시험, 시연, 교육, 워크숍 등 세부 일정 협의  무인기 비행허가 및 장비 배송 확인  시연 시나리오 확인  라이브 드론맵 개발과정, 무인기 매핑 워크숍 일정 확인  Air Field로 이동하여 실험 진행  지상 SW 실험 : 기존 데이터를 저장소에 전송하여 영상처리를 진행하고 지오포털 상에 가시화 되는 것을 확인  무인기 비행을 제외하고 실내에서 센서 탑재체의 데이터가 WiFi 통신을 통하여 저장소로 전송되는 것 확인  문제점 확인  이탈리아 현지의 통신 상태가 불안정하여 핸드폰 테더링을 통해 LTE 통신 이용
  • 54. L o g o 3rd Demonstration : Day 1 (Apr. 20) 54
  • 55. L o g o 3rd Demonstration : Day 2 (Apr. 21) 55  지상 SW 점검  테더링 스마트폰을 이용하여 네트워크 설정  GSD를 변경하며 업로드 시간 체크  센서 탑재체 실외시험 진행  긴 멀티텝을 사용하여 실외에서 센서 데이터가 저장소로 전송되 는 것을 확인  MCC와의 협의  MCC : 통신과 전력이 고립된 지역에서도 운영이 가능하도록 설 계된 컨테이너 박스 형태의 시스템  MCC 내부에 있는 컴퓨터를 이용하여 클라우드 서버 접속 후 갱 신되는 지도 확인  GIS 부서 견학
  • 56. L o g o 3rd Demonstration : Day 2 (Apr. 21) 56
  • 57. L o g o 3rd Demonstration : Day 3 (Apr. 24) 57  무인기 비행 테스트 진행(Apr. 24)  이착륙 및 1차 수동 비행 시험  Waypoint 경로 설정 후 2차 자율 비행 시험  탑재체 장착 후 3차 자율 비행 시험  지상 SW 점검  기존 데이터를 저장소에 전송하여 영상처리를 진행하고 지오포 털 상에 가시화 되는 것을 확인  워크숍 진행  사진측량 및 무인기 매핑 사례 소개  라이브 드론맵의 개발과정 및 구성과 동작원리
  • 58. L o g o 3rd Demonstration : Day 3 (Apr. 24) 58
  • 59. L o g o 3rd Demonstration : Day 4 (Apr. 25) 59  1차 통합 비행 시험  AR Works에서 보유한 무인기 2대 비행시험 • 이탈리아 현지 바람이 너무 강하게 불어 크기가 작은 무인기를 이용 하여 시연하기로 결정  Apx data의 문제점 확인 : 보드 문제  MCC와의 통신 확인  UN 실무자 견학  무인기 매핑 실습 진행  WebODM 설치 및 실행과정 설명  Client 서버 상에 설치된 WebODM에 데이터를 전송하여 영상 처리를 진행하고 결과(3D point cloud, 정사영상) 확인
  • 60. L o g o 3rd Demonstration : Day 4 (Apr. 25) 60
  • 61. L o g o 3rd Demonstration : Day 5 (Apr. 26) 61  지상 SW 점검  지상 SW와 MCC 통합 시험  MCC 인터넷망(위성 기반)의 속도를 고려하여 2D 환경에서 4초 마다 영상을 갱신하기로 결정  센서 탑재체 확인 및 문제점 체크  무인기 정류장치 대신 외장 배터리를 이용하여 전원 공급  통합 비행 시험  MCC 팀과 연계하여 2차 통합 비행 시험
  • 62. L o g o 3rd Demonstration : Day 5 (Apr. 26) 62
  • 63. L o g o 3rd Demonstration : Day 5 (Apr. 26)
  • 64. L o g o 3rd Demonstration : Day 6 (Apr. 27) 64  San Pancrazio Airfield 현장에서 무인기 이륙  영상 촬영 후 지상으로 전송  지상 SW에서 지오레퍼런싱 수행 후 클라우드 서버로 전송  MCC에서 위성 인터넷으로 클라우드 서버에 접속, Mago3D를 통해 실시간 으로 가시화
  • 65. L o g o 3rd Demonstration : Day 6 (Apr. 27)
  • 66. L o g o 3rd Demonstration : Day 6 (Apr. 27) 66
  • 67. L o g o 3rd Demonstration : Day 6 (Apr. 27) 67
  • 68. L o g o Conclusions  Live Drone Map can acquire multi-sensory data and produce high resolution geospatial information in real- time and visualize them rapidly.  With Live Drone Map, we can quickly acquire high resolution image maps of mission areas with no maps or old maps only.  The accuracy of the image maps are about 1~5 m depending on the flight altitude without any GCP.  These latest maps will be useful for many important tasks in UN field operations, such as monitoring disputed areas and restoring disaster areas. 68
  • 69. L o g o Future Work  We need to apply our Live Drone Map to real mission areas such as Lebanon and improve it for more practical use.  We are currently using WiFi and LTE networks, but we will employ RF links and mobile networks of the mission areas.  We are currently processing data on the computers in mission areas, but we will also perform the data processing on a cloud server.  We will test with cheaper drones such as DJI ones, which are widely used in the field. 69
  • 70. L o g o lsm.uos.ac.kr