1
Which text is“more difficult”?
0. はじめに
Many people dream of becoming rich by selling a new product. However, it is
often difficult to start and run a new business.
A
Clouds often form around particles called aerosols. These tiny particles attract
water vapor, causing water droplets to form.
B
3.
1
Which text is“more difficult”?
0. はじめに
A
The human brain is one of the most mysterious organs in the body. In recent
years, though, scientists have been learning more and more about it.
C
Many people dream of becoming rich by selling a new product. However, it is
often difficult to start and run a new business.
1
理解しやすさと処理しやすさ
• 読みやすさの定義には,文章の処理しやすさや読むスピードも含まれる
1. 背景:処理労力と視線計測
→ “The success is the extent to which they understand it, read it at an optimal
speed, and find it interesting.” (Dale & Chall, 1949, p. 23)
• テキストの内容理解 (comprehension) と視線計測で評価される読解の流暢さ
(fluency) の相関は高くない (Kuperman et al., 2023)
• ほとんどの読みやすさの公式は,クローズテスト得点などに反映される内容理解
度との相関に基づいてその妥当性が検討されている
→文章の 「理解しやすさ」と「処理しやすさ」は区別して評価されるべき
(Crossley et al., 2019)
14.
1
読解中の視線計測
• 視線計測データは読解中の処理労力を反映する (Conklinet al., 2018)
• 注視 (fixation) とサッケード (saccade)
1. 背景: 処理労力と視線計測
Figure 1. Fixations and saccades during reading
(adapted from Conklin et al., 2018, Figure 1.3)
視線計測データの指標 (Global Reading Measures)
• 総読解時間・総注視回数
• 平均注視時間 (200-250ms for skilled English readers)
• サッケード距離 (2 degrees or 8-9 letters for skilled English readers)
• 読み戻り・読み飛ばしの頻度
→ 難しい文章で注視時間や読み戻りが増加し,読み飛ばしが減少 (Rayner, 2009)
1
総読解時間
4. 結果と考察:言語的特徴との関連 (RQ2)
→洗練された語彙や統語的に複雑な文が多いと,総読解時間が長くなる
• 語彙が使用される文脈の限定度 [contextual distinctiveness] (r = .60)
→ todayは多様な語と共起しやすいので文脈の限定度は低く,loanはその逆で限定度が高い。
• CML2RI (r = .−54)
• 名詞句における前置詞の数 [prepositions per nominal] (r = .52)
→ The book on the table by the window is mine.
• 前置詞句の従属部 [dependents per object of the preposition] (r = .50)
→ She sat on the old wooden chair near the window.
• 総語数 [word count] (r = .45)
27.
1
平均注視時間
4. 結果と考察:言語的特徴との関連 (RQ2)
→洗練された語彙や統語的に複雑な文が多いと平均注視時間が長くなるが,相関は弱い
• 語彙の多様性 [Maas type-token ratio for all words] (r = −.15)
→ 値が高いほど,語彙の繰り返しが少なく多様な語彙が用いられている。
• 機能語の頻度 [SUBTLEXus_Range_FW_Log] (r = −.12)
→ the, in, willなどの頻度は高く,upon, shallの頻度は低い
• 名詞主語における前置詞の数 [prepositions per nominal subject] (r = .11)
→ The book on the table by the window is mine
• 名詞句における前置詞の数 [prepositions per nominal] (r = .11)
→ The book on the table by the window is mine
• 内容語の獲得年齢 [ageof acquisition] (r = .37)
→ bicycleよりもpsychologyの方が遅く(年齢が高いときに)習得される
• 名詞句における前置詞の数 [prepositions per nominal] (r = .33)
→ The book on the table by the window is mine
• 前置詞句の従属部 [dependents per object of the preposition] (r = .32)
→ She sat on the old wooden chair near the window.
• CML2RI (r = .−29) 総語数 [word count] (r = .29)
1
読み戻り回数
4. 結果と考察:言語的特徴との関連 (RQ2)
→ 洗練された語彙や統語的に複雑な文が多いと,読み戻りが多くなる
1
限界点
6. 今後の展開と限界点
• 読みやすさは言語的特徴だけから予測できるものではない。
→テキストのトピック,読み手の関心や態度をどのように推定に組み込むか。
“text readability has an inherently individual, subjective component that current
readability measures do not adequately capture” (Collins-Thompson, 2014, p. 123)
• サッケード距離と平均注視時間は,どのような要因と関わっているのか?
• 異なる熟達度や母語を持つ英語学習者,別のジャンルのテキストでの更なる
検証が必要
35.
1
Chall, J. S.,& Dale, E. (1995). Readability revisited: The new Dale-Chall readability formula. Cambridge, MA: Brookline Books.
Choi, J. S., & Crossley, S. A. (2022, July). Advances in readability research: A new readability Web app for English. In 2022 International
Conference on Advanced Learning Technologies (ICALT) (pp. 1-5). IEEE.
Crossley, S. A., Allen, D. B., & McNamara, D. S. (2011). Text readability and intuitive simplification: A comparison of readability formulas.
Reading in a Foreign Language, 23, 84–101.
Crossley, S. A., Greenfield, J., & McNamara, D. S. (2008). Assessing text readability using cognitively based indices. TESOL Quarterly, 42,
475–493. https://doi.org/10.1002/j.1545-7249.2008.tb00142.x
Crossley, S. A., Heintz, A., Choi, J. S., Batchelor, J., Karimi, M., & Malatinszky, A. (2023). A large-scaled corpus for assessing text readability.
Behavior Research Methods, 55(2), 491–507.
Crossley, S. A., Skalicky, S., & Dascalu, M. (2019). Moving beyond classic readability formulas: New methods and new models. Journal of
Research in Reading, 42, 541–561. https://doi.org/10.1111/1467-9817.12283
Carrell, P. L. (1987) Readability in ESL. Reading in a Foreign Language, 4, 21– 40.
Conklin, K., Pellicer-Sánchez, A., & Carrol, G. (2018). Eye-tracking: A guide for applied linguistics research. Cambridge, UK: Cambridge
University Press.
Cop, U., Drieghe, D., & Duyck, W. (2015). Eye movement patterns in natural reading: A comparison of monolingual and bilingual reading of a
novel. PloS One, 10, e0134008. https://doi.org/10.1371/journal.pone.0134008
Crossley, S. A., Allen, D. B., & McNamara, D. S. (2011). Text readability and intuitive simplification: A comparison of readability formulas.
Reading in a Foreign Language, 23, 84–101.
Crossley, S. A., Greenfield, J., & McNamara, D. S. (2008). Assessing text readability using cognitively based indices. TESOL Quarterly, 42,
475–493. https://doi.org/10.1002/j.1545-7249.2008.tb00142.x
Crossley, S. A., Skalicky, S., & Dascalu, M. (2019). Moving beyond classic readability formulas: New methods and new models. Journal of
Research in Reading, 42, 541–561. https://doi.org/10.1111/1467-9817.12283
Dale, E., & Chall, J. S. (1948). A formula for predicting readability: Instructions. Educational Research Bulletin, 37–54.
Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32, 221–233. https://doi.org/10.1037/h0057532
引用文献
36.
1
Godfroid, A. (2019).Eye tracking in second language acquisition and bilingualism: A research synthesis and methodological guide. New York,
NY: Routledge.
Gunning, R. (1952). The technique of clear writing. New York: McGraw-Hill
Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas (Automated Readability Index,
Fog Count and Flesch Reading Ease Formula) for Navy enlisted personnel. Millington, TN: Naval Technical Training Command, Research
Branch.
Kirkwood, K. J., & Wolfe, R. G. (1980). Matching students and reading materials: A cloze-procedure method for assessing the reading ability
of students and the readability of textual materials. Toronto, Ontario, Canada: Ontario Department of Education.
Kuperman, V., Siegelman, N., Schroeder, S., Acartürk, C., Alexeeva, S., Amenta, S., Bertram, R., Bonandrini, R., Brysbaert, M., Chernova, D.,
Da Fonseca, S. M., Dirix, N., Duyck, W., Fella, A., Frost, R., Gattei, C. A., Kalaitzi, A., Lõo, K., Marelli, M., … Usal, K. A. (2023). Text
reading in English as a second language: Evidence from the Multilingual Eye-Movements Corpus. Studies in Second Language Acquisition,
45(1), 3–37. https://doi.org/10.1017/S0272263121000954
McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. New York,
NY: Cambridge University Press.
Nahatame, S. (2022). Causal and semantic relations in L2 text processing: An eye-tracking study. Reading in a Foreign Language, 34(1), 91–
115. http://hdl.handle.net/10125/67414
Nahatame, S. (2023). Predicting processing effort during L1 and L2 reading: The relationship between text linguistic features and eye
movements. Bilingualism: Language and Cognition, 26(4), 724–737. https://doi.org/10.1017/S136672892200089X
Nahatame, S., Kimura, Y., Ogiso, T., & Ushiro, Y. (2024). Global eye movement behavior of Japanese EFL readers: Analysis of passage-level
eye-tracking measures. ARELE: Annual Review of English Language Education in Japan, 35, 17–32.
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental
Psychology, 62(8), 1457–1506. https://doi.org/10.1080/17470210902816461
Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye movements as reflections of comprehension processes in reading. Scientific
Studies of Reading, 10(3), 241–255. https://doi.org/10.1207/s1532799xssr1003_3
引用文献
37.
1
Senter, R. J.,& Smith, E. A. (1967). Automated readability index (Report No. AMRL-TR 66-220). Dayton, OH: Aerospace Medical Research
Laboratories, Wright-Patterson Air Force Base.
Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are lexile text measures? Journal of Applied Measurement,
7(3), 307–322. Bugueño, M., & Mendoza, M. (2020). Learning to combine classifiers outputs with the transformer for text classification.
Intelligent Data Analysis, 24, 15–41.
Zhang, X., & Gong, N. (2023). Modeling effects of linguistic complexity on L2 processing effort: The case of eye movement in text reading.
Studies in Second Language Acquisition, 1–28.
引用文献