SlideShare a Scribd company logo
1 of 55
Download to read offline
η άσκηση
της ηµέρας
µικρές προσπάθειες ενασχόλησης
µε αγαπηµένες µας συνήθειες
επιµέλεια: Παύλος Τρύφων
από το lisari.blogspot.gr
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
1
Μας τίμησαν με τη συμμετοχή τους
Αντωνόπουλος Νίκος
Ασημακόπουλος Γιώργος
Βουτσάς Διονύσης
Βώβος Μάριος
Δεββές Κώστας
Δέτσιος Παντελής
Ζωβοΐλης Ηλίας
Καταραχιάς Τάκης
Κίκης Νίκος
Κουτσοβασίλης Κώστας
Λουκούσιας Παναγιώτης
Μάντζαρης Μάκης
Μαρκάκης Αντώνης
Μάρκου Κατερίνα
Μίχας Μάνος
Νικολακάκης Βαγγέλης
Ξανιά Ηλιάνα
Παγώνης Θεόδωρος
Πάτσης Ανδρέας
Σπύρου Πάνος
Τσακαλάκος Τάκης
Τσατσαρώνης Θεόδωρος
Χατζάκης Δημήτρης
Χιωτίνης Μιχάλης
Χρήστου Μαρία
Χύτης Μάριος
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
2
15η
άσκηση
Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού
Προτάθηκε από τον Ηλία Ζωβοΐλη (3-1-2016)
Αποστολή λύσεων έως την Κυριακή 10/1/2016
Έστω συνάρτηση f παραγωγίσιμη στο ,για την οποία ισχύουν:
•        x
f x e x x 1 f x 0       ,για κάθε x
•
 
x 0
F x
lim 1
x
 ,όπου F μια αρχική συνάρτηση της f στο
Α. Να αποδείξετε ότι  
x
x
e
f x ,x
e x
 

.
Β. Να λυθεί η εξίσωση:    x
F x e x f x   .
Γ1. Να αποδείξετε ότι για κάθε  x ,0 ,  ισχύει:    F x x f x  .
Γ2. Να αποδείξετε ότι η εξίσωση:    F x f x 0,  έχει μοναδική ρίζα,
η οποία βρίσκεται στο  1,0 .
Δ. Να αποδείξετε ότι για κάθε  x 0, ,  ισχύει:
 
 
x
F lnxe x
.
x lnx F x



Ε1. Να αποδείξετε ότι  F 1 1 .
Ε2. Να λυθεί η εξίσωση:             x x
F f x F 1 F e 1 F e F 1 F f x 1       .
Ζ. Να αποδείξετε ότι η εφαπτομένη της fC στο σημείο   0,f 0 , «διαπερνά»
την καμπύλη.
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
3
1η
προτεινόμενη λύση (Ηλίας Ζωβοΐλης)
Α. Έστω συνάρτηση u με τύπο  
 F x
u x , x 0.
x
  Είναι    F x x u x , x 0  
και  x 0
limu x 1,

 οπότε
        
F συνεχής
x 0 x 0 x 0 x 0
limF x lim x u x F 0 limx limu x 0 1 0.
   
       
 
       F 0 0
x 0 x 0
F x F 0 F x
F 0 lim lim 1,
x x

 

    οπότε  f 0 1. Θεωρούμε συνάρτηση k
με τύπο     x
k x f x e x , x .   Είναι:
                   x x x
k x f x e x f x e 1 1 x f x f x e 1 k x , x .              
Έτσι:       x
k x k x k x c e , x .      Για    0
x 0:k 0 c e c f 0 1,     
οπότε        
x
x x x
x
e
k x e f x e x e f x , x .
e x
       

Β.          
x
x x
x
x e
F x e x f x F x e F x 1 f x .
e x

        

Θεωρούμε συνάρτηση
λ με τύπο      λ x f x F x , x .   Είναι:
         
   
 
   x
x x
1 e f x1 x f x
λ x f x F x f x f x f x , x .
e x e x
  
          
 
•  λ x 0 x 0   
•  λ x 0 x 0   
•  λ x 0 x 0   
Επομένως λ γν.αύξουσα στο  ,0 και λ γν.φθίνουσα στο  0, . Είναι:
•        
λ γν.αύξουσα
x 0 λ x λ 0 f x F x 1     
•        
λ γν.φθίνουσα
x 0 λ x λ 0 f x F x 1     
Δηλαδή, για κάθε    x ,0 0,    ,ισχύει    f x F x 1  ,ενώ για x 0
έχουμε    f 0 F 0 1  ,οπότε:    F x 1 f x x 0.   
Γ1. Είναι  
   
x
1 x f x
f x , x ,
e x
 
  

οπότε:
•  f x 0 x 1   
•  f x 0 x 1   
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
4
•  f x 0 x 1   
Επομένως f γν.αύξουσα στο  ,1 και f γν.φθίνουσα στο  1, .
Εφαρμόζοντας Θ.Μ.Τ για την F στο  x,0 , x 0, έχουμε:
Υπάρχει ένα τουλάχιστον      
 F x
ξ x,0 :F ξ f ξ .
x
  
Όμως
 
     
 
   
f γν.αύξουσα στο - ,1 x 0F x
x ξ 0 f x f ξ f x F x x f x .
x
 
        
Για x 0 έχουμε προφανή ισότητα, οπότε για κάθε  x ,0 , 
ισχύει:    F x x f x  , με το ‘‘=’’ να ισχύει μόνο για x 0 .
Γ2. Είναι    F x f x 0,   για κάθε x , οπότε F γν.αύξουσα στο .
Θεωρούμε τη συνάρτηση μ με τύπο      μ x f x F x , x .  
Είναι:          μ x f x F x f x f x , x .       
Για κάθε  x 0,  είναι:
•    F x F 0 0  , καθώς F γν.αύξουσα στο
•  f x 0
οπότε      μ x f x F x 0   για κάθε  x 0,  και έτσι η εξίσωση
 μ x 0
είναι αδύνατη στο  0,  .
Για κάθε  x ,0  είναι:
•  
   
x
1 x f x
f x 0
e x
 
  

•  f x 0
οπότε      μ x f x f x 0    και επομένως μ γν.αύξουσα στο  ,0 . Έτσι:
• μ συνεχής στο  1,0 ως άθροισμα συνεχών συναρτήσεων
•      μ 0 f 0 F 0 1 0   
•      μ 1 f 1 F 1 0      , αφού από το Γ1 για x 1  , προκύπτει:
       F 1 1 f 1 F 1 f 1 0.          Σύμφωνα με το Θ.Bolzano και επειδή
μ γν.αύξουσα στο  ,0 , συμπεραίνουμε ότι η εξίσωση:    F x f x 0, 
έχει μοναδική ρίζα, η οποία βρίσκεται στο  1,0 .
Δ. Θεωρούμε τη συνάρτηση G με τύπο      x
G x e x F x , x .    Είναι:
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
5
         x x
G x e 1 F x e x f x , x .       
Για κάθε  x ,0  ,είναι:
• x
e 1 0 
•    F x F 0 0  , οπότε  G x 0. 
Για κάθε  x 0,  ,είναι:
• x
e 1 0 
•    F x F 0 0  , οπότε  G x 0. 
Για x 0 είναι  G 0 1  και έτσι  G x 0  , για κάθε x , οπότε
G γν.αύξουσα στο .
Γνωρίζουμε ότι για κάθε  x 0,  είναι x lnx , οπότε επειδή
G γν.αύξουσα στο , θα ισχύει:    G x G lnx 
       
   
 
xF x 0
x F lnxe x
e x F x x lnx F lnx .
x lnx F x


       

Ε1. Εφαρμόζοντας Θ.Μ.Τ για την F στο  0,1 ,έχουμε:
Υπάρχει ένα τουλάχιστον        o o ox 0,1 :F x f x F 1 .  
Όμως
 
     
f γν.αύξουσα στο 0,1
o o0 x 1 f x f 0 F 1 1.     
Ε2. Έστω συνάρτηση w με τύπο       w x F x F 1 F x 1 , x 0.    
Είναι:       w x f x F 1 f x 1 , x 0.      Όμως:
•    
x 0
F 1 1 x F 1 x 1 1

     
• f γν.φθίνουσα στο  1, ,
οπότε       f x F 1 f x 1 w x 0     , που σημαίνει ότι w γν.φθίνουσα
στο  0, , οπότε w ‘‘1-1’’ στο  0, και έτσι:
            x x
F f x F 1 F e 1 F e F 1 F f x 1       
            x x
F f x F 1 F f x 1 F e F 1 F e 1        
      
w 1-1
x x x
w f x w e f x e e x 1 x 0         , καθώς x
e x 1  ,
για κάθε x , με το ‘‘=’’ να ισχύει μόνο για x 0 .
Ζ. Είναι    f 0 f 0 1   ,οπότε η εφαπτομένη της fC στο σημείο   0,f 0
έχει εξίσωση: ψ x 1  .Θεωρούμε τη συνάρτηση Π με τύπο
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
6
   
 xx
x x
x e x 1e
Π x f x x 1 x 1 , x
e x e x
   
       
 
.
Για κάθε  x ,0  ,είναι:
• x 0 
• x
e x 1 0   ,οπότε  Π x 0 ,που σημαίνει ότι η καμπύλη βρίσκεται
πάνω από την ευθεία ψ x 1  ,όταν  x ,0  .
Για κάθε  x 0,  ,είναι:
• x 0 
• x
e x 1 0   ,οπότε  Π x 0 ,που σημαίνει ότι η καμπύλη βρίσκεται
κάτω από την ευθεία ψ x 1  ,όταν  x 0,  .
Επομένως η εφαπτομένη της fC στο σημείο   0,f 0 , «διαπερνά» την
καμπύλη.
2η
προτεινόμενη λύση (Παύλος Τρύφων)
(εναλλακτικές λύσεις υποερωτημάτων)
ΕΡΩΤΗΜΑ Ζ:
 Αρκεί να αποδείξουμε ότι το σημείο  M 0,1 είναι σημείο καμπής της γραφικής
παράστασης της f (γενικότερα θα βρούμε και το πλήθος των σημείων καμπής)
 Στη γνωστή σχέση ln t t 1,  για κάθε t 0 θέτουμε για t το  x
e x R και
προκύπτει: x x x x
lne e 1 x e 1 e x 1.       
Άρα
x
e x 1 x,   για κάθε
x
x R e x 0,    για κάθε x R
Οπότε το πεδίο ορισμού της f είναι το R.
 Η f είναι δύο φορές παραγωγίσιμη στο R με
 
 
 
 
 
x x 2 x x
3 3x x
e 2e 2x x 2 xe e g x
f x
e x e x
    
    
 
,
όπου   x 2 x
g x 2e 2x x 2 xe ,x R     
Το πρόσημο της f καθορίζεται από το πρόσημο της g.
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
7
Η g είναι συνεχής στο  1,2 και        g 1 g 2 e 1 2 0      .
Άρα (Θ. Bolzano) υπάρχει  1,2 τέτοιο, ώστε  g 0 
 Βρίσκουμε
 
 
   
x x
x
x
g x e 2 2x xe ,x R
g x 2 xe ,x R
g x e x 1 ,x R
     
    
    
Οπότε,
 g x 0 x 1 0 x 1       
και
 g x 0 x 1 0 x 1       
x   1  
 g x  
g
max
Άρα η g παρουσιάζει ολικό μέγιστο στο 1 , δηλαδή
   
1 2e
g x g 1 0 g
e

       γνησίως φθίνουσα στο R. Επίσης
 g 1 e 2 2 e 0.     
Οπότε, για    x 1 g x g 1 0     και για    x 1 g x g 1 0    
O
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
8
Η g είναι γνησίως αύξουσα στο  ,1 και  g 0 0
Άρα η ρίζα x 0 της εξίσωσης  g x 0 είναι μοναδική στο  ,1 .
Παρόμοια, η g είναι γνησίως φθίνουσα στο  1, και  g 0 
Άρα η ρίζα x   της εξίσωσης  g x 0 είναι μοναδική στο  1, .
Άρα η εξίσωση  g x 0 έχει ακριβώς δύο ρίζες στο R.
 Χρησιμοποιώντας τη μονοτονία της g και τις δύο ρίζες της, προκύπτει εύκολα
ο παρακάτω πίνακας:
Η f είναι κυρτή στα διαστήματα  ,0 και  ,  και κοίλη στο διάστημα  0, .
Η f μηδενίζεται στο 0 και δεξιά και αριστερά του 0 αλλάζει πρόσημο.
Άρα (και) το σημείο  M 0,1 είναι σημείο καμπής της γραφικής παράστασης της f.
Σχόλιο:
Σαφώς κομψότερη η λύση του κου Ζωβοΐλη, αφού δε μπαίνει σε διαδικασία εύρεσης
σημείων καμπής!
x   0 1 ξ  
 g x    
 f x    
f    
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
9
3η
προτεινόμενη λύση (Δημήτρης Χατζάκης)
Βασικές ανισώσεις : 𝑒 𝑥
> 𝑥 , ∀𝑥 ∈ ℝ και 𝑙𝑛𝑥 < 𝑥 , 𝑥 > 0
A. Θέτουμε 𝑔(𝑥) =
𝐹(𝑥)
𝑥
⟺ 𝐹(𝑥) = 𝑥𝑔(𝑥). H F παραγωγισιμη στο ℝ άρα και συνεχής
όποτε :
 𝐹(0) = 𝑙𝑖𝑚
𝑥→0
𝐹(𝑥) = 𝑙𝑖𝑚
𝑥→0
𝑥𝑔(𝑥) = 0
 𝐹′(0) = 𝑓(0) = 𝑙𝑖𝑚
𝑥→0
𝐹(𝑥)
𝑥
= 1
Έχουμε : 𝑓′(𝑥)(𝑒 𝑥
− 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 , (𝟏)
 𝑓′(𝑥)(𝑒 𝑥
− 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 ⟺ 𝑓′(𝑥)𝑒 𝑥
− 𝑓′(𝑥)𝑥 + 𝑥𝑓(𝑥) − 𝑓(𝑥) = 0
𝑓′(𝑥)𝑒 𝑥
= (𝑥𝑓(𝑥))
′
− 𝑥𝑓(𝑥) ⟺ 𝑓′(𝑥) = 𝑒−𝑥
(𝑥𝑓(𝑥))
′
− 𝑒−𝑥
𝑥𝑓(𝑥) ⟺
(𝑓(𝑥))′
= (𝑒−𝑥
𝑥𝑓(𝑥))
′
⟺ 𝑓(𝑥) = 𝑒−𝑥
𝑥𝑓(𝑥) + 𝑐
Για 𝑥 = 0 ⇢ 𝑐 = 1 αρα 𝑓(𝑥) = 𝑒−𝑥
𝑥𝑓(𝑥) + 1 ⟺ ⋯ ⟺ 𝑓(𝑥) =
𝑒 𝑥
𝑒 𝑥−𝑥
> 0
Β.
 𝐹(𝑥)𝑒 𝑥
= 𝑥𝑓(𝑥) ⟺ 𝐹(𝑥)𝑒 𝑥
= 𝑥
𝑒 𝑥
𝑒 𝑥−𝑥
⟺ 𝐹(𝑥) =
𝑥
𝑒 𝑥−𝑥
⟺ 𝐹(𝑥) −
𝑥
𝑒 𝑥−𝑥
= 0
Θέτουμε 𝛫(𝑥) = 𝐹(𝑥) −
𝑥
𝑒 𝑥−𝑥
με προφανής ρίζα 𝛫(0) = 𝐹(0) − 0 = 0
𝛫′(𝑥) = 𝐹′(𝑥) − (
𝑥
𝑒 𝑥 − 𝑥
)
′
= ⋯ =
𝑒 𝑥
(𝑒 𝑥
− 1)
(𝑒 𝑥 − 𝑥)2
𝒙 𝟎
𝜥′
− +
𝜥 ↘ ↗
Έστω ότι υπάρχει ρίζα 𝜌 < 0 και επειδή η 𝐾είναι ↓ στο (−∞, 0] θα είναι :
𝐾(𝜌) > 𝐾(0) ⟺ 0 > 0 άτοπο. Ομοίως οτι δεν υπάρχει ρίζα 𝜌 > 0.
Τελικά η 𝐹(𝑥)𝑒 𝑥
= 𝑥𝑓(𝑥) έχει μοναδική λύση το 0.
Γ1. Θέτουμε ℎ(𝑥) = 𝐹(𝑥) − 𝑥𝑓(𝑥) , 𝑥 ≤ 0 με ℎ′(𝑥) = (
𝑒 𝑥
𝑒 𝑥−𝑥
) 𝑥(𝑥 − 1)
𝒙 𝟎 𝟏
𝒉′
+ − +
𝒉 ↗ ↘ ↗
 𝑥 ≤ 0
ℎ↑
⇔ ℎ(𝑥) ≤ ℎ(0) ⟺ 𝐹(𝑥) − 𝑥𝑓(𝑥) ≤ 0 ⟺ 𝐹(𝑥) ≤ 𝑥𝑓(𝑥) , (𝟐)
Γ2. Για 𝑥 = −1 στην (2) : 𝐹(−1) < −𝑓(−1) ⟺ 𝐹(−1) + 𝑓(−1) < 0
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
10
Θέτουμε την 𝛬(𝑥) = 𝐹(𝑥) + 𝑓(𝑥) , 𝑥 ∈ [−1,0] με 𝛬′
(𝑥) =
𝑒 𝑥(𝑒 𝑥−2𝑥+1)
(𝑒 𝑥−𝑥)2
 𝛬(0) = 1 > 0 και 𝛬(−1) = 𝐹(−1) + 𝑓(−1) < 0
{
𝛬 𝜎𝜐𝜈𝜀𝜒𝜂𝜍 𝜎𝜏𝜊 [−1,0]
𝛬(−1)𝛬(0) < 0
από ΘΒ η 𝛬(𝑥) = 0 έχει μια τουλάχιστον ρίζα στο (−1,0)
𝛬′(𝑥) =
𝑒 𝑥(𝑒 𝑥−2𝑥+1)
(𝑒 𝑥−𝑥)2
> 0 αφού 𝑒 𝑥
− 2𝑥 + 1 = (𝑒 𝑥
− 𝑥) + (1 − 𝑥) > 0 , 𝑥 ∈ (−1,0)
Τελικά υπάρχει μοναδικό 𝑥1 ∈ (−1,0) τέτοιο ώστε : 𝛬(𝑥) = 0
Δ. Είναι 𝑓(𝑥) =
𝑒 𝑥
𝑒 𝑥−𝑥
> 0 ⇢ 𝐹 ↑ στο ℝ . Επίσης το πρόσημο της F είναι :
𝒙 𝟎
𝑭 − +
1 περίπτωση : 𝑥 ≥ 1
 𝑥 ≥ 1 ⟺ 𝑙𝑛𝑥 ≥ 0
𝐹 ↑
⇔ 𝐹(𝑙𝑛𝑥) ≥ 0 και 𝐹(𝑥) > 0

𝑒 𝑥−𝑥
𝑥−𝑙𝑛𝑥
>
𝐹(𝑙𝑛𝑥)
𝐹(𝑥)
⟺ 𝐹(𝑥)( 𝑒 𝑥 − 𝑥) > 𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥)
 𝑥 > 𝑙𝑛𝑥
𝐹 ↑
⇔ 𝐹( 𝑥) > 𝐹( 𝑙𝑛𝑥) (3)
Αρκεί να δείξουμε ότι 𝑒 𝑥
− 𝑥 > 𝑥 − 𝑙𝑛𝑥 , 𝑥 ≥ 1
Θέτουμε την 𝛱(𝑥) = 𝑒 𝑥
− 2𝑥 + 𝑙𝑛𝑥 με 𝛱′(𝑥) = 𝑒 𝑥
− 2 +
1
𝑥
> 0 , ∀𝑥 ≥ 1
Όποτε 𝑥 ≥ 1
𝛱 ↑
⇔ 𝑒 𝑥
− 2𝑥 + 𝑙𝑛𝑥 ≥ 𝑒 − 2 > 0 ⟺ 𝑒 𝑥
− 𝑥 > 𝑥 − 𝑙𝑛𝑥 , (4)
Από (3) και (4) έχουμε : 𝐹(𝑥)(𝑒 𝑥
− 𝑥) > 𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥) ⟺
𝑒 𝑥−𝑥
𝑥−𝑙𝑛𝑥
>
𝐹(𝑙𝑛𝑥)
𝐹(𝑥)
2 περίπτωση : 0 < 𝑥 < 1
 𝑥 < 1 ⟺ 𝑙𝑛𝑥 < 0
𝐹 ↑
⇔ 𝐹(𝑙𝑛𝑥) < 0
𝐹(𝑥)>0
⇔
𝐹(𝑙𝑛𝑥)
𝐹(𝑥)
< 0

𝑒 𝑥−𝑥
𝑥−𝑙𝑛𝑥
> 0 . Όποτε
𝑒 𝑥−𝑥
𝑥−𝑙𝑛𝑥
>
𝐹(𝑙𝑛𝑥)
𝐹(𝑥)
E1. Θεωρούμε την συνάρτηση 𝑤(𝑥) = 𝐹(𝑥) − 𝑥 , 𝜇𝜀 𝑤′(𝑥) =
𝑥
𝑒 𝑥−𝑥
𝒙 𝟎
𝒘′
− +
𝒘 ↘ ↗
 𝑤(𝑥) ≥ 𝑤(0) ⟺ 𝑤(𝑥) ≥ 0 άρα για 𝑥 = 1 ∶ 𝑤(1) > 0 ⟺ 𝐹(1) − 1 > 0 ⟺ 𝐹(1) > 1
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
11
E2. 𝑓′(𝑥) =
𝑒 𝑥(1−𝑥)
(𝑒 𝑥−𝑥)2 < 0 για κάθε 𝑥 > 1 άρα 𝑓 1 − 1 όταν 𝑥 > 1
Είναι 𝑒 𝑥
≥ 𝑥 + 1 και το ίσον ισχύει μόνο όταν 𝑥 = 0
Για 𝒙 ≠ 𝟎 ∶ 𝑒 𝑥
> 𝑥 + 1 ⟺ 𝑒 𝑥
− 𝑥 > 1 ⟺
1
𝑒 𝑥−𝑥
< 1 ⟺
𝑒 𝑥
𝑒 𝑥−𝑥
< 𝑒 𝑥
⟺ 𝑓(𝑥) < 𝑒 𝑥
Η εξίσωση : 𝐹(𝑓(𝑥) + 𝐹(1)) + 𝐹(𝑒 𝑥
+ 1) = 𝐹(𝑒 𝑥
+ 𝐹(1)) + 𝐹(𝑓(𝑥) + 1) έχει προφανή
ρίζα το 0 . Έστω ότι η παραπάνω εξίσωση έχει και το 𝒙 𝟐 ≠ 𝟎 λύση .Επομένως :
𝐹(𝑓(𝑥2) + 𝐹(1)) + 𝐹(𝑒 𝑥2 + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) + 𝐹(𝑓(𝑥2) + 1)
ή
𝐹(𝑓(𝑥2) + 𝐹(1)) − 𝐹(𝑓(𝑥2) + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) − 𝐹(𝑒 𝑥2 + 1) (𝟒)
ή
𝐹(𝑒 𝑥2 + 1) − 𝐹(𝑓(𝑥2) + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) − 𝐹(𝑓(𝑥2) + 𝐹(1)) (𝟓)
Αφού 𝑓(𝑥) > 0 , 𝐹(1) > 1 και 𝑓(𝑥) < 𝑒 𝑥
:
 1 < 𝑓(𝑥2) + 1 < 𝑓(𝑥2) + 𝐹(1) < 𝑒 𝑥2 + 𝐹(1)
Και
 1 < 𝑓(𝑥2) + 1 < 𝑒 𝑥2 + 1 < 𝑒 𝑥2 + 𝐹(1)
 Έστω 𝒆 𝒙 𝟐 + 𝟏 ≥ 𝒇(𝒙 𝟐) + 𝑭(𝟏) ⇢ 𝒇(𝒙 𝟐) + 𝟏 < 𝒇(𝒙 𝟐) + 𝑭(𝟏) ≤ 𝒆 𝒙 𝟐 + 𝟏 < 𝒆 𝒙 𝟐 + 𝑭(𝟏)
F παραγωγισιμη στο [𝑓(𝑥2) + 1, 𝑓(𝑥2) + 𝐹(1)] από ΘΜΤ υπάρχει ένα τουλάχιστον
𝜉1 ∈ (𝑓(𝑥2) + 1, 𝑓(𝑥2) + 𝐹(1)) ∶ 𝐹′(𝜉1) = 𝑓(𝜉1) =
𝐹(𝑓(𝑥2)+𝐹(1))−𝐹(𝑓(𝑥2)+1)
𝐹(1)−1
F παραγωγισιμη στο [𝑒 𝑥2 + 1, 𝑒 𝑥2 + 𝐹(1)] από ΘΜΤ υπάρχει ένα τουλάχιστον
𝜉2 ∈ (𝑒 𝑥2 + 1, 𝑒 𝑥2 + 𝐹(1)) ∶ 𝐹′(𝜉2) = 𝑓(𝜉2) =
𝐹(𝑒 𝑥2+𝐹(1))−𝐹(𝑒 𝑥2+1)
𝐹(1)−1
Λογω της (4) έχουμε : 𝑓(𝜉1) = 𝑓(𝜉2)
𝑓 1−1
⇔ 𝜉1 = 𝜉2 ⇢ ΑΤΟΠΟ
 Αν 𝒆 𝒙 𝟐 + 𝟏 ≤ 𝒇(𝒙 𝟐) + 𝑭(𝟏). Χρησιμοποιούμε την σχέση (5) και όμοιο τρόπο
καταλήγουμε σε άτοπο .
Ζ. Αρκεί να δείξουμε ότι το (0, 𝑓(0)) είναι σημείο καμπής .
 Παραγωγιζουμε την 𝑓′(𝑥)(𝑒 𝑥
− 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 και μετά από πράξεις έχουμε
𝑓′′(𝑥)
( 𝑒 𝑥−𝑥)3
𝑒 𝑥 = 𝑥𝑒 𝑥
+ 𝑥2
− 2𝑥 − 2𝑒 𝑥
+ 2
Θέτουμε 𝛷(𝑥) = 𝑥𝑒 𝑥
+ 𝑥2
− 2𝑥 − 2𝑒 𝑥
+ 2 με 𝛷′(𝑥) = (𝑒 𝑥
+ 2)(𝑥 − 1)
𝒙 𝟎 𝟏
𝜱′
− +
𝜱 ↘ ↗
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
12
 𝑥 < 0
𝛷↓
⇔ 𝛷(𝑥) > 𝛷(0) ⟺ 𝑓′′(𝑥)
( 𝑒 𝑥−𝑥)3
𝑒 𝑥 > 0 ⟺ 𝑓′′(𝑥) > 0
 0 ≤ 𝑥 < 1
𝛷↓
⇔ 𝛷(𝑥) ≤ 𝛷(0) ⟺ 𝑓′′(𝑥)
( 𝑒 𝑥−𝑥)3
𝑒 𝑥 ≤ 0 ⟺ 𝑓′′(𝑥) ≤ 0
𝒙 𝟎 𝟏
𝒇′
′ + −
𝒇 ∪ ∩
4η
προτεινόμενη λύση (Κώστας Δεββές)
Α. Ισοδύναμα από αρχική έχω: 𝑓΄(𝜒)𝑒 𝑥
− 𝑓΄(𝜒)𝜒 + 𝜒𝑓(𝜒) − 𝑓(𝑥) = 0 ή 𝑓΄(𝜒) −
𝑓΄(𝜒)𝜒𝑒−𝑥
+ 𝜒𝑓(𝜒)𝑒−𝑥
− 𝑓(𝑥)𝑒−𝑥
= 0 ή 𝑓΄(𝜒) − (𝜒𝑓(𝜒)𝑒−𝑥)΄=0 άρα η
φ(χ)= 𝑓(𝜒)(1 − 𝜒𝑒−𝑥)=c. Θέτοντας 𝛨(𝜒) =
𝐹(𝑥)
𝑥
είναι lim
𝜒→0
𝛨(𝜒) = 1 και F(χ)=χΗ(χ)
με lim
𝜒→0
𝐹(𝜒) = 0 = 𝐹(0), άρα το όριο που δίνεται είναι το F΄(0)=1=f(0). Για χ=0 στη
φ έχω c=1=φ(χ) ή 1=f(χ)(1-χ𝑒−𝑥
) ή f(χ)=
𝑒 𝑥
𝑒 𝑥−𝑥
.
Β. H δοσμένη είναι ισοδ. με F(χ)=
𝜒
𝑒 𝑥−𝑥
(προφανής ρίζα 0) και θέτοντας Φ(χ)=
F(χ)−
𝜒
𝑒 𝑥−𝑥
έχω Φ΄(χ)=
𝑒 𝑥(𝑒 𝑥−1)
(𝑒 𝑥−𝑥)2
με μόνη ρίζα το 0 που για χ>0 είναι θετική άρα Φ <
στο [0,+∞) και για χ<0 αρνητική δηλ. Φ > στο (-∞, 0], άρα Φmin=0 δηλ. Φ(χ)>0 στο
𝑅∗
, και ο 0 μόνη ρίζα της Φ.
Γ1. Για χ=0 ισχύει ως ισότητα. Αν χ<0 θέτω Κ(χ)=F(χ)-χf(χ) με
Κ΄(χ)=−𝜒𝑒 𝜒 1−𝜒
(𝑒 𝑥−𝑥)2
>0 δηλ. η Κ < στο (-∞, 0] και έχει max το Κ(0)=0, άρα Κ(χ)<0
στο (-∞, 0).
Γ2. Με Τ(χ)=F(χ)+f(χ), χ∈ [−1,0] είναι Τ(-1)=F(-1)+f(-1)<0 (γιατί από Γ1 με χ=-1
είναι F(-1)<-f(-1)) και Τ(0)=F(0)+f(0)=1, άρα εφαρμόζεται το Bolzano για την Τ. Aν
η T έχει 2 ρίζες στο (-1,0) θα εφαρμόζεται το Rolle και η Τ΄(χ)=𝑒 𝑥 𝑒 𝑥+1−2𝑥
(𝑒 𝑥−𝑥)2
θα έχει
ρίζα σ’ αυτό. Αν όμως θέσω φ(χ)= 𝑒 𝑥
+ 1 − 2𝑥 θα είναι φ΄(χ)= 𝑒 𝑥
− 2<0 στο (-1,0)
δηλ. η Τ΄ αδύνατη σ’ αυτό. Άρα η Τ έχει μοναδική ρίζα στο (-1,0).
Δ. Είναι F < αφού f(χ)>0 (𝑒 𝑥
≥ 𝑥 + 1 > 𝑥) δηλ. F(χ)>F(0)=0 και χ-lnχ>0 (lnχ≤ 𝜒 −
1 < 𝜒). Άρα η ζητούμενη ανισότητα γράφεται ισοδύναμα: 𝐹(𝑥)(𝑒 𝑥
− 𝑥) >
𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥) = 𝐹(𝑙𝑛𝑥)(𝑒 𝑙𝑛𝑥
− 𝑙𝑛𝑥) ή Φ(χ)>Φ(lnx) με Φ(χ)= 𝐹(𝑥)(𝑒 𝑥
− 𝑥) ,
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
13
χ>0. Είναι Φ΄(χ)=𝑒 𝑥
+ 𝐹(𝑥)(𝑒 𝑥
− 1) > 0 με χ>0, άρα Φ < στο (0,+∞) δηλ. η
αποδεικτέα ισχύει.
Ε1. 𝑓΄(𝜒) = 𝑒 𝜒 1−𝜒
(𝑒 𝑥−𝑥)2 με μόνη ρίζα το 1 που είναι θετική στο (-∞,1) και < στο (-
∞, 1]. Από ΘΜΤ για την F στο [0,1] υπάρχει ξ στο (0,1) με 𝐹΄(𝜉) = 𝑓(𝜉) = 𝐹(1) κι
επειδή 0<ξ είναι f(0)<f(ξ) (f <)) άρα 1<F(1).
Z. H εφαπτομένη της Cf στο (0,1) έχει εξίσωση y=x+1 και f΄΄(χ)=−
𝑒 𝜒
(𝑒 𝜒−𝜒)3
(−𝜒2
+
2𝑒 𝑥
− 2 − 𝑥𝑒 𝜒
+ 2𝜒). Θέτω h(χ)= −𝜒2
+ 2𝑒 𝑥
− 2 − 𝑥𝑒 𝜒
+ 2𝜒 με h(0)=0 και
h΄(χ)=(1 − 𝜒)(𝑒 𝜒
+ 2) με ρίζα το 1 και h΄(χ)>0 με χ<1 δηλ. η h < στο (-∞, 1]. Για
χ<0 είναι h(χ)<h(0)=0 άρα f΄΄(χ)>0 και f κυρτή στο (-∞, 0]. Ομοίως με 0<χ<1 είναι
h(χ)>h(0)=0 άρα f΄΄(χ)<0 και f κοίλη στο [0,1]. Δηλ. το (0,1) σημείο καμπής της Cf.
5η
προτεινόμενη λύση (Μάκης Μάντζαρης)
A.
Έστω g(x) =
F(x)
x
, x ≠ 0, τότε lim
x→0
g(x) = 1
F(x) = xg(x) ⇒ lim
x→0
F(x) = lim
x→0
xg(x) = 0, όμως F συνεχής άρα F(0)=0
f(0) = F′(0) = lim
x→0
F(x) − F(0)
x − 0
= lim
x→0
g(x) = 1 , αρα 𝐟(𝟎) = 𝟏
Έστω H(x) = (1 − xe−x)f(x), x ∈ R παραγωγίσιμη
τότε H′(x) = e−x(x − 1)f(x) + (1 − xe−x)f′(x) =
= e−x[(x − 1)f(x) + (ex
− x)f′(x)] = 0
άρα Η σταθερή με Η(0) = 1 ,άρα H(x) = 1 ⇒ (1 − xe−x)f(x) = 1
1−xe−x≠0
⇒
f(x) =
1
1 − xe−x
⇒ 𝐟(𝐱) =
𝐞 𝐱
𝐞 𝐱 − 𝐱
B.
Έστω G(x) = F(x) −
x f(x)
ex , x ∈ R παραγωγίσιμη
με G′(x) = f(x) −
(f(x)+xf′(x))ex−xf(x)ex
e2x
=
ex
ex−x
−
(1−x)f(x)+xf′(x)
ex
=
=
ex
ex−x
−
f′(x)(ex−x)+xf′(x)
ex
=
ex
ex−x
−
f′(x)ex
ex
=
ex
ex−x
−
ex(1−x)
(ex−x)2
=
ex(ex−1)
(ex−x)2
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
14
Από τον πίνακα έχουμε ότι η G έχει μοναδική ρίζα το 0, άρα και η
F(x) −
x f(x)
ex
= 0 ⇔
𝐅(𝐱)𝐞 𝐱
= 𝐱𝐟(𝐱) έχει μοναδική ρίζα το 0.
Γ.1
Γιαx < 0 η F είναι παραγωγίσιμη και συνεχής στο [x, 0] οπότε από ΘΜΤ
∃ ξ ∈ (x, 0): F′(ξ) =
F(x)−F(0)
x−0
⇒ f(ξ) =
F(x)
x
όμως f(x) =
ex
ex−x
⇒ f′(x) =
ex(1−x)
(ex−x)2 > 0 για x < 0 άρα f ↗ στο [x, 0]
άρα ξ > x ⇒ f(ξ) > f(x) ⇒
F(x)
x
> f(x) ⇒ F(x) < xf(x) ∀ x < 0
ακόμα F(0) = 0 = 0f(0), συνεπώς ∀ 𝐱 ∈ (−∞, 𝟎] 𝛆ί𝛎𝛂𝛊 𝐅(𝐱) ≤ 𝐱𝐟(𝐱)
Γ.2
Έστω D(x) = F(x) + f(x), x ∈ R παραγωγίσιμη
η D ορίζεται και είναι συνεχής στο [−1,0]
D(−1) = F(−1) + f(−1) < 0 , από Γ1
D(0) = F(0) + f(0) = 1 > 0
από Θ.Bolzano η D έχει τουλάχιστο μια ρίζα στο (-1,0)
D′(x) = F′(x) + f′(x) =
ex(ex−2x+1)
(ex−x)2
θεωρώ την συνάρτηση z(x) = ex
− 2x + 1 με z′(x) = ex
− 2
x -∞ 0 +∞
G - +
G
O.E. G(0)=0
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
15
Από τον πίνακα έχουμε z(x) > 0
άρα D′(x) > 0 ⇒ D ↗ στο R συνεπώς η
D έχει μοναδική ρίζα στο R άρα και η
𝐅(𝐱) + 𝐟(𝐱) = 𝟎 έ𝛘𝛆𝛊 𝛍𝛐𝛎𝛂𝛅𝛊𝛋ή 𝛒ί𝛇𝛂 στο R που βρίσκεται στο (-1,0)
Δ.
f(x) > 0 , αφού ex
− x ≥ 1 και ex
> 0
F′(x) = f(x) > 0 άρα F ↗ στο R άρα για x > 0 ⇒ F(x) > F(0) = 0
Έστω L(x) =
exF(x)
f(x)
, x ∈ R παραγωγίσιμη με
L′(x) =
ex[F(x)(f(x)−f′(x))+f2(x)]
f2(x)
=
ex[F(x)
ex(ex−1)
f2(x)
+f2(x)]
f2(x)
> 0 για x > 0
άρα L ↗ στο (0, +∞). Όμως lnx ≤ x − 1 < x ⇒ L(lnx) < L(x) ⇒
elnxF(lnx)
f(lnx)
<
exF(x)
f(x)
⇒
xF(lnx)
f(lnx)
<
exF(x)
f(x)
⇒
xF(lnx)
x
x−lnx
<
exF(x)
ex
ex−x
⇒
𝐅(𝐥𝐧𝐱)
𝐅(𝐱)
<
𝐞 𝐱−𝐱
𝐱−𝐥𝐧𝐱
Ε.1
Έστω W(x) = F(x) − x , x, ∈ [0 + ∞) παραγωγίσιμη με
W′(x) = f(x) − 1 =
x
ex−x
> 0 , για x > 0 άρα W ↗ στο [0, +∞)
1 > 0 ⇒ W(1) > W(0) ⇒ 𝐅(𝟏) > 𝟏
Ε.2.
f(x) =
ex
ex−x
> 0 , f′(x) =
ex(1−x)
(ex−x)2
, άρα 𝐟 ↘ 𝛔𝛕𝛐 (𝟏, +∞).
είναι f(x) =
ex
ex−x
< ex
,αφού ex
− x > 1 , άρα 𝟎 < 𝐟(𝐱) < 𝐞 𝐱
η x=0 είναι προφανής λύση,
x -∞
ln2
+∞
z - +
z
O.E. z( ln2)=3-2ln2>0
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
16
έστω ρ ≠ 0 μια άλλη λύση , τότε 1 < f(ρ) + 1 < eρ
+ F(1) και
f(ρ) + 1 < eρ
+ 1 < eρ
+ F(1) και
f(ρ) + 1 < f(ρ) + F(1) < eρ
+ F(1)
Θέτω α = f(ρ) + 1 , δ = eρ
+ F(1) , β = min{eρ
+ 1, f(ρ) + F(1)}
, γ = max{eρ
+ 1, f(ρ) + F(1)} , τότε 1 < α < β ≤ γ < δ
και β − α = δ − γ = eρ
− f(ρ) > 0 ή β − α = δ − γ = F(1) − 1 > 0
και τότε F(β) + F(γ) = F(δ) + F(α) , όμως από ΘΜΤ στα [𝛼, 𝛽], [𝛾, 𝛿] για την F
είναι
𝐹′(𝜉1) = 𝑓(𝜉1) =
𝐹(𝛽)−𝐹(𝛼)
𝛽−𝛼
, 𝐹′(𝜉2) = 𝑓(𝜉2) =
𝐹(𝛿)−𝐹(𝛾)
𝛿−𝛾
, 𝜉1 ∈ (𝑎, 𝛽), 𝜉2 ∈
(𝛾, 𝛿)
και επειδή f ↘ στο (1, +∞) θα είναι f(ξ1) > f(ξ2)
⇒ F(β) − F(α) > F(δ) − F(γ) ⇒
F(β) + F(γ) > F(δ) + F(α) , άτοπο οπότε η x=0 μοναδική λύση
Ζ.
f′(x) =
ex(1−x)
(ex−x)2
, η f είναι παραγωγίσιμη στο 0 και δέχεται εφαπτόμενη.
f′′(x) = ex ex(x−2)+x2−2x+2
(ex−x)3 με f′′(0) = 0
έστω z(x) = ex(x − 2) + x2
− 2x + 2 , x < 1 παραγωγίσιμη με
z′(x) = (ex
+ 2)(x − 1) < 0 ,άρα z ↘ για x <1
για x < 0 ⇒ z(x) < z(0) = 0 ⇒ f′′(x) < 0
για x > 0
x<1
⇒ z(x) > z(0) = 0 ⇒ f′′(x) > 0 , συνεπώς το x=0 είναι σημείο καμπής
και η εφαπτόμενη σε αυτό διαπερνά την 𝐂 𝐟
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
17
16η
άσκηση
Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού
Προτάθηκε από τον Ηλία Ζωβοΐλη (11-1-2016)
Αποστολή λύσεων έως την Κυριακή 17/1/2016
Έστω συνάρτηση f δυο φορές παραγωγίσιμη στο  0, ,για την οποία
ισχύουν:
•    2
x f x x f x 2 2x, x 0      
• Η fC έχει σημείο καμπής το   e,f e
•    F x 2x F 1 2, x 0    ,
όπου F μια αρχική συνάρτηση της f στο  0,
Α. Να αποδείξετε ότι   2
f x ln x 2x,x 0   .
Β. Να αποδείξετε ότι η εξίσωση
2x 2x
e x 1  ,έχει μοναδική θετική ρίζα,
η οποία βρίσκεται στο
1
,1
e
 
 
 
.
Γ. Να αποδείξετε ότι η συνάρτηση F έχει μοναδικό ακρότατο,
του οποίου να προσδιορίσετε το είδος.
Δ. Να αποδείξετε ότι υπάρχουν  1 2ξ ,ξ 1,2 , τέτοια ώστε:
        
2
1 2
1
F x f x dx f ξ F ξ   .
Ε1. Να αποδείξετε ότι η συνάρτηση g με τύπο  
   F x F 1
, x 1
g x x 1
2 , x 1
 
 
  
  
είναι γν.φθίνουσα στο  1, .
Ε2. Να αποδείξετε ότι:    
2 3
1 1
2 f x dx f x dx  .
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
18
1η
προτεινόμενη λύση (Ηλίας Ζωβοΐλης)
Α. Αφού η fC έχει σημείο καμπής το   e,f e και η f είναι δυο φορές
παραγωγίσιμη στο  0, ,θα ισχύει  f e 0  .Έτσι για x e ,έχουμε:
   
 
 
f e 0
2
e f e e f e 2 2e e f e 2 2e
 
           .
Θεωρούμε συνάρτηση u με τύπο    u x F x 2x, x 0   .Είναι    u 1 F 1 2  ,
οπότε:        F x 2x F 1 2 u x u 1     .Για τη συνάρτηση u,ισχύουν:
• u παραγωγίσιμη στο  0, ,ως άθροισμα παραγωγίσιμων συναρτήσεων
•    u x u 1
• το 1 είναι εσωτερικό σημείο του  0,
Επομένως σύμφωνα με το Θ.Fermat,θα είναι
     u 1 0 F 1 2 0 f 1 2        .
            
x 0
2 2
x f x x f x 2 2x x f x f x 2 x f x 2lnx 2x
x

                   
 x f x 2lnx 2x c     .
Για x e ,έχουμε:  e f e 2lne 2e c 2 2e 2 2e c c 0           ,οπότε
         
x 0
2 22lnx
x f x 2lnx 2x f x 2 f x ln x 2x f x ln x 2x c
x

               
Για x 1 ,έχουμε:   2
f 1 ln 1 2 c 2 2 c c 0            ,οπότε
  2
f x ln x 2x,x 0   .
Β. Για τη συνάρτηση f έχουμε:
 
 2 lnx x2lnx
f x 2 0
x x

     ,καθώς για κάθε  x 0,  είναι lnx x .
Επομένως f γν.φθίνουσα στο  A 0,  και έτσι:
        
f γν.φθίνουσα
f συνεχής x x 0
f A lim f x , lim f x , 
    ,αφού
•  
2
x x
ln x
lim f x lim 2x 1
2x 
  
     
  
,καθώς  x
lim 2x

  και
2
x DLH x DLH x
ln x lnx 1
lim lim lim 0
2x x x
 
 
  
  
•  x 0
lim f x

 ,καθώς  x 0
lim 2x 0

 και    2
x 0 x 0
lim ln x lim lnx lnx 
 
   
αφού
x 0
lim lnx

 .
21 1 2 2 e 2
f ln 1 0
e e e e e
   
        
   
 f 1 2 0   και επειδή f συνεχής και γν.φθίνουσα σε συνδυασμό
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
19
με το Θ.Bolzano,συμπεραίνουμε ότι η εξίσωση  f x 0 ,έχει μοναδική ρίζα,
η οποία βρίσκεται στο
1
,1
e
 
 
 
.
 
x 0
2x 2x 2x 2x
e x 1 ln e x 0 2x 2x lnx 0

        
Για κάθε  x 1,  είναι: 2x 2x lnx 0   ,οπότε:
 
2
2x 2x lnx 0 2x lnx 2x 2x lnx 2x           
   
0 x 1
2
lnx 2x ln x 2x f x 0, x 0,1
 
       
που σε συνδυασμό με τα προηγούμενα αποδεικνύει το ζητούμενο.
Γ. Είναι:      F x f x , x 0,    και
     F x f x 0, x 0,     .
Αποδείξαμε ότι υπάρχει μοναδικό o
1
x ,1
e
 
 
 
,τέτοιο ώστε  of x 0 .
Η συνάρτηση F είναι γν.φθίνουσα στο  0, ,οπότε:
•      
F γν.φθίνουσα
o o o0 x x F x F x f x 0

      
•      
F γν.φθίνουσα
o o ox x F x F x f x 0

     
και έτσι η συνάρτηση F είναι γν.αύξουσα στο  o0,x και γν.φθίνουσα
στο  ox , ,που σημαίνει ότι η συνάρτηση F έχει μοναδικό ολικό
μέγιστο το  oF x .
Δ.                
2 2
22 2 2
1
1 1
1 1
F x f x dx F x F x dx F x F 2 F 1
2 2
              
   
   F 1 F 2
F 2 F 1
2

     .
Εφαρμόζοντας Θ.Μ.Τ για την F στο  1,2 ,συμπεραίνουμε ότι υπάρχει
 1ξ 1,2 ,
τέτοιο ώστε        1 1F ξ f ξ F 2 F 1    .
Έστω συνάρτηση w με τύπο          w x 2F x F 1 F 2 , x 1,2    .Είναι:
• w συνεχής στο  1,2 (προφανώς)
•      w 1 F 1 F 2 
•      w 2 F 2 F 1 
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
20
       
2
w 1 w 2 F 2 F 1 0,       καθώς:
       
f γν.φθίνουσα
o 1 o 1x 1 ξ f x f ξ 0 F 2 F 1 .      
Έτσι σύμφωνα με το Θ.Bolzano,υπάρχει  2ξ 1,2 ,τέτοιο ώστε  2w ξ 0 
 
   
2
F 1 F 2
F ξ
2

  και έτσι:         
2
1 2
1
F x f x dx f ξ F ξ   ,με  1 2ξ ,ξ 1,2 .
Ε1. Η συνάρτηση g είναι συνεχής στο 1,καθώς:
 
   
     x 1 x 1
F x F 1
lim g x lim F 1 f 1 2 g 1
x 1 
 

     

.Για κάθε  x 1,  είναι:
 
       
 
 
   
2
F x F 1
f xF x x 1 F x F 1 x 1g x
x 1x 1

         

.
Εφαρμόζοντας Θ.Μ.Τ για την F στο  1,x , x 1 ,συμπεραίνουμε ότι υπάρχει
 ξ 1,x ,τέτοιο ώστε    
   F x F 1
F ξ f ξ
x 1

  

,
με    
f γν.φθίνουσα
1 ξ x f x f ξ    ,οπότε:  
   f x f ξ
g x 0, x 1
x 1

   

.
Επομένως η συνάρτηση g είναι γν.φθίνουσα στο  1, .
Ε2.        
   g γν.φθίνουσα F 3 F 1
2 3 g 2 g 3 F 2 F 1
2

      
            
2 3
1 1
2 F 2 F 1 F 3 F 1 2 F x F x                
2 3
1 1
2 f x dx f x dx  .
2η
προτεινόμενη λύση (Τάκης Καταραχιάς)
Α.
Είναι 𝑥2
𝑓΄΄(𝑥) + 𝑥𝑓΄(𝑥) = 2 − 2𝑥 για 𝑥 > 0 . Επειδή η Cf έχει σημείο καμπής το
(e,f(e)) και η f είναι δύο φορές παραγωγίσιμη, θα είναι 𝑓΄΄(𝑒) = 0 οπότε από την
αρχική σχέση προκύπτει 𝑓΄(𝑒) =
2
𝑒
− 2.
Θέτω g(x) = F(x) + 2x. Ισχύει F(x) + 2x ≤ F(1) + 2  g(x) ≤ g(1) επόμενα από
θεώρημα FERMAT θα είναι g΄(1)=0  F΄(1) + 2 =0  f(1)=-2. Τώρα:
για 𝑥 > 0 𝑥2
𝑓΄΄(𝑥) + 𝑥𝑓΄(𝑥) = 2 − 2𝑥  𝑥𝑓΄΄(𝑥) + 𝑓΄(𝑥) =
2
𝑥
− 2  (𝑥𝑓΄(𝑥))΄=
(2𝑙𝑛𝑥 − 2𝑥)΄  𝑥𝑓΄(𝑥)= 2𝑙𝑛𝑥 − 2𝑥 + 𝑐1 , και επειδή 𝑓΄(𝑒) =
2
𝑒
− 2 θα είναι 𝑐1 =
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
21
0. Δηλαδή 𝑥𝑓΄(𝑥)= 2𝑙𝑛𝑥 − 2𝑥  𝑓΄(𝑥)=
2𝑙𝑛𝑥
𝑥
− 2  𝑓΄(𝑥)= (𝑙𝑛2
𝑥 − 2𝑥 )΄
𝑓(𝑥)= 𝑙𝑛2
𝑥 − 2𝑥 + 𝑐 .΄Ομως f(1)=-2  𝑐 = 0 . ΄Αρα 𝑓(𝑥)= 𝑙𝑛2
𝑥 − 2𝑥.
Β.
΄Εχω 𝑓΄(𝑥)=
2𝑙𝑛𝑥
𝑥
− 2 =
2(𝑙𝑛𝑥−𝑥)
𝑥
≤
−2
𝑥
< 0 για 𝑥 > 0 διότι lnx ≤ x − 1, για κάθε x
> 0. Συνεπώς f γνήσια φθίνουσα στο ( 0 , +∞ ). Τώρα η f συνεχής στο [
1
𝑒
, 1] ως
παραγωγίσιμη. Επί πλέον f(1)=-2< 0 , f(
1
𝑒
) = 1−
2
𝑒
> 0, επόμενα από θεώρημα
BOLZANO υπάρχει μοναδικό ρє(
1
𝑒
, 1) (επειδή f γνήσια φθίνουσα στο ( 0 , +∞ ) )
ώστε f(ρ)=0  𝑙𝑛2
𝜌 − 2𝜌 = 0  𝑙𝑛2
𝜌 = 2𝜌  𝑙𝑛 𝜌 = −√2𝜌 διότι ρє(
1
𝑒
, 1) .
Συνεπώς 𝑙𝑛𝜌 + √2𝜌 = 0  √2𝜌 𝑙𝑛𝜌 + 2𝜌 = 0  𝑒√2𝜌 𝑙𝑛 𝜌+2𝜌
= 1  𝑒2𝜌
∙
𝜌√2𝜌 = 1 Για 0<x<ρ είναι f(x) > f(ρ)f(x) > 0 𝑙𝑛2
𝑥 > 2𝑥(𝑙𝑛𝑥 − √2𝑥
)( 𝑙𝑛𝑥 + √2𝑥 ) >0 𝑙𝑛𝑥 + √2𝑥 <0 𝑒√2𝑥 𝑙𝑛 𝑥+2𝑥
< 1 𝑒2𝑥
∙ 𝑥√2𝑥 < 1. ΄Ομοια
για x>ρ είναι 𝑒2𝑥
∙ 𝑥√2𝑥 > 1. ΄Αρα η εξίσωση 𝑒2𝑥
∙ 𝑥√2𝑥 = 1 έχει μοναδική θετική
ρίζα ρ στο (
1
𝑒
, 1).
Γ.
𝛦ί𝜈𝛼𝜄 𝐹΄(𝜌) = 𝑓(𝜌) = 0. Για 0 < 𝑥 < 𝜌  𝑓(𝑥) > 𝑓(𝜌)  𝐹΄(𝜒) > 0. Για 𝑥 >
𝜌  𝑓(𝑥) < 𝑓(𝜌)  𝐹΄(𝜒) < 0 . ΄Αρα η F παρουσιάζει στο x=ρ
ολικό μέγιστο.
Δ.
Aπό τη σχέση F(x) + 2x ≤ F(1) + 2 για x=2 έχω F(2) + 4 ≤ F(1) + 2  F(2) ≤ F(1) -
2< F(1) . Οπότε F(2) <
𝐹(1)+𝐹(2)
2
< F(1) συνεπώς από θεώρημα ενδιαμέσων τιμών
υπάρχει ξ2є(1 , 2) ώστε F(ξ2)=
𝐹(1)+𝐹(2)
2
(1). Eπίσης από θεώρημα Μέσης Τιμής για
την F(x) στο [1 , 2 ] υπάρχει ξ1є(1 , 2) ώστε F΄( ξ1) = F(2) - F(1)  f(ξ1 ) = F(2) -
F(1) (2). Tώρα από τις σχέσεις (1) και (2) : f(ξ1 ) F(ξ2)=
𝐹2(2)−𝐹2(1)
2
=
∫ 𝐹(𝑥)𝐹΄(𝑥)𝑑𝑥 =
2
1
∫ 𝐹(𝑥)𝑓(𝑥)𝑑𝑥.
2
1
E1.
Η g είναι συνεχής στο (1 , +∞) ως πηλίκο συνεχών συναρτήσεων. Επί πλέον
lim
𝑥→1+
𝐹(𝑥)−𝐹(1)
𝑥−1
= 𝐹΄(1) = 𝑓(1) = −2 = 𝑔(0) . Επόμενα η g είναι συνεχής στο
[1 , +∞) .Επίσης για x>1 είναι g παραγωγίσιμη με 𝑔΄(𝑥) =
𝑓(𝑥)(𝑥−1)−𝐹(𝑥)+𝐹(1)
(𝑥−1)2
< 0
διότι από θεώρημα Μέσης Τιμής για την F(x) στο [1 , 𝑥 ] υπάρχει σє(1 , 𝑥) ώστε F΄(
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
22
σ) = f(σ ) =
𝐹(𝑥)−𝐹(1)
𝑥−1
> f(x) επειδή f γνήσια φθίνουσα στο ( 0 , +∞ ). ΄Αρα g γνήσια
φθίνουσα στο [1 , +∞).
E2.
Από E1 g γνήσια φθίνουσα στο [1 , +∞) επόμενα g(2) > g(3)  𝐹(2) − 𝐹(1) > 𝐹(3) −
𝐹(2)  ∫ 𝑓(𝑥)𝑑𝑥 > ∫ 𝑓(𝑥)𝑑𝑥
3
2
2
1
 2 ∫ 𝑓(𝑥)𝑑𝑥 > ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 
3
2
2
1
2
1
2 ∫ 𝑓(𝑥)𝑑𝑥 >
2
1
∫ 𝑓(𝑥)𝑑𝑥
3
1
.
3η
προτεινόμενη λύση (Μάκης Μάντζαρης)
A.
H 𝑓 έχει Σ.Κ. το (𝑒, 𝑓(𝑒)) άρα 𝑓′′(𝑒) = 0
από την 1η
δεδομένη σχέση για 𝑥 = 𝑒 είναι 𝑒2
𝑓′′(𝑒) + 𝑒𝑓′(𝑒) = 2 − 2𝑒 ⇒
𝒇′(𝒆) =
𝟐
𝒆
− 𝟐
Έστω 𝐺(𝑥) = 𝐹(𝑥) + 2𝑥 , 𝑥 > 0 παραγωγίσιμη
από τη 3η
δεδομένη σχέση είναι 𝐹(𝑥) + 2𝑥 ≤ 𝐹(1) + 2 ⇒ 𝐺(𝑥) ≤ 𝐺(2)
άρα η 𝐺 έχει μέγιστο το G(1) στο (0,+∞) .Τότε από Θ.Fermat είναι
𝐺’(1) = 0 ⇒ 𝐹′(1) + 2 = 0 ⇒ 𝒇(𝟏) = −𝟐
Έστω 𝐻(𝑥) = 𝑥𝑓′(𝑥) − 2𝑙𝑛𝑥 + 2𝑥 , 𝑥 ∈ (0, +∞) παραγωγίσιμη
τότε 𝐻′(𝑥) = 𝑥𝑓′′(𝑥) + 𝑓′(𝑥) −
2
𝑥
+ 2 =
𝑥2 𝐹′′(𝑥)+𝑥𝐹′(𝑥)−2+2𝑥
𝑥
=
2−2𝑥−2+2𝑥
𝑥
=
0
άρα H σταθερή και επειδή H(e)=0 ,
θα είναι 𝐻(𝑥) = 0 ⇔ 𝑥𝑓′(𝑥) − 2𝑙𝑛𝑥 + 2𝑥 = 0 ⇔ 𝑓′(𝑥) = 2
𝑙𝑛𝑥
𝑥
− 2 ⇔
𝑓′(𝑥) = (ln2
𝑥 − 2𝑥)′
⇔ 𝑓(𝑥) = ln2
𝑥 − 2𝑥 + 𝑐 , 𝑐 ∈ 𝑅
όμως 𝑓(1) = −2 ⇒ 𝑐 = 0 άρα 𝒇(𝒙) = 𝐥𝐧 𝟐
𝒙 − 𝟐𝒙 , 𝒙 ∈ (𝟎, +∞)
B.
𝑓′(𝑥) = 2
𝑙𝑛𝑥
𝑥
− 2 = 2
𝑙𝑛𝑥−𝑥
𝑥
< 0 αφού 𝑙𝑛𝑥 ≤ 𝑥 − 1 < 𝑥
άρα 𝑓 ↘ 𝜎𝜏𝜊 (0, +∞) και 1-1
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
23
𝑒2𝑥
𝑥√2𝑥 = 1 ⇔ 𝑙𝑛(𝑒2𝑥
𝑥√2𝑥)= 0 ⇔ 2𝑥 + √2𝑥 𝑙𝑛𝑥 = 0
⇔ − 2𝑥 = √2𝑥 𝑙𝑛𝑥 ⇔
0<𝑥<1
⇔ −2𝑥 = √2𝑥 𝑙𝑛𝑥
0<𝑥<1
⇔ 4𝑥2
= 2𝑥𝑙𝑛2
𝑥
0<𝑥<1
⇔ 2𝑥 = 𝑙𝑛2
𝑥 ⇔
⇔ 𝑓(𝑥) = 0 , 0 < 𝑥 < 1
για την 𝑓 έιναι 𝑓 (
1
𝑒
) = 1 −
2
𝑒
> 0 και 𝑓(1) = −2 < 0 . Από Θ.Bolzano
υπάρχει τουλάχιστον μια ρίζα της εξίσωσης 𝑓(𝑥) = 0 στο (
1
𝑒
, 1) και εφόσον η
𝑓 είναι 1 − 1 𝜎𝜏𝜊 (0, +∞) έχει μοναδική ρίζα στο (0, +∞) άρα και η
𝒆 𝟐𝒙
𝒙√𝟐𝒙 = 𝟏 έχει μοναδική ρίζα στο (𝟎, +∞) η οποία βρίσκεται στο (
𝟏
𝒆
, 𝟏)
Γ.
Είναι 𝐹′(𝑥) = 𝑓(𝑥) , 𝑥 > 0 .Στο ερώτημα Β. αποδείξαμε ότι η 𝑓 έχει
μοναδική ρίζα, έστω 𝜉 ,αρα και η 𝐹′ έχει μοναδική ρίζα με 𝐹′(𝜉) = 0 . Ακόμα
𝑓 ↘ στο (0, +∞) ,οπότε
για 𝑥 > 𝜉 ⇒ 𝑓(𝑥) < 𝑓(𝜉) = 0 ⇒ 𝐹′(𝑥) < 0 ⇒ 𝐹 ↘ 𝜎𝜏𝜊 [𝜉, +∞)
για 0 < 𝑥 < 𝜉 ⇒ 𝑓(𝑥) > 𝑓(𝜉) = 0 ⇒ 𝐹′(𝑥) > 0 ⇒ 𝐹 ↗ 𝜎𝜏𝜊 (0, 𝜉]
άρα η F έχει μοναδικό ακρότατο (μέγιστο).
Δ.
Εφαρμόζοντας ΘΜΤ στο [1,2] για την F ,
∃ 𝜉1 ∈ (1,2): 𝐹′(𝜉1) =
𝐹(2)−𝐹(1)
2−1
⇒ 𝒇(𝝃 𝟏) = 𝑭(𝟐) − 𝑭(𝟏)
Στο Γ. δείξαμε ότι η F είναι ↘ στο [ξ,+∞) με ξ<1 άρα F ↘ στο [1,2] οπότε
𝐹(1) >
𝐹(1)+𝐹(2)
2
> 𝐹(2) και επειδή F συνεχής στο [1,2] από ΘΕΤ θα υπάρχει
𝜉2 ∈ (1,2): 𝑭(𝝃 𝟐) =
𝑭(𝟏) + 𝑭(𝟐)
𝟐
Αρα 𝒇(𝝃 𝟏)𝑭(𝝃 𝟐) = (𝐹(2) − 𝐹(1))
𝐹(1)+𝐹(2)
2
=
𝐹2(2)
2
−
𝐹2(1)
2
=
∫ (
𝐹2(𝑥)
2
)
′
𝑑𝑥 =
2
1
∫
2𝐹′(𝑥)𝐹(𝑥)
2
𝑑𝑥 =
2
1
∫ 𝒇(𝒙)𝑭(𝒙)𝒅𝒙
𝟐
𝟏
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
24
Σχόλιο : Επειδή δε διευκρινίζεται αν 𝜉1 ≠ 𝜉2 στην εκφώνηση μπορούμε να
εφαρμόσουμε ΘΜΤ για την 𝐺(𝑥) = 𝐹2
(𝑥) στο [1,2] και να θεωρήσουμε ότι
𝜉1 = 𝜉2 = 𝜉 οπότε θα προκύπτει πάλι το ζητούμενο.
Ε.1
𝑔(𝑥) = {
𝐹(𝑥)−𝐹(1)
𝑥−1
, 𝑥 > 1
−2, , 𝑥 = 1
Lim
𝑥→1
𝑔(𝑥) = lim
𝑥→1
𝐹(𝑥)−𝐹(1)
𝑥−1
= 𝐹′(1) = 𝑓(1) = −2 = 𝑔(1),
ά𝜌𝛼 𝑔 𝜎𝜐𝜈𝜀𝜒ή𝜍 𝜎𝜏𝜊 1
και g συνεχής στο (1,+∞) ως πηλίκο συνεχών συναρτήσεων ,άρα g συνεχής
στο [1,+∞)
𝑔’(𝑥) =
(𝑥−1)𝐹′(𝑥)−(𝐹(𝑥)−𝐹(1))
(𝑥−1)2
𝛾𝜄𝛼 𝑥 > 1.
Εφαρμόζοντας ΘΜΤ στο [1, 𝑥] για την F θα ∃ 𝜌 ∈ (1, 𝑥) ∶ 𝐹′(𝜌) =
𝐹(𝑥) − 𝐹(1)
𝑥 − 1
𝐹′′(𝑥) = 𝑓′(𝑥) < 0 (από ερώτημα Β.) άρα F’ ↘ στο [1, +∞) ,άρα
𝜌 < 𝑥 ⇒ 𝐹′(𝜌) > 𝐹′(𝑥) ⇒
𝐹(𝑥)−𝐹(1)
𝑥−1
> 𝐹′(𝑥) ⇒ 𝐹(𝑥) − 𝐹(1) > 𝐹′(𝑥)(𝑥 −
1)
Συνεπώς 𝑔’(𝑥) < 0 , 𝑥 > 1 και εφόσον g συνεχής στο [1, +∞) θα είναι
g ↘ στο [𝟏, +∞).
Ε.2.
Εφαρμόζοντας ΘΜΤ για την F στα ,[1,2], [2,3] θα
∃ 𝑥1 ∈ (1,2) , 𝑥2 ∈ (2,3) ∶ 𝐹′(𝑥1) =
𝐹(2) − 𝐹(1)
2 − 1
,
𝐹′(𝑥2) =
𝐹(3) − 𝐹(2)
3 − 2
F’ ↘ στο (0, +∞) θα είναι
𝐹′(𝑥1) > 𝐹′(𝑥2) ⇒ 𝐹(2) − 𝐹(1) > 𝐹(3) − 𝐹(2) ⇒
2𝐹(2) − 2𝐹(1) > 𝐹(3) − 𝐹(1) ⇒ 2 ∫ 𝐹′(𝑥)𝑑𝑥 > ∫ 𝐹′(𝑥)𝑑𝑥 ⇒
3
1
2
1
⇒ 𝟐 ∫ 𝒇(𝒙)𝒅𝒙 > ∫ 𝒇(𝒙)𝒅𝒙
𝟑
𝟏
𝟐
𝟏
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
25
4η
προτεινόμενη λύση (Κώστας Δεββές)
A. Διαιρώντας με χ τη δοσμένη ισότητα έχω: χf΄΄(χ)+f΄(χ)=
2
𝜒
− 2 ή (f΄(χ)χ)΄=(2lnχ-
2χ)΄ ή f΄(χ)χ=2lnχ-2χ+c (1). Eφαρμόζοντας Fermat για τη Φ(χ)=F(χ)+2χ, αφού η
δοσμένη ανισότητα γράφεται Φ(χ)≤Φ(1) θα είναι Φ΄(1)=0 δηλ. f(1)=-2 και f΄΄(e)=0
από το Σ.Κ. Για χ=e στην αρχική έχω f΄(e)=
2
𝑒
-2 (2) και με χ=e στην (1) έχω c=0. H (1)
δίνει f΄(χ)χ=2lnχ-2χ ή f΄(χ)=
2𝑙𝑛𝑥
𝜒
− 2=(ln2
χ-2χ)΄ και τελικά f(χ)=ln2
χ-2χ.
B. Η εξίσωση είναι ισοδύναμη με την ln(𝑒2𝑥
𝑥√2𝑥) = 0 ή 2χ+√2𝜒 lnχ=0 και
θέτοντας Φ(χ)= 2χ+√2𝜒 lnχ, χ∈[
1
𝑒
,1] με Φ(1)=2>0, Φ(
1
𝑒
)=
2
𝑒
− √
2
𝑒
<0 (γιατί χ2
-χ<0 με
0<χ<1), από το Bolzano η Φ έχει ρίζα στο (
1
𝑒
,1). Είναι Φ΄(χ)=2+
𝑙𝑛𝑥+2
√2𝑥
>0 για χ>
1
𝑒
>
1
𝑒2 δηλ.
η ρίζα μοναδική.
C. F΄(χ)= f(χ)=ln2
χ-2χ και f΄(χ)=
2
𝜒
(𝑙𝑛𝑥 − 𝑥) < 0 αφού lnχ≤ 𝜒 − 1 < 𝜒 με χ>0.
Άρα f γν. φθίν. στο (0,+∞) με lim
𝜒→0
𝑓(𝜒) = +∞ και lim
𝜒→+∞
𝑓(𝜒) = lim
𝜒→+∞
2𝜒 (
𝑙𝑛2 𝑥
2𝑥
−
1) = −∞ αφού με de L’ H. lim
𝜒→+∞
𝑙𝑛2 𝑥
2𝑥
= 0. Άρα το Σ.Τ. της f είναι το R δηλ. η F΄
μηδενίζεται σε μοναδικό χ0>0. Δηλ. με χ>χ0 είναι f(χ)<f(χ0)=0 άρα F γν. φθ. στο
[χ0,+ ∞) και όμοια F γν. αύξ. στο (0,χ0]. Τελικά η F έχει μοναδικό ακρότατο (μέγιστο)
στο χ0 το F(χ0).
D. ∫ 𝐹(𝜒)𝑓(𝜒)𝑑𝜒 = [
𝐹2(𝜒)
2
]
1
2
2
1
=
𝐹2(2)−𝐹2(1)
2
= (𝐹(2) − 𝐹(1))
𝐹(2)+𝐹(1)
2
. Mε ΘΜΤ
για την F στο [1,2] υπάρχει ξ1 στο (1,2) με F΄(ξ1)=f(ξ1)= 𝐹(2) − 𝐹(1) και από το ΘΕΤ
για την F στο [1,2] υπάρχει ξ2 στο (1,2) με F(ξ2)=
𝐹(2)+𝐹(1)
2
, αφού είναι F(2)<F(1)
(θέτοντας στην αρχική ανισότητα χ=2) θα ισχύει F(2)<
𝐹(2)+𝐹(1)
2
<F(1).
E. 1. lim
𝜒→1
𝑔(𝜒) = lim
𝜒→1
𝐹(𝜒)−𝐹(1)
𝜒−1
= 𝐹΄(1) = 𝑓(1) = −2 = 𝑔(1) δηλ. g συνεχής στο
1. Για χ>1 είναι g΄(χ)=
𝑓(𝜒)(𝜒−1)−(𝐹(𝜒)−𝐹(1))
(𝜒−1)2 =
𝑓(𝜒)−
𝐹(𝜒)−𝐹(1)
𝜒−1
𝜒−1
=
𝑓(𝜒)−𝑓(𝜉)
𝜒−1
από το ΘΜΤ
για την F στο [1,χ]. Επειδή f γν. φθ. θα είναι f(χ)<f(ξ) δηλ. g γν. φθ. στο [1,+∞).
(Θα μπορούσαμε με Κ(χ)= 𝑓(𝜒)(𝜒 − 1) − 𝐹(𝜒) + 𝐹(1), χ≥ 1 και Κ΄(χ)=f΄(χ)(χ-1)<0
δηλ. Κ γν. φθ. να δείξουμε Κ(χ)<Κ(1) δηλ. 𝑓(𝜒)(𝜒 − 1) − 𝐹(𝜒) + 𝐹(1)<0.)
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
26
17η
άσκηση
Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού
Προτάθηκε από τον Παύλο Τρύφων (18-1-2016)
Αποστολή λύσεων έως την Κυριακή 24/1/2016
Θεωρούμε συνεχή συνάρτηση  f : 0, R  με
        2
f x x 2lnx k,x 0,1 1, ά k R         
  
6 2x
f 1 x R : 3 x
2
    
      
  
α) προσδιορίστε τη συνάρτηση f
β) μελετήστε την f ως προς την κυρτότητα
γ) αποδείξτε ότι
 
 
8
2
4 4
ln ,
256
   
    
  
 
για κάθε , R  με , 1  
δ) αποδείξτε ότι
   f x f 1 x 2,   για κάθε  x 0,1
ε) αν
1
m 0,
2
 
 
 
αποδείξτε ότι
 
1 m
m
f x dx 1 2m

 
στ) αποδείξτε ότι δεν υπάρχει ,0 0,
2 2
    
     
   
τέτοιο, ώστε
 2 2
4 ln 4       
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
27
1η
προτεινόμενη λύση (Παύλος Τρύφων)
α) Γνωρίζουμε από τη γενική θεωρία ότι
x x ,  για κάθε x R (με την ισότητα να ισχύει μόνο για x 0 )  *
Οπότε,
 
 
 *
6 2x
3 x
2
x 3 x 3
2
x 3 x 3
x 3 0
x 3
   
    
 
 
      
 
    
  

Έτσι,
   
6 2x
f 1 x R : 3 x f 1 3
2
   
        
  
Τώρα, από τη συνέχεια της f στο  0, , άρα και στο 1, προκύπτει ότι
     x 1 x 1
2
f 1 f x x 2ln x k 1 klim lim 
 
     
Οπότε, 1 k 3 k 2   
Τελικά,
   2
f x x 2ln x 2,x 0,    
β) Η f είναι δύο φορές παραγωγίσιμη στο  0, με
 
2
2 2
2 x 1
f x 2 2 , x 0
x x

    
x 0 1  
 f x  
f  
O
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
28
Η f είναι κοίλη στο  0,1 και κυρτή στο  1,
γ) Α΄ τρόπος
Για , 1   έχουμε:
 
 
 
 
 
   
 
 
   
8
2
4 4
4
2
2 2
4
2
2 2
4
2 2
2
2
2 2
ln
256
2ln
16
2
2ln
2ln 2ln a
2
4ln 2ln a
2 2
4ln 2 4 2ln 2 2ln 2
2 2
2f
2
  
     
  
 
  
     
  
 
   
  
      
  
 
 
  
      
 
   
    
 
      
               
   
 
   f f (*)
 
    
 
Αρκεί να αποδείξουμε τη σχέση (*)
Για a   η σχέση (*) ισχύει ως ισότητα.
Έστω   . Εφαρμόζουμε το ΘΜΤ για την f στα διαστήματα
, , ,
2 2
      
       
Οπότε εξασφαλίζεται η ύπαρξη 1 2x , , x ,
2 2
      
      
   
τέτοια, ώστε:
 
   
 
   
1
2
f f a f f
2 2
f x
2 2
f f f f
2 2
f x
2 2
       
      
     
      
 
 
                        
  
 
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
29
Όμως 1 2x x και η f είναι γνησίως αύξουσα στο  1, , άρα
   
   
       
0
1 2
f f f f
2 2
f x f x
a a
2 2
f f f f 2f f f
2 2 2

      
      
       
 
          
              
     
Για    εργαζόμαστε παρόμοια.
Β΄ τρόπος
Για    η ζητούμενη σχέση ισχύει ως ισότητα.
Για    θα αποδείξουμε ότι
 
 
 
 
 
 
   
8
2
4 4
42
2
2
2
2 2
ln
256
ln
4
4ln
4
ln ,
4 4
  
     
  
 
         
  
  
  
     
 
 
    
  
 
 
το τελευταίο όμως ισχύει, διότι από τη γνωστή σχέση ln x x 1,x 0  
(με την ισότητα να ισχύει μόνο για x 1 ) έχουμε
       
2 2 2 2
1
ln 1
4 4a 4 4
        
     
   
 
(σχόλιο: αφού  
     
2 2 2
2
0 1 ln 1
4 4 4
      
            
   
 
:
γνήσια ανισότητα)
δ) Έστω  x 0,1 , τότε  1 x 0,1 .  Οπότε,
 
   
 
 
 
   
f x 4x 1 f x 4x 1
f x f 1 x 2
f 1 x 4 1 x 1 f 1 x 3 4x
         
       
            
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
30
ε) Έστω
1
m 0, .
2
 
 
 
Στο ολοκλήρωμα  
1 m
m
f x dx

 θέτουμε 1 x.  
Τότε,
            
           
1 m m 1 m 1 m 1 m)
m 1 m m m m
1 m 1 m 1 m 1 m
m m m m
f x dx f 1 d f 1 d 2 f d 2 1 m m f d
f x dx 2 1 2m f x dx 2 f x dx 2 1 2m f x dx 1 2m.
   

   
                 
        
    
   
στ) Έστω ότι υπάρχει ,0 0,
2 2
    
     
   
τέτοιο, ώστε
 
 
 
 
2 2
2
2
4 ln 4
4 2ln 4 1
2ln 2 4 1
f 4 1,
        
       
        
   
το οποίο είναι αδύνατο διότι  f x 4x 1,  για κάθε  x 0,1 , άρα και
 f 4 1,    για ,0 0, .
2 2
    
     
   
2η
προτεινόμενη λύση (Ηλίας Ζωβοΐλης)
Α.    
π 6 2x π
3 συν x συν x 3 x 3 ημ x 3 x 3
2 2
    
              
   
x 3 0 x 3     , καθώς γνωρίζουμε ότι: ημx x x 0   .
Επομένως:      
f συνεχής στο 1
2
x 1 x 1
f 1 3 limf x 3 lim x 2lnx k 3 k 2
 
         και έτσι
για τον τύπο της συνάρτησης f έχουμε:
   
2
2x 2lnx 2, 0 x 1
f x f x x 2lnx 2, x 0
3 , x 1
    
     

.
Β. Είναι    2 2
f x x 2lnx 2 2x 0, x 0
x
        και έτσι η συνάρτηση f
είναι γν.αύξουσα στο  0, .
Επίσης  
 2
2 2
2 x 12 2
f x 2x 2 , x 0
x x x
         
 
.
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
31
•  
x 0
f x 0 x 1

   
•  
x 0
f x 0 x 1

   
•  
x 0
f x 0 0 x 1

    
Επομένως η συνάρτηση f είναι κοίλη στο  0,1 και κυρτή στο  1, .
Γ. Θα προτιμήσω την ακόλουθη λύση, παρακάμπτοντας τη συνάρτηση f .
Θεωρούμε τη συνάρτηση h με τύπο  h x 4lnx x, x 0   .
Είναι  
4 4 x
h x 1 , x 0
x x

     .
•  h x 0 x 4   
•  
x 0
h x 0 0 x 4

    
•  h x 0 x 4   
 
2
α β 4  και 4αβ 4 ,καθώς  α,β 1,+  και επειδή
 
 
    
h γν.φθίνουσα στο 4,+
2 2
α β 4αβ 4 h α β h 4αβ

      
     
 
 
2
2 2 2α β
4ln α β α β 4ln 4αβ 4αβ 4ln α β 4αβ
4αβ
 
           
 
 
   
 
42 8
22 2
4 4
α β α β
ln α β 2αβ 4αβ ln α β
4αβ 256α β
    
          
   
   
,με την ισότητα
να ισχύει για α β .
Δ. Η εφαπτομένη της fC στο σημείο της  1,3 ,έχει εξίσωση: ψ 4x 1  ,
οπότε εκμεταλλευόμενοι την κυρτότητα της f στο  0,1 ,έχουμε:  f x 4x 1 
για κάθε  x 0,1 ,με την ισότητα να ισχύει μόνο για x 1 .
Άρα για κάθε  x 0,1 ισχύει:  f x 4x 1  .
Επίσης για κάθε  x 0,1 είναι 0 1 x 1   ,οπότε:    f 1 x 4 1 x 1    .
Προσθέτοντας κατά μέλη, προκύπτει:      f x f 1 x 2, x 0,1    .
Ε. Έστω F μια αρχική συνάρτηση της f στο
1
0,
2
 
  
.Θεωρούμε τη συνάρτηση
g με τύπο      
1
g x F 1 x F x 2x 1, x 0,
2
 
       
.Είναι:
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
32
     
1
g x f 1 x f x 2 0, x 0,
2
          
και έτσι g γν.αύξουσα στο
1
0,
2
 
  
,
οπότε:      
g γν.αύξουσα
1 1
0 m g m g F 1 m F m 2m 1 0
2 2
 
           
 
 
1-m
m
f x dx 1 2m   .
ΣΤ.
π π
α ,0 0, 0 συνα 1
2 2
   
        
   
και επειδή για κάθε  x 0,1 ισχύει:
 f x 4x 1  ,αντικαθιστώντας x συνα ,προκύπτει:
   2
f συνα 4συνα 1 συν α 2ln συνα 2 4συνα 1       
   22 2 2
1 ημ α ln συνα 2 4συνα 1 4 ln συν α 4συνα ημ α          .
3η
προτεινόμενη λύση (Κώστας Δεββές)
α)
1
(1) lim ( ) 1
x
f f x k

  
H εξίσωση γράφεται:
3 (3 ) 3        αφού    0  .
Άρα (1) 3f  1 3 2k k     και 2
( ) 2ln 2, 0f x x x x    .
β)   2
2
( ) 1 1 0 1f x x x x
x
      
με ( ) 0 (0,1)f x x    και ( ) 0 (1, )f x x     δηλαδή f κοίλη στο (0,1] και
κυρτή στο [1, ) .
γ) Για α=β η αποδεικτέα γράφεται:
8
2
8
(2 )
ln 0 0 ( )
256

 

    που ισχύει ως ισότητα.
Χωρίς βλάβη γενικότητας θεωρώ 1<α<β και από την ανισότητα Jensen (2 ΘΜΤ για
την f στα [ , ],[ , ]
2 2
    
  και χρήση μονοτονίας f στο [1, ) ) , έχω
2 2 2
8 8
2 2
4 4 4
( ) ( )
( ) ( ) 8ln 2 2 4ln( )
2 2 2
( ) ( )
ln 4ln( ) ( ) ln ( )
4 256
a f a f a
f a a
a a
a
  
   
 
    
 
  
       
 
     
δ) Με ( ) ( ) (1 ), (0,1)h x f x f x x    είναι
1
( ) ( ) (1 ) 0
2
h x f x f x x        αφού
f κοίλη στο (0,1) και για
1
0 1 ( ) (1 )
2
x x x f x f x h          στο
1
(0, ]
2
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
33
και στο
1
[ ,1)
2
δηλ. έχει max στο ½ το
51 1 9 5
2 ( ) 4ln 2 4 4ln 2 2 4ln 2 5 ln 256 256
2 2 2 2
f e            που
ισχύει αφού 5 5
3 243 256e    .
ε) Με
1
(0, )
2
m είναι 1m m  και ολοκληρώνοντας την ανισότητα του δ) έχω:
1 1 1
( ) (1 ) 2 2(1 2 )
m m m
m m m
f x dx f x dx dx m
  
       και με 1u x 
1 1
( ) (1 )
m m
m m
f x dx f x dx
 
   προκύπτει η αποδεικτέα.
στ) Θα δείξω ότι  ( , ) 0
2 2
x
 
    είναι : 2 2
4 ln( ) 4       . Θέτω
2 2
( ) 4 ln( ) 4          με ( , )
2 2
x
 
  και ισχύει
 
2
( ) 2 1΄      με ρίζα το 0 και φ στο ( ,0]
2

 ενώ στο [0, )
2

δηλ.
έχει max στο 0 το φ(0)=0. Άρα ( ) 0   με  ( , ) 0
2 2
 
    .
4η
προτεινόμενη λύση (Δημήτρης Χατζάκης)
α)
 3 + 𝜎𝜐𝜈 (
𝜋+6−2𝑥
2
) = 𝑥 ⟺ 𝜎𝜐𝜈 (
𝜋
2
+ 3 − 𝑥) = 𝑥 − 3 ⟺ −𝜂𝜇(3 − 𝑥) =
−(3 − 𝑥)
𝜂𝜇(3 − 𝑥) = (3 − 𝑥) . Επειδή |𝜂𝜇𝑥| ≤ |𝑥| , ∀𝑥 ∈ ℝ και το ίσον ισχύει μόνο όταν
𝑥 = 0 τότε
𝜂𝜇(3 − 𝑥) = (3 − 𝑥) ⟺ 𝑥 = 3. Άρα 𝑓(1) = 3.Είναι 𝑓 συνεχής (0, +∞) άρα
𝑓(1) = lim
𝑥→1+
𝑓(𝑥) ⟺ 3 = 1 + 𝑘 ⟺ 𝑘 = 2 ⇢ 𝑓(𝑥) = 𝑥2
+ 2𝑙𝑛𝑥 + 2
β) 𝑓(𝑥) = 𝑥2
+ 2𝑙𝑛𝑥 + 2 , 𝑓′(𝑥) = 2𝑥 +
2
𝑥
και 𝑓′′(𝑥) = 2 −
2
𝑥2
=
2
𝑥2
(𝑥2
− 1)
𝑥 0 1
𝑓′′
− +
𝑓 ∩ ∪
γ) Έστω :
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
34
𝑙 𝑛 (
(𝑎 + 𝛽)8
256𝛼4 𝛽4
) ≤ (𝑎 − 𝛽)2
⟺ 𝑙 𝑛(𝑎 + 𝛽)8
− 𝑙 𝑛(256) − 𝑙 𝑛(𝛼4
𝛽4) ≤ (𝑎 − 𝛽)2
⟺
8𝑙 𝑛(𝑎 + 𝛽) − 8𝑙 𝑛 2 − 4𝑙 𝑛 𝛼 − 4𝑙𝑛𝛽 ≤ 𝛼2
− 2𝛼𝛽 + 𝛽2
⟺
8𝑙 𝑛 (
𝑎 + 𝛽
2
) ≤ 𝛼2
− 2𝛼𝛽 + 𝛽2
+ 4𝑙 𝑛 𝛼 + 4𝑙𝑛𝛽 (1)
 Για 𝛼 = 𝛽 ισχύει η ισότητα
 Για 1 < 𝛼 < 𝛽 ∶ Εφόσον 𝑓 κυρτή στο (1, +∞) από την ανισότητα Jensen έχουμε :
2𝑓 (
𝑎 + 𝛽
2
) < 𝑓(𝑎) + 𝑓(𝛽) ⟺ 2 (
𝑎 + 𝛽
2
)
2
+ 4𝑙𝑛 (
𝑎 + 𝛽
2
)
< 𝑎2
+ 2𝑙𝑛𝑎 + 𝛽2
+ 2𝑙𝑛𝛽
(𝑎 + 𝛽)
2
2
+ 4𝑙𝑛 (
𝑎 + 𝛽
2
) < 𝑎2
+ 2𝑙𝑛𝑎 + 𝛽2
+ 2𝑙𝑛𝛽 ⟺
(𝑎 + 𝛽)2
+ 8𝑙𝑛 (
𝑎 + 𝛽
2
) < 2𝑎2
+ 4𝑙𝑛𝑎 + 2𝛽2
+ 4𝑙𝑛𝛽 ⟺
8𝑙 𝑛 (
𝑎+𝛽
2
) ≤ 𝛼2
− 2𝛼𝛽 + 𝛽2
+ 4𝑙 𝑛 𝛼 + 4𝑙𝑛𝛽 . Όποτε η (1) ισχύει για 1 < 𝛼 < 𝛽.
δ) Η εφαπτόμενη της 𝐶𝑓 στο 1 είναι 𝑦 = 4𝑥 − 1 . Αφού η 𝑓 κοίλη για 0 < 𝑥 ≤ 1
τότε 𝑓(𝑥) < 4𝑥 − 1 (2) και 𝑓(1 − 𝑥) < 4(1 − 𝑥) − 1 (3) για 0 < 𝑥 < 1 .
Προσθέτουμε κατά μέλη (2) και (3) και έχουμε :
𝑓(𝑥) + 𝑓(1 − 𝑥) < 4𝑥 − 1 + 4(1 − 𝑥) − 1 = 2
ε) Θεωρούμε την ℎ(𝑚) = 𝐹(1 − 𝑚) − 𝐹(𝑚) + 2𝑚 − 1 , 0 < 𝑚 <
1
2
όπου 𝐹 μια αρχική της 𝑓 και ℎ′(𝑚) = −𝑓(𝑚) − 𝑓(1 − 𝑚) + 2 > 0 ⟶ ℎ ↑ , 0 <
𝑚 <
1
2
 ∫ 𝑓( 𝑥) 𝑑𝑥 < 1 − 2𝑚 ⟺ [ 𝐹( 𝑥)] 𝑚
1−𝑚1−𝑚
𝑚
+ 2𝑚 − 1 < 0
⟺ 𝐹(1 − 𝑚) − 𝐹(𝑚) + 2𝑚 − 1 < 0 ⟺ ℎ(𝑚) < ℎ (
1
2
) ⟺ 𝑚 <
1
2
που ισχύει .
στ) Αφού 𝑎 ∈ (−
𝜋
2
, 0) ∪ (0,
𝜋
2
) τότε 0 < 𝜎𝜐𝜈𝛼 < 1. Η εφαπτόμενη της 𝐶𝑓 στο
1 είναι 𝑦 = 4𝑥 − 1 . Αφού η 𝑓 κοίλη για 0 < 𝑥 < 1 τότε 𝑓(𝑥) < 4𝑥 − 1
 𝑥 = 𝜎𝜐𝜈𝛼 ⇢ 𝑓(𝜎𝜐𝜈𝛼) < 4𝜎𝜐𝜈𝛼 − 1
Έστω 4 + 𝑙𝑛(𝜎𝜐𝜈𝛼) ≥ 4𝜎𝜐𝜈𝛼 + 𝜂𝜇2
𝛼 ⟺ ⋯ ⟺ 𝑓(𝜎𝜐𝜈𝛼) ≥ 4𝜎𝜐𝜈𝛼 − 1 ⇢ Άτοπο
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
35
5η
προτεινόμενη λύση (Τάκης Καταραχιάς)
α)΄Εχουμε 3+συν(
2
26 x
)= x  συν( )3(
2
 x

)= x -3  ημ( x -3)= x -3
 x =3 διότι |ημ x | ≤| x | για κάθε x ϵ R (η ισότητα ισχύει μόνο όταν
x =0)
Τώρα f( x )= kxx  ln22
. f συνεχής οπότε )1()(lim1
fxf
x


 1+k=3  k=2.
Συνεπώς f(χ)= 2ln22
 xx .
β) f΄(x)=2 x + 0
2

x
  ,0x δηλαδή f γνήσια αύξουσα στο  ,0 .
Επίσης f΄΄( x )=2- 2
2
x
10  x . f΄΄(x)  1,00  x . f΄΄(x) 10  x . ¨Aρα f
κοίλη στο  1,0 , κυρτή στο  ,1 . Το σημείο (1,3) είναι σημείο καμπής για την f.
γ) Επειδή f κυρτή στο  ,1 από ανισότητα JENSEN θα είναι 2f( )
2
 
f(α)+f(β)
( η απόδειξη από Θ.Μ.Τ στα 


 



 


,
2
,
2
,
a
a ) δηλαδή
2













 





 
3
2
ln2
2
2

3ln23ln2 22
  a  4ln )
2
(
a
-
2lnα-2lnβ 
2
222
 
 8ln )
2
(
a
-4lnα-4lnβ  2
)(   
ln 8
)
2
(
a
-lnα4
-lnβ4
 2
)(    ln 




 
44
8
256
)(


 2
)(  
δ) Ισχύει: e<3 256243355
 e δηλαδή e5
<256  e5
<28
 5<ln28
 5<8ln2

4
5
<2ln2 
4
9
- 2ln2<1 
4
1
- 2ln2+2<1  f( )
2
1
<1 (1).
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
36
΄Όμως για    1,0)1(1,0  xx , f κοίλη στο  1,0 θα είναι από ανισότητα
JENSEN f( x)+f(1- x) 2 f( )
2
1
(2). ΄Αρα από (1) και (2)
f( x)+f(1- x) <2 .
ε) Είναι f( x)+f(1- x) <2   
  

m
m
m
m
m
m
dxdxxfdxxf
1 1 1
2)1()( (3). ΄Όμως θέτοντας
1- x=u dudx  προκύπτει ότι:   




m
m
m
m
m
m
duufduufdxxf
1
1
1
)()()1( .
Επόμενα η σχέση (3) γίνεται:
  
  

m
m
m
m
m
m
m
m
m
m
mdxxfdxdxxfdxdxxf
11 11 1
21)()(2)(2 .
στ) Αν g( x)=f( x) -4 x +1 , x  1,0 g΄( x)=f΄( x)-4=2 x+
2
1
24
2







x
x
x
>0
για x  1,0 συνεπώς g γνήσια αύξουσα στο  1,0 . Δηλαδή για 0< x<1
14)(0)()1()(  xxfxggxg . Τώρα αν α𝜖 (−
𝜋
2
, 0)  (0,
𝜋
2
) θα είναι
0<συνα<1 οπότε f(συνα)<4συνα-1  συν2
α+2ln(συνα)+2<4συνα-1  1-
ημ2
α+2ln(συνα)+2<4συνα-1  4+ ln(συν2
α)<4συνα+ ημ2
α.
΄Αρα δεν υπάρχει α𝜖 (−
𝜋
2
, 0)  (0,
𝜋
2
)τέτοιο ώστε: 4+ln(συν2
α)≥4συνα+ ημ2
α.
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
37
6η
προτεινόμενη λύση (Μάκης Μάντζαρης)
A.
6 x
3 ( ) x (x 3) x 3 (x 3) x 3
2

 
          
όμως από την ανισότητα , R    η ισότητα ισχύει μόνο για α=0 ,
άρα x 3 0 x 3   η οποία επαληθεύει την εξίσωση.
Άρα
6 2x
f(1) x R :3 x {3} f(1) 3
2
   
         
  
Όμως f συνεχής στο 1 άρα
x 1
limf(x) f(1) 1 3 2

       
άρα 2
f(x) x 2ln x 2 ,x (0, )    
B.
f δυο φορές παραγωγίσιμη με
2
'( ) 2f x x
x
 
2
2
''( ) 2f x
x
 
Γ.
αν α=β >1 τότε προφανώς ισχύει η ισότητα.
Για α,β>1 με α<β (χ.β.γ.) , η f πληροί τις προϋποθέσεις του ΘΜΤ στα
a a
a, , ,
2 2
    
      
και τότε θα υπάρχουν 1 2
a a
a, , ,
2 2
    
       
   
ώστε
1 2
a a
f( ) f(a) f( ) f( )
2 2f '( ) , f '( )
2 2
 
  
   
 
x 0 1 +∞
f ’’ - +
f ↷ ⤻
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
38
όμως f ' στο    , 1,    (ερώτημα Β)
άρα 1 2 1 2f '( ) f '( )
2
 
            
 
   
 
2 2
2 2
22
2 2 2 2
4 2
2 2
2 2
4
a a
f ( ) f (a) f ( ) f ( )
2 2
2 2
a a
f ( ) f (a) f ( ) f ( )
2 2
2ln a 2ln a 2ln 2ln
2 2 2 2
2ln ln a ln a
2 2
ln a
16 2
2ln
16
 
  
 
     
 
    
              
                
       
   
       
 
   
   
 
 

 
 
 
22 2
2 2
8
2
4 4
2a 2
ln
256
      

 
  
 
Δ.
Έστω g(x) f(x) f(1 x) 2 ,x (0,1)     παραγωγίσιμη με
g'(x) f '(x) f '(1 x) ,x (0,1)    . Όμως f '  0,1 άρα
για
1 1
x x 1 x f '(x) f '(1 x) g'(x) 0 g ,1
2 2
 
           
 
για
1
0 x x 1 x
2
1
f '(x) f '(1 x) g'(x) 0 g 0,
2
     
 
      
 
και
1
g'( ) 0
2
 .Οπότε η g έχει ολικό μέγιστο με
1 1 5
g(x) g( ) f(x) f(1 x) 2 2f( ) 2 2 2ln 2 0
2 2 4
f(x) f(1 x) 2
 
           
 
  
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
39
Ε.
1
m 0, m 1 m
2
 
    
 
.
u 1 x1 m m 1 m
m 1 m m
f(1 x)dx f(u)du f(x)dx (1)
  

     
Από ερώτημα Γ είναι
(1)1 m 1 m 1 m
m m m
1 m 1 m
m m
f(x) f(1 x) 2 f(x)dx f(1 x)dx 2dx
2 f(x)dx 2(1 2m) f(x)dx 1 2m
  
 
       
    
  
 
ΣΤ.
η εφαπτόμενη της f στο 1 είναι η
y f(1) f '(1)(x 1) y 3 4(x 1) y 4x 1         
η f είναι κοίλη στο (0,1] άρα η γραφική της παράσταση βρίσκεται κάτω από
τη εφαπτόμενη εκτός του σημείου επαφής ,άρα
f(x) 4x 1 , x (0,1)   
για κάθε 0 0, (0,1)
2 2
    
        
   
, οπότε
2 2
2 2 2 2
f( ) 4 1 ln 2 4 1
1 ln 2 4 1 4 ln 4
              
                 
άρα δεν υπάρχει 2 2
0 0, : 4 ln 4
2 2
    
             
   
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
40
18η
άσκηση
Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού
Προτάθηκε από τον Ηλία Ζωβοΐλη (25-1-2016)
Αποστολή λύσεων έως την Κυριακή 31/1/2016
Έστω συνάρτηση f συνεχής στο  0, ,για την οποία ισχύουν:
•  
 F x x 1
f x , x 0
x 1 x

  

,όπου F μια αρχική συνάρτηση της f στο
 0,
•      
e
1
f x dx f 1 F e 
Α. Να αποδείξετε ότι  
1
f x lnx , x 0
x
   .
Β. Να εξετάσετε αν οι fC και FC δέχονται κοινές εφαπτομένες.
Γ1. Να αποδείξετε ότι υπάρχει μοναδικό  ox 1,e ,τέτοιο ώστε  oF x 0 .
Γ2. Να λυθεί η εξίσωση:    
1
F x
oF x e e, 0 x x    .
Γ3. Να αποδείξετε ότι
 
   o
x
x 1
2
o o
2x x
o
f x x e
x x 1
lim
F x x 1


 
  
   

.
Δ. Να λυθεί η εξίσωση:   
   
 
f x F x
ln f x , x 0
f x 1

 

.
Ε1. Να αποδείξετε ότι η εξίσωση:
    x
2
1
t 1 f f t
dt 2, x 0
t
 
  ,
έχει ακριβώς δυο ρίζες.
Ε2. Αν 1 2x ,x είναι οι ρίζες της παραπάνω εξίσωσης, με 1 20 x x  ,
να αποδείξετε ότι υπάρχει  1 2ξ x ,x ,τέτοιο ώστε, η εφαπτομένη της
fC στο σημείο   Μ ξ,f ξ να διέρχεται από το σημείο  0,e .
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
41
1η
προτεινόμενη λύση (Ηλίας Ζωβοΐλης)
Α.                    
e
e
1
1
f x dx f 1 F e F x f 1 F e F e F 1 f 1 F e           
   F 1 f 1   .Για x 1 στην αρχική ισότητα, έχουμε:
 
     
     
F 1 f 1
F 1 1
f 1 2f 1 f 1 1 2 f 1 1
2


        .Η συνάρτηση f είναι
παραγωγίσιμη
στο  0, ,ως πράξεις παραγωγίσιμων συναρτήσεων, οπότε:
 
       
 
 
 
2 2 2
F x x
f x 1f x 1 x 1 F x x 1 1x 1f x
x x 1 xx 1

           

   
2 2 2
1 1
f x 1 f x 1
1 1 1 1x x , x 0
x 1 x x 1 x x x
   
      
 
.Έτσι:
   
1 1
f x lnx f x lnx c
x x
        
 
.Για x 1 :  
 f 1 1
f 1 1 c c 0

    ,οπότε
 
1
f x lnx , x 0
x
   .Επίσης προκύπτει:    F x x 1 lnx x, x 0     .
Β.   2 2
1 1 x 1
f x , x 0
x x x

     .Είναι:
•  f x 0 x 1   
•  f x 0 x 1   
•  f x 0 0 x 1    
Έτσι:f γν.φθίνουσα στο  1A 0,1 και f γν.αύξουσα στο  2A 1,  .
       
f γν.φθίνουσα
1
f συνεχής x 0
f A f 1 , lim f x 1,

  
,καθώς
 x 0 x 0
1 1
lim lnx lim 1 x lnx
x x 
 
   
            
,
αφού
x 0
1
lim
x

  και
 
 
 DLHx 0 x 0 x 0 x 0 x 0
2
1
lnxlnx xlim x lnx lim lim lim lim x 0
1 1
1
x x
x
    


    

      
  
 
 
.
       
f γν.αύξουσα
2
f συνεχής x
f A f 1 , lim f x 1,

  

,καθώς
x
1
lim lnx
x
 
   
 
,αφού
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
42
x
lim lnx

  και
x
1
lim 0
x
 .
Έτσι το σύνολο τιμών της συνάρτησης f είναι το  1,
και επομένως  f x 1 ,για κάθε  x 0,  ,με την ισότητα να ισχύει
μόνο για x 1 ,δηλαδή:  f x 1 x 1   (*)
Έτσι:    F x f x 1, x 0    και   2
x 1 1
f x
x 4

   ,καθώς  
2
x 2 0  
2
x 4x 4 0      
x 0
2
2
x 1 1
x 4 x 1
x 4
 
    .Συμπεραίνουμε λοιπόν, ότι
οι fC και FC δεν δέχονται κοινές εφαπτομένες ,εφόσον οι συντελεστές δ/νσης
των εφαπτομένων της FC είναι διαφορετικοί από τους συντελεστές δ/νσης
των εφαπτομένων της fC ,για κάθε  x 0,  .
Γ1. Είναι    F x f x 1, x 0    ,οπότε η συνάρτηση F είναι γν.αύξουσα και 1-
1
στο  0,  και σε συνδυασμό με το Θ.Bolzano καθώς  F 1 1  και
 F e 1 ,προκύπτει ότι υπάρχει μοναδικό  ox 1,e τέτοιο, ώστε  oF x 0 .
Γ2. Η συνάρτηση F είναι γν.αύξουσα στο  0,  ,οπότε για o0 x x 
είναι    oF x F x 0  ,οπότε η εξίσωση είναι ΑΔΥΝΑΤΗ στο  o0,x .
Τώρα για ox x είναι    oF x F x 0  ,οπότε η εξίσωση ισοδύναμα γίνεται:
   
 
 
  
 
 
1 *
F x 1
ln F x e lne lnF x 1 f F x 1 F x 1
F x
 
          
 
 
   
F:1-1
F x F e x e    .
Γ3.    
o
o
x
x 1o
o o o o o o
o
x
F x 0 x 1 lnx x 0 lnx x e
x 1

         

.Είναι:
   
 
 
 
 
ο
ο xο
x 1ο
o
o o o
xxx
x 1x 1x 1x 0
2 2
e xf συνεχήςx 1 0
ο
x x DLH x x x x
ο
1 1
1 e 1 ex e
x 1 x 1x e
lim lim lim
F x F x f x f x



  
 
    
      

 
 
 
 
2
ο ο ο
2 2
ο ο
ο ο
x x x 1
1
x 1 x 1
f x f x
 

 
  .Έτσι:
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
43
 
 
 
 
 
 
   o o o
2x
ο οx 1 x
2 2f συνεχήςx 1
ο ο ο
ο 2x x x x x x
ο ο
x x 1
f x x e
x 1 x x 1x e
lim lim f x lim f x
F x F x f x x 1


  
  
  
        

.
Δ.   
   
 
         
f x F x
ln f x f x 1 ln f x f x F x
f x 1

      

        
F:1-1
F f x F x f x x f x x 0.      
Θεωρούμε συνάρτηση u με τύπο    u x f x x, x 0   .
Είναι    
2
2 2
1 1 x x 1
u x f x 1 1 0
x x x
  
        ,οπότε u γν.φθίνουσα
στο  0,  και επομένως u ‘‘1-1’’ στο  0,  .
Άρα      
u:1-1
f x x 0 u x u 1 x 1      .
Ε1.
    
       
x x x
2
1 1 1
t 1 f f t
dt 2 f t F f t dt 2 F f t dt 2
t
             
        
 
    
 
  
f 1 1 F 1 1x
1
F f t 2 F f x F f 1 2 F f x 2 F 1 F f x 1
 
            
      
F:1-1
F f x F e f x e    .
• Επειδή  1e f A και f γν.φθίνουσα στο  1A 0,1 ,συμπεραίνουμε ότι
υπάρχει
μοναδικό  1x 0,1 τέτοιο, ώστε  1f x e .
• Επειδή  2e f A και f γν.αύξουσα στο  2A 1,  ,συμπεραίνουμε ότι
υπάρχει
μοναδικό  2x 1,  τέτοιο, ώστε  2f x e .
Αποδείξαμε λοιπόν, ότι η αρχική εξίσωση έχει ακριβώς 2 ρίζες τις
1 2x ,x με 1 20 x 1 x   .
Ε2. Θεωρούμε τη συνάρτηση g με τύπο  
 f x e
g x , x 0
x

  .
Είναι  
   
2
x f x f x e
g x , x 0
x
  
   .
• g συνεχής στο  1 2x ,x ως πηλίκο συνεχών συναρτήσεων
• g παραγωγίσιμη στο  1 2x ,x ως πηλίκο παραγωγίσιμων συναρτήσεων
•    1 2g x g x 0  ,
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
44
οπότε σύμφωνα με το Θ.Rolle,υπάρχει ένα τουλάχιστον  1 2ξ x ,x τέτοιο,
ώστε
         g ξ 0 ξ f ξ f ξ e 0 ξ f ξ f ξ e            .
Η εφαπτομένη της fC στο σημείο   Μ ξ,f ξ ,έχει εξίσωση:
     ψ f ξ f ξ x ξ    .
Για x 0 ,προκύπτει:    ψ f ξ ξ f ξ e    ,που σημαίνει ότι η συγκεκριμένη
εφαπτομένη διέρχεται από το σημείο  0,e .
2η
προτεινόμενη λύση (Παντελής Δέτσιος)
Έστω f συνεχής στο  0,  με
F(x) x 1
f(x) ,x 0 (1)
x 1 x

  

, F αρχική της f
( F (x) f(x)  ) και
e
1
f(x)dx f(1) F(e)  (2)
Α.
   
x 1 e e
11
1 F(1) 2f(1) 3 , (2): F (x)dx f(1) F(e) F(x) f(1) F(e) f(1) F(1) 0

          
, άρα έχουμε f(1) 1, F(1) 1   , η (1) γίνεται
   
   
   
2
2 2
F(x) x 1 x 1
F (x) F (x) x 1 F(x) x 1 x
x 1 x x
F (x) x 1 F(x) x 1 x x 1
x 1 x x 1
          

     
 
 
   
2
2 2
F(x) x 2x 1 x 1 1 1 F(x) 1
ln x ln x c
x 1 x x 1 x 1 x 1x x 1 x 1
      
            
       
,
από την οποία για x 1 έχουμε c 1  , άρα
 
F(x) 1
ln x 1 F(x) x 1 ln x x , x 0
x 1 x 1
       
 
οπότε
 
1 1
f(x) F (x) ln x x 1 1 f(x) ln x , x 0
x x
        
___________________________________________________________________________
ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr
45
Β. 2 2
1 1 x 1
f (x) , x 0
x x x

     , από τον πίνακα
μεταβολών η f για x 1 έχει ολικό ελάχιστο με
f(1) 1 μόνο για x 1 εφόσον
   ff
x 1 f(x) f(1) , 0 x 1 f(x) f(1)      
21
Για να έχουν οι F fC ,C κοινή εφαπτομένη πρέπει να υπάρχουν  1 2x ,x 0,  ώστε
       1 2 1 2F x f x f x f x     , αδύνατο εφόσον
2
2
x 1
f(x) 1 f (x) 1 0 x x 1
x

        που ισχύει διότι 3 0   
Γ1. Για την F που είναι συνεχής έχουμε F(1) 1, F(e) 1   , άρα από Θ. Bolzano
υπάρχει  0x 1,e ώστε  0F x 0 που είναι και μοναδικό εφόσον
F (x) f(x) 1 0    και άρα  F '1 1' 1
Γ2. Έχουμε την εξίσωση
1
F(x)
0F(x) e e , 0 x x    , αν
 
 
F
0 00 x x F(x) F x F(x) 0     
1
οπότε η εξίσωση είναι αδύνατη, ενώ αν
 
 
F
0 0x x F(x) F x F(x) 0    
1
η εξίσωση γίνεται
 
1
F(x) 1
ln F(x) e lne ln F(x) 1 f F(x) 1
F(x)
 
        
 
που από Β ισχύει μόνο για
x 1 , οπότε
F('1 1')
F(x) 1 F(x) F(e) x e

    
Γ3. Από Γ1 έχουμε    
0
0
x
x 10
0 0 0 0 0 0
0
x
F x 0 x 1 ln x x 0 ln x e x
x 1

        

(3)
 
 
0
0
0 0
xx 3 F ή
x 1x 1
0 0 0 0
x x x x
lim x e x e x x 0 , lim F(x) F x 0
 

 
 
        
 
, άρα
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016
Η άσκηση της ημέρας - Ιανουάριος 2016

More Related Content

What's hot

Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)Μάκης Χατζόπουλος
 
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντρο
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντροΠανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντρο
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντροΜάκης Χατζόπουλος
 
Μαθηματικά Πανελλαδικές εξετάσεις 2019
Μαθηματικά Πανελλαδικές εξετάσεις 2019Μαθηματικά Πανελλαδικές εξετάσεις 2019
Μαθηματικά Πανελλαδικές εξετάσεις 2019Μάκης Χατζόπουλος
 
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛ
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛΛύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛ
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛΜάκης Χατζόπουλος
 
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017Μάκης Χατζόπουλος
 
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016Μάκης Χατζόπουλος
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)Παύλος Τρύφων
 

What's hot (19)

Φεβρουαριος 16
Φεβρουαριος 16Φεβρουαριος 16
Φεβρουαριος 16
 
Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 3ο (Νοέμβριος 2016)
 
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντρο
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντροΠανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντρο
Πανελλαδικές Εξετάσεις 2017 - Ενδεικτικές λύσεις από το Βαθμολογικό κέντρο
 
22η ανάρτηση
22η ανάρτηση22η ανάρτηση
22η ανάρτηση
 
24h anartisi
24h anartisi24h anartisi
24h anartisi
 
Epan eks math_kat_2015_lisari_team
Epan eks math_kat_2015_lisari_teamEpan eks math_kat_2015_lisari_team
Epan eks math_kat_2015_lisari_team
 
λυση ασκ. 30
λυση ασκ. 30λυση ασκ. 30
λυση ασκ. 30
 
17η ανάρτηση
17η ανάρτηση17η ανάρτηση
17η ανάρτηση
 
ασκηση 23
ασκηση 23ασκηση 23
ασκηση 23
 
16η ανάρτηση
16η ανάρτηση16η ανάρτηση
16η ανάρτηση
 
Ekfoniseis liseis 1-200
Ekfoniseis liseis 1-200Ekfoniseis liseis 1-200
Ekfoniseis liseis 1-200
 
8η ανάρτηση
8η ανάρτηση8η ανάρτηση
8η ανάρτηση
 
7η ασκηση
7η ασκηση7η ασκηση
7η ασκηση
 
Μαθηματικά Πανελλαδικές εξετάσεις 2019
Μαθηματικά Πανελλαδικές εξετάσεις 2019Μαθηματικά Πανελλαδικές εξετάσεις 2019
Μαθηματικά Πανελλαδικές εξετάσεις 2019
 
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛ
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛΛύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛ
Λύσεις Επαναληπτικών Εξετάσεων 2019 Μαθηματικά ΓΕΛ
 
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017
Οι λύσεις Πανελλαδικών Εξετάσεων ΕΠΑΛ 2017
 
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016
Λύσεις μαθηματικά Γ΄ Λυκείου Προσανατολισμού 2016
 
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)36   επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
36 επαναληπτικα θεματα γ λυκειου (εκφωνήσεις)
 
2η ανάρτηση
2η ανάρτηση2η ανάρτηση
2η ανάρτηση
 

Viewers also liked

Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + word
Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + wordΕπαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + word
Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + wordΜάκης Χατζόπουλος
 
"H άσκηση της ημέρας" Φεβρουάριος '16
"H άσκηση της ημέρας" Φεβρουάριος '16"H άσκηση της ημέρας" Φεβρουάριος '16
"H άσκηση της ημέρας" Φεβρουάριος '16Μάκης Χατζόπουλος
 
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσης
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσηςΔιαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσης
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσηςΜάκης Χατζόπουλος
 
Μια άσκηση την ημέρα - Απρίλιος 2016
Μια άσκηση την ημέρα - Απρίλιος 2016Μια άσκηση την ημέρα - Απρίλιος 2016
Μια άσκηση την ημέρα - Απρίλιος 2016Μάκης Χατζόπουλος
 
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015Η άσκηση της ημέρας - μήνας Οκτώβριος 2015
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015Μάκης Χατζόπουλος
 
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.gr
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.grH άσκηση της ημέρας - Ένθετο από το lisari.blogspot.gr
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.grΜάκης Χατζόπουλος
 
Η άσκηση της ημέρας - Σεπτέμβριος 2016
Η άσκηση της ημέρας - Σεπτέμβριος 2016Η άσκηση της ημέρας - Σεπτέμβριος 2016
Η άσκηση της ημέρας - Σεπτέμβριος 2016Μάκης Χατζόπουλος
 
Η άσκηση της ημέρας - Οκτώβριος 2016
Η άσκηση της ημέρας - Οκτώβριος 2016Η άσκηση της ημέρας - Οκτώβριος 2016
Η άσκηση της ημέρας - Οκτώβριος 2016Μάκης Χατζόπουλος
 
Η άσκηση της ημέρας - Ιανουάριος 2017
Η άσκηση της ημέρας - Ιανουάριος 2017Η άσκηση της ημέρας - Ιανουάριος 2017
Η άσκηση της ημέρας - Ιανουάριος 2017Μάκης Χατζόπουλος
 
Η άσκηση της ημέρας - Φεβρουάριος 2017
Η άσκηση της ημέρας - Φεβρουάριος 2017Η άσκηση της ημέρας - Φεβρουάριος 2017
Η άσκηση της ημέρας - Φεβρουάριος 2017Μάκης Χατζόπουλος
 
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια Μάκης Χατζόπουλος
 
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΔιαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΜάκης Χατζόπουλος
 
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)Μάκης Χατζόπουλος
 
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσεις
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσειςΔιαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσεις
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσειςΜάκης Χατζόπουλος
 

Viewers also liked (17)

Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + word
Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + wordΕπαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + word
Επαναληπτικό διαγώνισμα μέχρι συνέπειες του ΘΜΤ + λύσεις + word
 
"H άσκηση της ημέρας" Φεβρουάριος '16
"H άσκηση της ημέρας" Φεβρουάριος '16"H άσκηση της ημέρας" Φεβρουάριος '16
"H άσκηση της ημέρας" Φεβρουάριος '16
 
Ρυθμός μεταβολής
Ρυθμός μεταβολήςΡυθμός μεταβολής
Ρυθμός μεταβολής
 
23η ανάρτηση
23η ανάρτηση23η ανάρτηση
23η ανάρτηση
 
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσης
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσηςΔιαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσης
Διαγώνισμα προσομοίωσης - Γ Λυκείου 2016 - Μαθηματικά κατεύθυνσης
 
Μια άσκηση την ημέρα - Απρίλιος 2016
Μια άσκηση την ημέρα - Απρίλιος 2016Μια άσκηση την ημέρα - Απρίλιος 2016
Μια άσκηση την ημέρα - Απρίλιος 2016
 
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015Η άσκηση της ημέρας - μήνας Οκτώβριος 2015
Η άσκηση της ημέρας - μήνας Οκτώβριος 2015
 
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.gr
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.grH άσκηση της ημέρας - Ένθετο από το lisari.blogspot.gr
H άσκηση της ημέρας - Ένθετο από το lisari.blogspot.gr
 
Η άσκηση της ημέρας - Σεπτέμβριος 2016
Η άσκηση της ημέρας - Σεπτέμβριος 2016Η άσκηση της ημέρας - Σεπτέμβριος 2016
Η άσκηση της ημέρας - Σεπτέμβριος 2016
 
Η άσκηση της ημέρας - Οκτώβριος 2016
Η άσκηση της ημέρας - Οκτώβριος 2016Η άσκηση της ημέρας - Οκτώβριος 2016
Η άσκηση της ημέρας - Οκτώβριος 2016
 
Η άσκηση της ημέρας - Ιανουάριος 2017
Η άσκηση της ημέρας - Ιανουάριος 2017Η άσκηση της ημέρας - Ιανουάριος 2017
Η άσκηση της ημέρας - Ιανουάριος 2017
 
Η άσκηση της ημέρας - Φεβρουάριος 2017
Η άσκηση της ημέρας - Φεβρουάριος 2017Η άσκηση της ημέρας - Φεβρουάριος 2017
Η άσκηση της ημέρας - Φεβρουάριος 2017
 
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια
Διαγώνισμα από το Αρσάκειο - Τοσίτσειο Λύκειο Εκάλης στα όρια
 
Διαφορικός λογισμός 2015 - 16
Διαφορικός λογισμός 2015 - 16Διαφορικός λογισμός 2015 - 16
Διαφορικός λογισμός 2015 - 16
 
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό ΛογισμόΔιαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
Διαγώνισμα στο κεφάλαιο 2ο: Διαφορικό Λογισμό
 
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)
Η άσκηση της ημέρας - τεύχος 4ο (Δεκέμβριος 2016)
 
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσεις
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσειςΔιαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσεις
Διαγωνισμός Αρχιμήδης (μικροί) - 56 Ασκήσεις Γεωμετρίας με λύσεις
 

Similar to Η άσκηση της ημέρας - Ιανουάριος 2016

λύση ασκησης 5
λύση ασκησης 5λύση ασκησης 5
λύση ασκησης 5trifonpavlos1
 
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέοΜάκης Χατζόπουλος
 
8 διαγωνίσματα με λύσεις από το Study4exams 2017
8 διαγωνίσματα με λύσεις από το Study4exams 20178 διαγωνίσματα με λύσεις από το Study4exams 2017
8 διαγωνίσματα με λύσεις από το Study4exams 2017Μάκης Χατζόπουλος
 

Similar to Η άσκηση της ημέρας - Ιανουάριος 2016 (20)

4η ανάρτηση
4η ανάρτηση4η ανάρτηση
4η ανάρτηση
 
14η ανάρτηση
14η ανάρτηση14η ανάρτηση
14η ανάρτηση
 
13η ανάρτηση
13η ανάρτηση13η ανάρτηση
13η ανάρτηση
 
15η ανάρτηση
15η ανάρτηση15η ανάρτηση
15η ανάρτηση
 
λύση 20ης ασκησης
λύση 20ης ασκησηςλύση 20ης ασκησης
λύση 20ης ασκησης
 
λύση ασκησης 5
λύση ασκησης 5λύση ασκησης 5
λύση ασκησης 5
 
λύση ασκ. 25
λύση ασκ. 25λύση ασκ. 25
λύση ασκ. 25
 
Το θεώρημα του χατζόπουλου
Το θεώρημα του χατζόπουλουΤο θεώρημα του χατζόπουλου
Το θεώρημα του χατζόπουλου
 
20η ανάρτηση
20η ανάρτηση20η ανάρτηση
20η ανάρτηση
 
25η ανάρτηση
25η ανάρτηση25η ανάρτηση
25η ανάρτηση
 
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο
35 χρήσιμες-προτάσεις-Χατζόπουλος-νέο
 
14η ανάρτηση
14η ανάρτηση14η ανάρτηση
14η ανάρτηση
 
16η ανάρτηση
16η ανάρτηση16η ανάρτηση
16η ανάρτηση
 
λυση ασκ. 14
λυση ασκ. 14λυση ασκ. 14
λυση ασκ. 14
 
λυση ασκ. 17
λυση ασκ. 17λυση ασκ. 17
λυση ασκ. 17
 
λυση 11 ασκησης
λυση 11 ασκησηςλυση 11 ασκησης
λυση 11 ασκησης
 
λυση ασκ. 22
λυση ασκ. 22λυση ασκ. 22
λυση ασκ. 22
 
Mk ed1 ed8_lys
Mk ed1 ed8_lysMk ed1 ed8_lys
Mk ed1 ed8_lys
 
Mk ed1 ed7_lys
Mk ed1 ed7_lysMk ed1 ed7_lys
Mk ed1 ed7_lys
 
8 διαγωνίσματα με λύσεις από το Study4exams 2017
8 διαγωνίσματα με λύσεις από το Study4exams 20178 διαγωνίσματα με λύσεις από το Study4exams 2017
8 διαγωνίσματα με λύσεις από το Study4exams 2017
 

More from Μάκης Χατζόπουλος

Διαγώνισμα Προσομοίωσης - Άλγεβρα Β Λυκείου
Διαγώνισμα Προσομοίωσης - Άλγεβρα Β ΛυκείουΔιαγώνισμα Προσομοίωσης - Άλγεβρα Β Λυκείου
Διαγώνισμα Προσομοίωσης - Άλγεβρα Β ΛυκείουΜάκης Χατζόπουλος
 
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές Εξετάσεις
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές ΕξετάσειςΑντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές Εξετάσεις
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές ΕξετάσειςΜάκης Χατζόπουλος
 
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό Λογισμό
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό ΛογισμόΕπαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό Λογισμό
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό ΛογισμόΜάκης Χατζόπουλος
 
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2Μάκης Χατζόπουλος
 
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16Μάκης Χατζόπουλος
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΜάκης Χατζόπουλος
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΜάκης Χατζόπουλος
 
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016Μάκης Χατζόπουλος
 
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα Νικολετόπουλου
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα ΝικολετόπουλουΣημειώσεις Γ Λυκείου 2016 - 17 του Κώστα Νικολετόπουλου
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα ΝικολετόπουλουΜάκης Χατζόπουλος
 
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)Μάκης Χατζόπουλος
 
Σημειώσεις στην Ευθεία από την ask4math
Σημειώσεις στην Ευθεία από την ask4mathΣημειώσεις στην Ευθεία από την ask4math
Σημειώσεις στην Ευθεία από την ask4mathΜάκης Χατζόπουλος
 
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...Μάκης Χατζόπουλος
 
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ Μυτιλήνης
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ ΜυτιλήνηςΔιαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ Μυτιλήνης
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ ΜυτιλήνηςΜάκης Χατζόπουλος
 
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο Σχολή
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο ΣχολήΠροσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο Σχολή
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο ΣχολήΜάκης Χατζόπουλος
 
Πρόσκληση για παρουσίαση βιβλίου της lisari team
Πρόσκληση για παρουσίαση βιβλίου της lisari teamΠρόσκληση για παρουσίαση βιβλίου της lisari team
Πρόσκληση για παρουσίαση βιβλίου της lisari teamΜάκης Χατζόπουλος
 

More from Μάκης Χατζόπουλος (20)

Διαγώνισμα Προσομοίωσης - Άλγεβρα Β Λυκείου
Διαγώνισμα Προσομοίωσης - Άλγεβρα Β ΛυκείουΔιαγώνισμα Προσομοίωσης - Άλγεβρα Β Λυκείου
Διαγώνισμα Προσομοίωσης - Άλγεβρα Β Λυκείου
 
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές Εξετάσεις
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές ΕξετάσειςΑντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές Εξετάσεις
Αντιπαραδείγματα - Το θέμα Α2 για τις Πανελλαδικές Εξετάσεις
 
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό Λογισμό
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό ΛογισμόΕπαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό Λογισμό
Επαναληπτικό διαγώνισμα προσομοίωσης στον Διαφορικό Λογισμό
 
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2
Γραπτή εξέταση στην Άλγεβρα Α΄ Λυκείου 2.1 - 2.2
 
Επανάληψη στη Γ Γυμνασίου 2017
Επανάληψη στη Γ Γυμνασίου 2017Επανάληψη στη Γ Γυμνασίου 2017
Επανάληψη στη Γ Γυμνασίου 2017
 
Επανάληψη στη Β Γυμνασίου 2017
Επανάληψη στη Β Γυμνασίου 2017Επανάληψη στη Β Γυμνασίου 2017
Επανάληψη στη Β Γυμνασίου 2017
 
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16
Ημερίδα μαθηματικών στο Καλαμαρί 3-12-16
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
 
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο ΑνάλυσηςΤεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
Τεστ στα ΕΠΑΛ στο 1ο κεφάλαιο Ανάλυσης
 
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016
Μαθηματικά Γ Λυκείου - Θέματα Εξετάσεων Ομογενών 2016
 
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα Νικολετόπουλου
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα ΝικολετόπουλουΣημειώσεις Γ Λυκείου 2016 - 17 του Κώστα Νικολετόπουλου
Σημειώσεις Γ Λυκείου 2016 - 17 του Κώστα Νικολετόπουλου
 
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)
Δίωρο διαγώνισμα στα πολυώνυμα για το Β τετράμηνο (α και β ομάδα)
 
Σημειώσεις στην Ευθεία από την ask4math
Σημειώσεις στην Ευθεία από την ask4mathΣημειώσεις στην Ευθεία από την ask4math
Σημειώσεις στην Ευθεία από την ask4math
 
Test στα πολυώνυμα
Test στα πολυώνυμα Test στα πολυώνυμα
Test στα πολυώνυμα
 
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
 
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ Μυτιλήνης
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ ΜυτιλήνηςΔιαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ Μυτιλήνης
Διαγώνισμα προσομοίωσης 2016 από το 2ο ΕΠΑΛ Μυτιλήνης
 
Διαγώνισμα Μαθηματικών ΕΠΑΛ 2016
Διαγώνισμα Μαθηματικών ΕΠΑΛ 2016Διαγώνισμα Μαθηματικών ΕΠΑΛ 2016
Διαγώνισμα Μαθηματικών ΕΠΑΛ 2016
 
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο Σχολή
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο ΣχολήΠροσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο Σχολή
Προσομοιωτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό από τη Βαρβάκειο Σχολή
 
Πρόσκληση για παρουσίαση βιβλίου της lisari team
Πρόσκληση για παρουσίαση βιβλίου της lisari teamΠρόσκληση για παρουσίαση βιβλίου της lisari team
Πρόσκληση για παρουσίαση βιβλίου της lisari team
 
Κατηγορίες ασκήσεων στα όρια
Κατηγορίες ασκήσεων στα όριαΚατηγορίες ασκήσεων στα όρια
Κατηγορίες ασκήσεων στα όρια
 

Recently uploaded

Το άγαλμα που κρύωνε
Το άγαλμα που                       κρύωνεΤο άγαλμα που                       κρύωνε
Το άγαλμα που κρύωνεDimitra Mylonaki
 
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣH
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣHRODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣH
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣHROUT Family
 
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptxΠασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx36dimperist
 
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptxΠασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx36dimperist
 
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-242lykkomo
 
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOY
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOYEKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOY
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOYssuser369a35
 
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptx
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptxΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptx
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptxJIMKON
 
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑ
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑΜια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑ
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑDimitra Mylonaki
 
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptxΕκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx7gymnasiokavalas
 
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 2008
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ  2008Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ  2008
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 2008Θεόδωρος Μαραγκούλας
 
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξεις
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξειςΓιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξεις
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξειςΟΛΓΑ ΤΣΕΧΕΛΙΔΟΥ
 
Μια νύχτα σε κατάστημα παιχνιδιών.pdf
Μια νύχτα σε κατάστημα             παιχνιδιών.pdfΜια νύχτα σε κατάστημα             παιχνιδιών.pdf
Μια νύχτα σε κατάστημα παιχνιδιών.pdfDimitra Mylonaki
 
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdf
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdfΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdf
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdfssuserf9afe7
 
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptxΠασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx36dimperist
 
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της ΙταλίαςKonstantina Katirtzi
 
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docx
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docxΗ Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docx
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docxeucharis
 
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptx
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptxΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptx
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptxssuserb0ed14
 

Recently uploaded (17)

Το άγαλμα που κρύωνε
Το άγαλμα που                       κρύωνεΤο άγαλμα που                       κρύωνε
Το άγαλμα που κρύωνε
 
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣH
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣHRODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣH
RODOPI CHALLENGE (ROC 50 MILES) 2024 ΤΕΧΝΙΚΗ ΕΝΗΜΕΡΩΣH
 
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptxΠασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx
Πασχαλινά αυγά από τη Β΄ τάξη του σχολείου μας.pptx
 
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptxΠασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx
Πασχαλινές Λαμπάδες από ΣΤ τάξη του σχολείου μας.pptx
 
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24
ΕΝΔΟΣΧΟΛΙΚΕΣ_ΠΡΟΓΡΑΜΜΑ endosxolikes 2023-24
 
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOY
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOYEKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOY
EKSETASTEA KAI DIDAKTEA YLH G TAKSHS GENIKOY LYKEIOY
 
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptx
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptxΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptx
ΑΝΑΦΟΡΑ ΣΤΙΣ ΣΥΝΧΡΟΝΕΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ.pptx
 
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑ
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑΜια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑ
Μια νύχτα σε κατάστημα παιχνιδιώνΚΕΙΜΕΝΑ
 
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptxΕκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx
Εκπαιδευτική επίσκεψη στο 1ο ΕΠΑΛ Καβάλας.pptx
 
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 2008
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ  2008Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ  2008
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ ΕΚΠΑΙΔΕΥΤΙΚΩΝ 2008
 
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξεις
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξειςΓιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξεις
Γιορτή της μητέρας-Φύλλα εργασιών για όλες τις τάξεις
 
Μια νύχτα σε κατάστημα παιχνιδιών.pdf
Μια νύχτα σε κατάστημα             παιχνιδιών.pdfΜια νύχτα σε κατάστημα             παιχνιδιών.pdf
Μια νύχτα σε κατάστημα παιχνιδιών.pdf
 
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdf
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdfΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdf
ΠΑΝΕΛΛΗΝΙΕΣ 2024 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ.pdf
 
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptxΠασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx
Πασχαλινές λαμπάδες από τη Δ΄ τάξη του σχολείου μας.pptx
 
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας
2η Διεθνική Συνάντηση μαθητών και καθηγητών στο Σαλέρνο της Ιταλίας
 
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docx
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docxΗ Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docx
Η Κινέζικη Αστρολογία - Ημερολόγιο - Ζώδια.docx
 
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptx
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptxΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptx
ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΠΟΛΙΤΙΚΕΣ ΤΗΣ Ε.Ε..pptx
 

Η άσκηση της ημέρας - Ιανουάριος 2016

  • 1. η άσκηση της ηµέρας µικρές προσπάθειες ενασχόλησης µε αγαπηµένες µας συνήθειες επιµέλεια: Παύλος Τρύφων από το lisari.blogspot.gr
  • 2. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 1 Μας τίμησαν με τη συμμετοχή τους Αντωνόπουλος Νίκος Ασημακόπουλος Γιώργος Βουτσάς Διονύσης Βώβος Μάριος Δεββές Κώστας Δέτσιος Παντελής Ζωβοΐλης Ηλίας Καταραχιάς Τάκης Κίκης Νίκος Κουτσοβασίλης Κώστας Λουκούσιας Παναγιώτης Μάντζαρης Μάκης Μαρκάκης Αντώνης Μάρκου Κατερίνα Μίχας Μάνος Νικολακάκης Βαγγέλης Ξανιά Ηλιάνα Παγώνης Θεόδωρος Πάτσης Ανδρέας Σπύρου Πάνος Τσακαλάκος Τάκης Τσατσαρώνης Θεόδωρος Χατζάκης Δημήτρης Χιωτίνης Μιχάλης Χρήστου Μαρία Χύτης Μάριος
  • 3. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 2 15η άσκηση Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού Προτάθηκε από τον Ηλία Ζωβοΐλη (3-1-2016) Αποστολή λύσεων έως την Κυριακή 10/1/2016 Έστω συνάρτηση f παραγωγίσιμη στο ,για την οποία ισχύουν: •        x f x e x x 1 f x 0       ,για κάθε x •   x 0 F x lim 1 x  ,όπου F μια αρχική συνάρτηση της f στο Α. Να αποδείξετε ότι   x x e f x ,x e x    . Β. Να λυθεί η εξίσωση:    x F x e x f x   . Γ1. Να αποδείξετε ότι για κάθε  x ,0 ,  ισχύει:    F x x f x  . Γ2. Να αποδείξετε ότι η εξίσωση:    F x f x 0,  έχει μοναδική ρίζα, η οποία βρίσκεται στο  1,0 . Δ. Να αποδείξετε ότι για κάθε  x 0, ,  ισχύει:     x F lnxe x . x lnx F x    Ε1. Να αποδείξετε ότι  F 1 1 . Ε2. Να λυθεί η εξίσωση:             x x F f x F 1 F e 1 F e F 1 F f x 1       . Ζ. Να αποδείξετε ότι η εφαπτομένη της fC στο σημείο   0,f 0 , «διαπερνά» την καμπύλη.
  • 4. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 3 1η προτεινόμενη λύση (Ηλίας Ζωβοΐλης) Α. Έστω συνάρτηση u με τύπο    F x u x , x 0. x   Είναι    F x x u x , x 0   και  x 0 limu x 1,   οπότε          F συνεχής x 0 x 0 x 0 x 0 limF x lim x u x F 0 limx limu x 0 1 0.                      F 0 0 x 0 x 0 F x F 0 F x F 0 lim lim 1, x x         οπότε  f 0 1. Θεωρούμε συνάρτηση k με τύπο     x k x f x e x , x .   Είναι:                    x x x k x f x e x f x e 1 1 x f x f x e 1 k x , x .               Έτσι:       x k x k x k x c e , x .      Για    0 x 0:k 0 c e c f 0 1,      οπότε         x x x x x e k x e f x e x e f x , x . e x          Β.           x x x x x e F x e x f x F x e F x 1 f x . e x            Θεωρούμε συνάρτηση λ με τύπο      λ x f x F x , x .   Είναι:                    x x x 1 e f x1 x f x λ x f x F x f x f x f x , x . e x e x                 •  λ x 0 x 0    •  λ x 0 x 0    •  λ x 0 x 0    Επομένως λ γν.αύξουσα στο  ,0 και λ γν.φθίνουσα στο  0, . Είναι: •         λ γν.αύξουσα x 0 λ x λ 0 f x F x 1      •         λ γν.φθίνουσα x 0 λ x λ 0 f x F x 1      Δηλαδή, για κάθε    x ,0 0,    ,ισχύει    f x F x 1  ,ενώ για x 0 έχουμε    f 0 F 0 1  ,οπότε:    F x 1 f x x 0.    Γ1. Είναι       x 1 x f x f x , x , e x       οπότε: •  f x 0 x 1    •  f x 0 x 1   
  • 5. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 4 •  f x 0 x 1    Επομένως f γν.αύξουσα στο  ,1 και f γν.φθίνουσα στο  1, . Εφαρμόζοντας Θ.Μ.Τ για την F στο  x,0 , x 0, έχουμε: Υπάρχει ένα τουλάχιστον        F x ξ x,0 :F ξ f ξ . x    Όμως               f γν.αύξουσα στο - ,1 x 0F x x ξ 0 f x f ξ f x F x x f x . x            Για x 0 έχουμε προφανή ισότητα, οπότε για κάθε  x ,0 ,  ισχύει:    F x x f x  , με το ‘‘=’’ να ισχύει μόνο για x 0 . Γ2. Είναι    F x f x 0,   για κάθε x , οπότε F γν.αύξουσα στο . Θεωρούμε τη συνάρτηση μ με τύπο      μ x f x F x , x .   Είναι:          μ x f x F x f x f x , x .        Για κάθε  x 0,  είναι: •    F x F 0 0  , καθώς F γν.αύξουσα στο •  f x 0 οπότε      μ x f x F x 0   για κάθε  x 0,  και έτσι η εξίσωση  μ x 0 είναι αδύνατη στο  0,  . Για κάθε  x ,0  είναι: •       x 1 x f x f x 0 e x       •  f x 0 οπότε      μ x f x f x 0    και επομένως μ γν.αύξουσα στο  ,0 . Έτσι: • μ συνεχής στο  1,0 ως άθροισμα συνεχών συναρτήσεων •      μ 0 f 0 F 0 1 0    •      μ 1 f 1 F 1 0      , αφού από το Γ1 για x 1  , προκύπτει:        F 1 1 f 1 F 1 f 1 0.          Σύμφωνα με το Θ.Bolzano και επειδή μ γν.αύξουσα στο  ,0 , συμπεραίνουμε ότι η εξίσωση:    F x f x 0,  έχει μοναδική ρίζα, η οποία βρίσκεται στο  1,0 . Δ. Θεωρούμε τη συνάρτηση G με τύπο      x G x e x F x , x .    Είναι:
  • 6. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 5          x x G x e 1 F x e x f x , x .        Για κάθε  x ,0  ,είναι: • x e 1 0  •    F x F 0 0  , οπότε  G x 0.  Για κάθε  x 0,  ,είναι: • x e 1 0  •    F x F 0 0  , οπότε  G x 0.  Για x 0 είναι  G 0 1  και έτσι  G x 0  , για κάθε x , οπότε G γν.αύξουσα στο . Γνωρίζουμε ότι για κάθε  x 0,  είναι x lnx , οπότε επειδή G γν.αύξουσα στο , θα ισχύει:    G x G lnx                xF x 0 x F lnxe x e x F x x lnx F lnx . x lnx F x            Ε1. Εφαρμόζοντας Θ.Μ.Τ για την F στο  0,1 ,έχουμε: Υπάρχει ένα τουλάχιστον        o o ox 0,1 :F x f x F 1 .   Όμως         f γν.αύξουσα στο 0,1 o o0 x 1 f x f 0 F 1 1.      Ε2. Έστω συνάρτηση w με τύπο       w x F x F 1 F x 1 , x 0.     Είναι:       w x f x F 1 f x 1 , x 0.      Όμως: •     x 0 F 1 1 x F 1 x 1 1        • f γν.φθίνουσα στο  1, , οπότε       f x F 1 f x 1 w x 0     , που σημαίνει ότι w γν.φθίνουσα στο  0, , οπότε w ‘‘1-1’’ στο  0, και έτσι:             x x F f x F 1 F e 1 F e F 1 F f x 1                    x x F f x F 1 F f x 1 F e F 1 F e 1                w 1-1 x x x w f x w e f x e e x 1 x 0         , καθώς x e x 1  , για κάθε x , με το ‘‘=’’ να ισχύει μόνο για x 0 . Ζ. Είναι    f 0 f 0 1   ,οπότε η εφαπτομένη της fC στο σημείο   0,f 0 έχει εξίσωση: ψ x 1  .Θεωρούμε τη συνάρτηση Π με τύπο
  • 7. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 6      xx x x x e x 1e Π x f x x 1 x 1 , x e x e x               . Για κάθε  x ,0  ,είναι: • x 0  • x e x 1 0   ,οπότε  Π x 0 ,που σημαίνει ότι η καμπύλη βρίσκεται πάνω από την ευθεία ψ x 1  ,όταν  x ,0  . Για κάθε  x 0,  ,είναι: • x 0  • x e x 1 0   ,οπότε  Π x 0 ,που σημαίνει ότι η καμπύλη βρίσκεται κάτω από την ευθεία ψ x 1  ,όταν  x 0,  . Επομένως η εφαπτομένη της fC στο σημείο   0,f 0 , «διαπερνά» την καμπύλη. 2η προτεινόμενη λύση (Παύλος Τρύφων) (εναλλακτικές λύσεις υποερωτημάτων) ΕΡΩΤΗΜΑ Ζ:  Αρκεί να αποδείξουμε ότι το σημείο  M 0,1 είναι σημείο καμπής της γραφικής παράστασης της f (γενικότερα θα βρούμε και το πλήθος των σημείων καμπής)  Στη γνωστή σχέση ln t t 1,  για κάθε t 0 θέτουμε για t το  x e x R και προκύπτει: x x x x lne e 1 x e 1 e x 1.        Άρα x e x 1 x,   για κάθε x x R e x 0,    για κάθε x R Οπότε το πεδίο ορισμού της f είναι το R.  Η f είναι δύο φορές παραγωγίσιμη στο R με           x x 2 x x 3 3x x e 2e 2x x 2 xe e g x f x e x e x             , όπου   x 2 x g x 2e 2x x 2 xe ,x R      Το πρόσημο της f καθορίζεται από το πρόσημο της g.
  • 8. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 7 Η g είναι συνεχής στο  1,2 και        g 1 g 2 e 1 2 0      . Άρα (Θ. Bolzano) υπάρχει  1,2 τέτοιο, ώστε  g 0   Βρίσκουμε         x x x x g x e 2 2x xe ,x R g x 2 xe ,x R g x e x 1 ,x R                 Οπότε,  g x 0 x 1 0 x 1        και  g x 0 x 1 0 x 1        x   1    g x   g max Άρα η g παρουσιάζει ολικό μέγιστο στο 1 , δηλαδή     1 2e g x g 1 0 g e         γνησίως φθίνουσα στο R. Επίσης  g 1 e 2 2 e 0.      Οπότε, για    x 1 g x g 1 0     και για    x 1 g x g 1 0     O
  • 9. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 8 Η g είναι γνησίως αύξουσα στο  ,1 και  g 0 0 Άρα η ρίζα x 0 της εξίσωσης  g x 0 είναι μοναδική στο  ,1 . Παρόμοια, η g είναι γνησίως φθίνουσα στο  1, και  g 0  Άρα η ρίζα x   της εξίσωσης  g x 0 είναι μοναδική στο  1, . Άρα η εξίσωση  g x 0 έχει ακριβώς δύο ρίζες στο R.  Χρησιμοποιώντας τη μονοτονία της g και τις δύο ρίζες της, προκύπτει εύκολα ο παρακάτω πίνακας: Η f είναι κυρτή στα διαστήματα  ,0 και  ,  και κοίλη στο διάστημα  0, . Η f μηδενίζεται στο 0 και δεξιά και αριστερά του 0 αλλάζει πρόσημο. Άρα (και) το σημείο  M 0,1 είναι σημείο καμπής της γραφικής παράστασης της f. Σχόλιο: Σαφώς κομψότερη η λύση του κου Ζωβοΐλη, αφού δε μπαίνει σε διαδικασία εύρεσης σημείων καμπής! x   0 1 ξ    g x      f x     f    
  • 10. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 9 3η προτεινόμενη λύση (Δημήτρης Χατζάκης) Βασικές ανισώσεις : 𝑒 𝑥 > 𝑥 , ∀𝑥 ∈ ℝ και 𝑙𝑛𝑥 < 𝑥 , 𝑥 > 0 A. Θέτουμε 𝑔(𝑥) = 𝐹(𝑥) 𝑥 ⟺ 𝐹(𝑥) = 𝑥𝑔(𝑥). H F παραγωγισιμη στο ℝ άρα και συνεχής όποτε :  𝐹(0) = 𝑙𝑖𝑚 𝑥→0 𝐹(𝑥) = 𝑙𝑖𝑚 𝑥→0 𝑥𝑔(𝑥) = 0  𝐹′(0) = 𝑓(0) = 𝑙𝑖𝑚 𝑥→0 𝐹(𝑥) 𝑥 = 1 Έχουμε : 𝑓′(𝑥)(𝑒 𝑥 − 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 , (𝟏)  𝑓′(𝑥)(𝑒 𝑥 − 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 ⟺ 𝑓′(𝑥)𝑒 𝑥 − 𝑓′(𝑥)𝑥 + 𝑥𝑓(𝑥) − 𝑓(𝑥) = 0 𝑓′(𝑥)𝑒 𝑥 = (𝑥𝑓(𝑥)) ′ − 𝑥𝑓(𝑥) ⟺ 𝑓′(𝑥) = 𝑒−𝑥 (𝑥𝑓(𝑥)) ′ − 𝑒−𝑥 𝑥𝑓(𝑥) ⟺ (𝑓(𝑥))′ = (𝑒−𝑥 𝑥𝑓(𝑥)) ′ ⟺ 𝑓(𝑥) = 𝑒−𝑥 𝑥𝑓(𝑥) + 𝑐 Για 𝑥 = 0 ⇢ 𝑐 = 1 αρα 𝑓(𝑥) = 𝑒−𝑥 𝑥𝑓(𝑥) + 1 ⟺ ⋯ ⟺ 𝑓(𝑥) = 𝑒 𝑥 𝑒 𝑥−𝑥 > 0 Β.  𝐹(𝑥)𝑒 𝑥 = 𝑥𝑓(𝑥) ⟺ 𝐹(𝑥)𝑒 𝑥 = 𝑥 𝑒 𝑥 𝑒 𝑥−𝑥 ⟺ 𝐹(𝑥) = 𝑥 𝑒 𝑥−𝑥 ⟺ 𝐹(𝑥) − 𝑥 𝑒 𝑥−𝑥 = 0 Θέτουμε 𝛫(𝑥) = 𝐹(𝑥) − 𝑥 𝑒 𝑥−𝑥 με προφανής ρίζα 𝛫(0) = 𝐹(0) − 0 = 0 𝛫′(𝑥) = 𝐹′(𝑥) − ( 𝑥 𝑒 𝑥 − 𝑥 ) ′ = ⋯ = 𝑒 𝑥 (𝑒 𝑥 − 1) (𝑒 𝑥 − 𝑥)2 𝒙 𝟎 𝜥′ − + 𝜥 ↘ ↗ Έστω ότι υπάρχει ρίζα 𝜌 < 0 και επειδή η 𝐾είναι ↓ στο (−∞, 0] θα είναι : 𝐾(𝜌) > 𝐾(0) ⟺ 0 > 0 άτοπο. Ομοίως οτι δεν υπάρχει ρίζα 𝜌 > 0. Τελικά η 𝐹(𝑥)𝑒 𝑥 = 𝑥𝑓(𝑥) έχει μοναδική λύση το 0. Γ1. Θέτουμε ℎ(𝑥) = 𝐹(𝑥) − 𝑥𝑓(𝑥) , 𝑥 ≤ 0 με ℎ′(𝑥) = ( 𝑒 𝑥 𝑒 𝑥−𝑥 ) 𝑥(𝑥 − 1) 𝒙 𝟎 𝟏 𝒉′ + − + 𝒉 ↗ ↘ ↗  𝑥 ≤ 0 ℎ↑ ⇔ ℎ(𝑥) ≤ ℎ(0) ⟺ 𝐹(𝑥) − 𝑥𝑓(𝑥) ≤ 0 ⟺ 𝐹(𝑥) ≤ 𝑥𝑓(𝑥) , (𝟐) Γ2. Για 𝑥 = −1 στην (2) : 𝐹(−1) < −𝑓(−1) ⟺ 𝐹(−1) + 𝑓(−1) < 0
  • 11. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 10 Θέτουμε την 𝛬(𝑥) = 𝐹(𝑥) + 𝑓(𝑥) , 𝑥 ∈ [−1,0] με 𝛬′ (𝑥) = 𝑒 𝑥(𝑒 𝑥−2𝑥+1) (𝑒 𝑥−𝑥)2  𝛬(0) = 1 > 0 και 𝛬(−1) = 𝐹(−1) + 𝑓(−1) < 0 { 𝛬 𝜎𝜐𝜈𝜀𝜒𝜂𝜍 𝜎𝜏𝜊 [−1,0] 𝛬(−1)𝛬(0) < 0 από ΘΒ η 𝛬(𝑥) = 0 έχει μια τουλάχιστον ρίζα στο (−1,0) 𝛬′(𝑥) = 𝑒 𝑥(𝑒 𝑥−2𝑥+1) (𝑒 𝑥−𝑥)2 > 0 αφού 𝑒 𝑥 − 2𝑥 + 1 = (𝑒 𝑥 − 𝑥) + (1 − 𝑥) > 0 , 𝑥 ∈ (−1,0) Τελικά υπάρχει μοναδικό 𝑥1 ∈ (−1,0) τέτοιο ώστε : 𝛬(𝑥) = 0 Δ. Είναι 𝑓(𝑥) = 𝑒 𝑥 𝑒 𝑥−𝑥 > 0 ⇢ 𝐹 ↑ στο ℝ . Επίσης το πρόσημο της F είναι : 𝒙 𝟎 𝑭 − + 1 περίπτωση : 𝑥 ≥ 1  𝑥 ≥ 1 ⟺ 𝑙𝑛𝑥 ≥ 0 𝐹 ↑ ⇔ 𝐹(𝑙𝑛𝑥) ≥ 0 και 𝐹(𝑥) > 0  𝑒 𝑥−𝑥 𝑥−𝑙𝑛𝑥 > 𝐹(𝑙𝑛𝑥) 𝐹(𝑥) ⟺ 𝐹(𝑥)( 𝑒 𝑥 − 𝑥) > 𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥)  𝑥 > 𝑙𝑛𝑥 𝐹 ↑ ⇔ 𝐹( 𝑥) > 𝐹( 𝑙𝑛𝑥) (3) Αρκεί να δείξουμε ότι 𝑒 𝑥 − 𝑥 > 𝑥 − 𝑙𝑛𝑥 , 𝑥 ≥ 1 Θέτουμε την 𝛱(𝑥) = 𝑒 𝑥 − 2𝑥 + 𝑙𝑛𝑥 με 𝛱′(𝑥) = 𝑒 𝑥 − 2 + 1 𝑥 > 0 , ∀𝑥 ≥ 1 Όποτε 𝑥 ≥ 1 𝛱 ↑ ⇔ 𝑒 𝑥 − 2𝑥 + 𝑙𝑛𝑥 ≥ 𝑒 − 2 > 0 ⟺ 𝑒 𝑥 − 𝑥 > 𝑥 − 𝑙𝑛𝑥 , (4) Από (3) και (4) έχουμε : 𝐹(𝑥)(𝑒 𝑥 − 𝑥) > 𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥) ⟺ 𝑒 𝑥−𝑥 𝑥−𝑙𝑛𝑥 > 𝐹(𝑙𝑛𝑥) 𝐹(𝑥) 2 περίπτωση : 0 < 𝑥 < 1  𝑥 < 1 ⟺ 𝑙𝑛𝑥 < 0 𝐹 ↑ ⇔ 𝐹(𝑙𝑛𝑥) < 0 𝐹(𝑥)>0 ⇔ 𝐹(𝑙𝑛𝑥) 𝐹(𝑥) < 0  𝑒 𝑥−𝑥 𝑥−𝑙𝑛𝑥 > 0 . Όποτε 𝑒 𝑥−𝑥 𝑥−𝑙𝑛𝑥 > 𝐹(𝑙𝑛𝑥) 𝐹(𝑥) E1. Θεωρούμε την συνάρτηση 𝑤(𝑥) = 𝐹(𝑥) − 𝑥 , 𝜇𝜀 𝑤′(𝑥) = 𝑥 𝑒 𝑥−𝑥 𝒙 𝟎 𝒘′ − + 𝒘 ↘ ↗  𝑤(𝑥) ≥ 𝑤(0) ⟺ 𝑤(𝑥) ≥ 0 άρα για 𝑥 = 1 ∶ 𝑤(1) > 0 ⟺ 𝐹(1) − 1 > 0 ⟺ 𝐹(1) > 1
  • 12. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 11 E2. 𝑓′(𝑥) = 𝑒 𝑥(1−𝑥) (𝑒 𝑥−𝑥)2 < 0 για κάθε 𝑥 > 1 άρα 𝑓 1 − 1 όταν 𝑥 > 1 Είναι 𝑒 𝑥 ≥ 𝑥 + 1 και το ίσον ισχύει μόνο όταν 𝑥 = 0 Για 𝒙 ≠ 𝟎 ∶ 𝑒 𝑥 > 𝑥 + 1 ⟺ 𝑒 𝑥 − 𝑥 > 1 ⟺ 1 𝑒 𝑥−𝑥 < 1 ⟺ 𝑒 𝑥 𝑒 𝑥−𝑥 < 𝑒 𝑥 ⟺ 𝑓(𝑥) < 𝑒 𝑥 Η εξίσωση : 𝐹(𝑓(𝑥) + 𝐹(1)) + 𝐹(𝑒 𝑥 + 1) = 𝐹(𝑒 𝑥 + 𝐹(1)) + 𝐹(𝑓(𝑥) + 1) έχει προφανή ρίζα το 0 . Έστω ότι η παραπάνω εξίσωση έχει και το 𝒙 𝟐 ≠ 𝟎 λύση .Επομένως : 𝐹(𝑓(𝑥2) + 𝐹(1)) + 𝐹(𝑒 𝑥2 + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) + 𝐹(𝑓(𝑥2) + 1) ή 𝐹(𝑓(𝑥2) + 𝐹(1)) − 𝐹(𝑓(𝑥2) + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) − 𝐹(𝑒 𝑥2 + 1) (𝟒) ή 𝐹(𝑒 𝑥2 + 1) − 𝐹(𝑓(𝑥2) + 1) = 𝐹(𝑒 𝑥2 + 𝐹(1)) − 𝐹(𝑓(𝑥2) + 𝐹(1)) (𝟓) Αφού 𝑓(𝑥) > 0 , 𝐹(1) > 1 και 𝑓(𝑥) < 𝑒 𝑥 :  1 < 𝑓(𝑥2) + 1 < 𝑓(𝑥2) + 𝐹(1) < 𝑒 𝑥2 + 𝐹(1) Και  1 < 𝑓(𝑥2) + 1 < 𝑒 𝑥2 + 1 < 𝑒 𝑥2 + 𝐹(1)  Έστω 𝒆 𝒙 𝟐 + 𝟏 ≥ 𝒇(𝒙 𝟐) + 𝑭(𝟏) ⇢ 𝒇(𝒙 𝟐) + 𝟏 < 𝒇(𝒙 𝟐) + 𝑭(𝟏) ≤ 𝒆 𝒙 𝟐 + 𝟏 < 𝒆 𝒙 𝟐 + 𝑭(𝟏) F παραγωγισιμη στο [𝑓(𝑥2) + 1, 𝑓(𝑥2) + 𝐹(1)] από ΘΜΤ υπάρχει ένα τουλάχιστον 𝜉1 ∈ (𝑓(𝑥2) + 1, 𝑓(𝑥2) + 𝐹(1)) ∶ 𝐹′(𝜉1) = 𝑓(𝜉1) = 𝐹(𝑓(𝑥2)+𝐹(1))−𝐹(𝑓(𝑥2)+1) 𝐹(1)−1 F παραγωγισιμη στο [𝑒 𝑥2 + 1, 𝑒 𝑥2 + 𝐹(1)] από ΘΜΤ υπάρχει ένα τουλάχιστον 𝜉2 ∈ (𝑒 𝑥2 + 1, 𝑒 𝑥2 + 𝐹(1)) ∶ 𝐹′(𝜉2) = 𝑓(𝜉2) = 𝐹(𝑒 𝑥2+𝐹(1))−𝐹(𝑒 𝑥2+1) 𝐹(1)−1 Λογω της (4) έχουμε : 𝑓(𝜉1) = 𝑓(𝜉2) 𝑓 1−1 ⇔ 𝜉1 = 𝜉2 ⇢ ΑΤΟΠΟ  Αν 𝒆 𝒙 𝟐 + 𝟏 ≤ 𝒇(𝒙 𝟐) + 𝑭(𝟏). Χρησιμοποιούμε την σχέση (5) και όμοιο τρόπο καταλήγουμε σε άτοπο . Ζ. Αρκεί να δείξουμε ότι το (0, 𝑓(0)) είναι σημείο καμπής .  Παραγωγιζουμε την 𝑓′(𝑥)(𝑒 𝑥 − 𝑥) + (𝑥 − 1)𝑓(𝑥) = 0 και μετά από πράξεις έχουμε 𝑓′′(𝑥) ( 𝑒 𝑥−𝑥)3 𝑒 𝑥 = 𝑥𝑒 𝑥 + 𝑥2 − 2𝑥 − 2𝑒 𝑥 + 2 Θέτουμε 𝛷(𝑥) = 𝑥𝑒 𝑥 + 𝑥2 − 2𝑥 − 2𝑒 𝑥 + 2 με 𝛷′(𝑥) = (𝑒 𝑥 + 2)(𝑥 − 1) 𝒙 𝟎 𝟏 𝜱′ − + 𝜱 ↘ ↗
  • 13. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 12  𝑥 < 0 𝛷↓ ⇔ 𝛷(𝑥) > 𝛷(0) ⟺ 𝑓′′(𝑥) ( 𝑒 𝑥−𝑥)3 𝑒 𝑥 > 0 ⟺ 𝑓′′(𝑥) > 0  0 ≤ 𝑥 < 1 𝛷↓ ⇔ 𝛷(𝑥) ≤ 𝛷(0) ⟺ 𝑓′′(𝑥) ( 𝑒 𝑥−𝑥)3 𝑒 𝑥 ≤ 0 ⟺ 𝑓′′(𝑥) ≤ 0 𝒙 𝟎 𝟏 𝒇′ ′ + − 𝒇 ∪ ∩ 4η προτεινόμενη λύση (Κώστας Δεββές) Α. Ισοδύναμα από αρχική έχω: 𝑓΄(𝜒)𝑒 𝑥 − 𝑓΄(𝜒)𝜒 + 𝜒𝑓(𝜒) − 𝑓(𝑥) = 0 ή 𝑓΄(𝜒) − 𝑓΄(𝜒)𝜒𝑒−𝑥 + 𝜒𝑓(𝜒)𝑒−𝑥 − 𝑓(𝑥)𝑒−𝑥 = 0 ή 𝑓΄(𝜒) − (𝜒𝑓(𝜒)𝑒−𝑥)΄=0 άρα η φ(χ)= 𝑓(𝜒)(1 − 𝜒𝑒−𝑥)=c. Θέτοντας 𝛨(𝜒) = 𝐹(𝑥) 𝑥 είναι lim 𝜒→0 𝛨(𝜒) = 1 και F(χ)=χΗ(χ) με lim 𝜒→0 𝐹(𝜒) = 0 = 𝐹(0), άρα το όριο που δίνεται είναι το F΄(0)=1=f(0). Για χ=0 στη φ έχω c=1=φ(χ) ή 1=f(χ)(1-χ𝑒−𝑥 ) ή f(χ)= 𝑒 𝑥 𝑒 𝑥−𝑥 . Β. H δοσμένη είναι ισοδ. με F(χ)= 𝜒 𝑒 𝑥−𝑥 (προφανής ρίζα 0) και θέτοντας Φ(χ)= F(χ)− 𝜒 𝑒 𝑥−𝑥 έχω Φ΄(χ)= 𝑒 𝑥(𝑒 𝑥−1) (𝑒 𝑥−𝑥)2 με μόνη ρίζα το 0 που για χ>0 είναι θετική άρα Φ < στο [0,+∞) και για χ<0 αρνητική δηλ. Φ > στο (-∞, 0], άρα Φmin=0 δηλ. Φ(χ)>0 στο 𝑅∗ , και ο 0 μόνη ρίζα της Φ. Γ1. Για χ=0 ισχύει ως ισότητα. Αν χ<0 θέτω Κ(χ)=F(χ)-χf(χ) με Κ΄(χ)=−𝜒𝑒 𝜒 1−𝜒 (𝑒 𝑥−𝑥)2 >0 δηλ. η Κ < στο (-∞, 0] και έχει max το Κ(0)=0, άρα Κ(χ)<0 στο (-∞, 0). Γ2. Με Τ(χ)=F(χ)+f(χ), χ∈ [−1,0] είναι Τ(-1)=F(-1)+f(-1)<0 (γιατί από Γ1 με χ=-1 είναι F(-1)<-f(-1)) και Τ(0)=F(0)+f(0)=1, άρα εφαρμόζεται το Bolzano για την Τ. Aν η T έχει 2 ρίζες στο (-1,0) θα εφαρμόζεται το Rolle και η Τ΄(χ)=𝑒 𝑥 𝑒 𝑥+1−2𝑥 (𝑒 𝑥−𝑥)2 θα έχει ρίζα σ’ αυτό. Αν όμως θέσω φ(χ)= 𝑒 𝑥 + 1 − 2𝑥 θα είναι φ΄(χ)= 𝑒 𝑥 − 2<0 στο (-1,0) δηλ. η Τ΄ αδύνατη σ’ αυτό. Άρα η Τ έχει μοναδική ρίζα στο (-1,0). Δ. Είναι F < αφού f(χ)>0 (𝑒 𝑥 ≥ 𝑥 + 1 > 𝑥) δηλ. F(χ)>F(0)=0 και χ-lnχ>0 (lnχ≤ 𝜒 − 1 < 𝜒). Άρα η ζητούμενη ανισότητα γράφεται ισοδύναμα: 𝐹(𝑥)(𝑒 𝑥 − 𝑥) > 𝐹(𝑙𝑛𝑥)(𝑥 − 𝑙𝑛𝑥) = 𝐹(𝑙𝑛𝑥)(𝑒 𝑙𝑛𝑥 − 𝑙𝑛𝑥) ή Φ(χ)>Φ(lnx) με Φ(χ)= 𝐹(𝑥)(𝑒 𝑥 − 𝑥) ,
  • 14. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 13 χ>0. Είναι Φ΄(χ)=𝑒 𝑥 + 𝐹(𝑥)(𝑒 𝑥 − 1) > 0 με χ>0, άρα Φ < στο (0,+∞) δηλ. η αποδεικτέα ισχύει. Ε1. 𝑓΄(𝜒) = 𝑒 𝜒 1−𝜒 (𝑒 𝑥−𝑥)2 με μόνη ρίζα το 1 που είναι θετική στο (-∞,1) και < στο (- ∞, 1]. Από ΘΜΤ για την F στο [0,1] υπάρχει ξ στο (0,1) με 𝐹΄(𝜉) = 𝑓(𝜉) = 𝐹(1) κι επειδή 0<ξ είναι f(0)<f(ξ) (f <)) άρα 1<F(1). Z. H εφαπτομένη της Cf στο (0,1) έχει εξίσωση y=x+1 και f΄΄(χ)=− 𝑒 𝜒 (𝑒 𝜒−𝜒)3 (−𝜒2 + 2𝑒 𝑥 − 2 − 𝑥𝑒 𝜒 + 2𝜒). Θέτω h(χ)= −𝜒2 + 2𝑒 𝑥 − 2 − 𝑥𝑒 𝜒 + 2𝜒 με h(0)=0 και h΄(χ)=(1 − 𝜒)(𝑒 𝜒 + 2) με ρίζα το 1 και h΄(χ)>0 με χ<1 δηλ. η h < στο (-∞, 1]. Για χ<0 είναι h(χ)<h(0)=0 άρα f΄΄(χ)>0 και f κυρτή στο (-∞, 0]. Ομοίως με 0<χ<1 είναι h(χ)>h(0)=0 άρα f΄΄(χ)<0 και f κοίλη στο [0,1]. Δηλ. το (0,1) σημείο καμπής της Cf. 5η προτεινόμενη λύση (Μάκης Μάντζαρης) A. Έστω g(x) = F(x) x , x ≠ 0, τότε lim x→0 g(x) = 1 F(x) = xg(x) ⇒ lim x→0 F(x) = lim x→0 xg(x) = 0, όμως F συνεχής άρα F(0)=0 f(0) = F′(0) = lim x→0 F(x) − F(0) x − 0 = lim x→0 g(x) = 1 , αρα 𝐟(𝟎) = 𝟏 Έστω H(x) = (1 − xe−x)f(x), x ∈ R παραγωγίσιμη τότε H′(x) = e−x(x − 1)f(x) + (1 − xe−x)f′(x) = = e−x[(x − 1)f(x) + (ex − x)f′(x)] = 0 άρα Η σταθερή με Η(0) = 1 ,άρα H(x) = 1 ⇒ (1 − xe−x)f(x) = 1 1−xe−x≠0 ⇒ f(x) = 1 1 − xe−x ⇒ 𝐟(𝐱) = 𝐞 𝐱 𝐞 𝐱 − 𝐱 B. Έστω G(x) = F(x) − x f(x) ex , x ∈ R παραγωγίσιμη με G′(x) = f(x) − (f(x)+xf′(x))ex−xf(x)ex e2x = ex ex−x − (1−x)f(x)+xf′(x) ex = = ex ex−x − f′(x)(ex−x)+xf′(x) ex = ex ex−x − f′(x)ex ex = ex ex−x − ex(1−x) (ex−x)2 = ex(ex−1) (ex−x)2
  • 15. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 14 Από τον πίνακα έχουμε ότι η G έχει μοναδική ρίζα το 0, άρα και η F(x) − x f(x) ex = 0 ⇔ 𝐅(𝐱)𝐞 𝐱 = 𝐱𝐟(𝐱) έχει μοναδική ρίζα το 0. Γ.1 Γιαx < 0 η F είναι παραγωγίσιμη και συνεχής στο [x, 0] οπότε από ΘΜΤ ∃ ξ ∈ (x, 0): F′(ξ) = F(x)−F(0) x−0 ⇒ f(ξ) = F(x) x όμως f(x) = ex ex−x ⇒ f′(x) = ex(1−x) (ex−x)2 > 0 για x < 0 άρα f ↗ στο [x, 0] άρα ξ > x ⇒ f(ξ) > f(x) ⇒ F(x) x > f(x) ⇒ F(x) < xf(x) ∀ x < 0 ακόμα F(0) = 0 = 0f(0), συνεπώς ∀ 𝐱 ∈ (−∞, 𝟎] 𝛆ί𝛎𝛂𝛊 𝐅(𝐱) ≤ 𝐱𝐟(𝐱) Γ.2 Έστω D(x) = F(x) + f(x), x ∈ R παραγωγίσιμη η D ορίζεται και είναι συνεχής στο [−1,0] D(−1) = F(−1) + f(−1) < 0 , από Γ1 D(0) = F(0) + f(0) = 1 > 0 από Θ.Bolzano η D έχει τουλάχιστο μια ρίζα στο (-1,0) D′(x) = F′(x) + f′(x) = ex(ex−2x+1) (ex−x)2 θεωρώ την συνάρτηση z(x) = ex − 2x + 1 με z′(x) = ex − 2 x -∞ 0 +∞ G - + G O.E. G(0)=0
  • 16. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 15 Από τον πίνακα έχουμε z(x) > 0 άρα D′(x) > 0 ⇒ D ↗ στο R συνεπώς η D έχει μοναδική ρίζα στο R άρα και η 𝐅(𝐱) + 𝐟(𝐱) = 𝟎 έ𝛘𝛆𝛊 𝛍𝛐𝛎𝛂𝛅𝛊𝛋ή 𝛒ί𝛇𝛂 στο R που βρίσκεται στο (-1,0) Δ. f(x) > 0 , αφού ex − x ≥ 1 και ex > 0 F′(x) = f(x) > 0 άρα F ↗ στο R άρα για x > 0 ⇒ F(x) > F(0) = 0 Έστω L(x) = exF(x) f(x) , x ∈ R παραγωγίσιμη με L′(x) = ex[F(x)(f(x)−f′(x))+f2(x)] f2(x) = ex[F(x) ex(ex−1) f2(x) +f2(x)] f2(x) > 0 για x > 0 άρα L ↗ στο (0, +∞). Όμως lnx ≤ x − 1 < x ⇒ L(lnx) < L(x) ⇒ elnxF(lnx) f(lnx) < exF(x) f(x) ⇒ xF(lnx) f(lnx) < exF(x) f(x) ⇒ xF(lnx) x x−lnx < exF(x) ex ex−x ⇒ 𝐅(𝐥𝐧𝐱) 𝐅(𝐱) < 𝐞 𝐱−𝐱 𝐱−𝐥𝐧𝐱 Ε.1 Έστω W(x) = F(x) − x , x, ∈ [0 + ∞) παραγωγίσιμη με W′(x) = f(x) − 1 = x ex−x > 0 , για x > 0 άρα W ↗ στο [0, +∞) 1 > 0 ⇒ W(1) > W(0) ⇒ 𝐅(𝟏) > 𝟏 Ε.2. f(x) = ex ex−x > 0 , f′(x) = ex(1−x) (ex−x)2 , άρα 𝐟 ↘ 𝛔𝛕𝛐 (𝟏, +∞). είναι f(x) = ex ex−x < ex ,αφού ex − x > 1 , άρα 𝟎 < 𝐟(𝐱) < 𝐞 𝐱 η x=0 είναι προφανής λύση, x -∞ ln2 +∞ z - + z O.E. z( ln2)=3-2ln2>0
  • 17. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 16 έστω ρ ≠ 0 μια άλλη λύση , τότε 1 < f(ρ) + 1 < eρ + F(1) και f(ρ) + 1 < eρ + 1 < eρ + F(1) και f(ρ) + 1 < f(ρ) + F(1) < eρ + F(1) Θέτω α = f(ρ) + 1 , δ = eρ + F(1) , β = min{eρ + 1, f(ρ) + F(1)} , γ = max{eρ + 1, f(ρ) + F(1)} , τότε 1 < α < β ≤ γ < δ και β − α = δ − γ = eρ − f(ρ) > 0 ή β − α = δ − γ = F(1) − 1 > 0 και τότε F(β) + F(γ) = F(δ) + F(α) , όμως από ΘΜΤ στα [𝛼, 𝛽], [𝛾, 𝛿] για την F είναι 𝐹′(𝜉1) = 𝑓(𝜉1) = 𝐹(𝛽)−𝐹(𝛼) 𝛽−𝛼 , 𝐹′(𝜉2) = 𝑓(𝜉2) = 𝐹(𝛿)−𝐹(𝛾) 𝛿−𝛾 , 𝜉1 ∈ (𝑎, 𝛽), 𝜉2 ∈ (𝛾, 𝛿) και επειδή f ↘ στο (1, +∞) θα είναι f(ξ1) > f(ξ2) ⇒ F(β) − F(α) > F(δ) − F(γ) ⇒ F(β) + F(γ) > F(δ) + F(α) , άτοπο οπότε η x=0 μοναδική λύση Ζ. f′(x) = ex(1−x) (ex−x)2 , η f είναι παραγωγίσιμη στο 0 και δέχεται εφαπτόμενη. f′′(x) = ex ex(x−2)+x2−2x+2 (ex−x)3 με f′′(0) = 0 έστω z(x) = ex(x − 2) + x2 − 2x + 2 , x < 1 παραγωγίσιμη με z′(x) = (ex + 2)(x − 1) < 0 ,άρα z ↘ για x <1 για x < 0 ⇒ z(x) < z(0) = 0 ⇒ f′′(x) < 0 για x > 0 x<1 ⇒ z(x) > z(0) = 0 ⇒ f′′(x) > 0 , συνεπώς το x=0 είναι σημείο καμπής και η εφαπτόμενη σε αυτό διαπερνά την 𝐂 𝐟
  • 18. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 17 16η άσκηση Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού Προτάθηκε από τον Ηλία Ζωβοΐλη (11-1-2016) Αποστολή λύσεων έως την Κυριακή 17/1/2016 Έστω συνάρτηση f δυο φορές παραγωγίσιμη στο  0, ,για την οποία ισχύουν: •    2 x f x x f x 2 2x, x 0       • Η fC έχει σημείο καμπής το   e,f e •    F x 2x F 1 2, x 0    , όπου F μια αρχική συνάρτηση της f στο  0, Α. Να αποδείξετε ότι   2 f x ln x 2x,x 0   . Β. Να αποδείξετε ότι η εξίσωση 2x 2x e x 1  ,έχει μοναδική θετική ρίζα, η οποία βρίσκεται στο 1 ,1 e       . Γ. Να αποδείξετε ότι η συνάρτηση F έχει μοναδικό ακρότατο, του οποίου να προσδιορίσετε το είδος. Δ. Να αποδείξετε ότι υπάρχουν  1 2ξ ,ξ 1,2 , τέτοια ώστε:          2 1 2 1 F x f x dx f ξ F ξ   . Ε1. Να αποδείξετε ότι η συνάρτηση g με τύπο      F x F 1 , x 1 g x x 1 2 , x 1           είναι γν.φθίνουσα στο  1, . Ε2. Να αποδείξετε ότι:     2 3 1 1 2 f x dx f x dx  .
  • 19. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 18 1η προτεινόμενη λύση (Ηλίας Ζωβοΐλης) Α. Αφού η fC έχει σημείο καμπής το   e,f e και η f είναι δυο φορές παραγωγίσιμη στο  0, ,θα ισχύει  f e 0  .Έτσι για x e ,έχουμε:         f e 0 2 e f e e f e 2 2e e f e 2 2e              . Θεωρούμε συνάρτηση u με τύπο    u x F x 2x, x 0   .Είναι    u 1 F 1 2  , οπότε:        F x 2x F 1 2 u x u 1     .Για τη συνάρτηση u,ισχύουν: • u παραγωγίσιμη στο  0, ,ως άθροισμα παραγωγίσιμων συναρτήσεων •    u x u 1 • το 1 είναι εσωτερικό σημείο του  0, Επομένως σύμφωνα με το Θ.Fermat,θα είναι      u 1 0 F 1 2 0 f 1 2        .              x 0 2 2 x f x x f x 2 2x x f x f x 2 x f x 2lnx 2x x                       x f x 2lnx 2x c     . Για x e ,έχουμε:  e f e 2lne 2e c 2 2e 2 2e c c 0           ,οπότε           x 0 2 22lnx x f x 2lnx 2x f x 2 f x ln x 2x f x ln x 2x c x                  Για x 1 ,έχουμε:   2 f 1 ln 1 2 c 2 2 c c 0            ,οπότε   2 f x ln x 2x,x 0   . Β. Για τη συνάρτηση f έχουμε:    2 lnx x2lnx f x 2 0 x x       ,καθώς για κάθε  x 0,  είναι lnx x . Επομένως f γν.φθίνουσα στο  A 0,  και έτσι:          f γν.φθίνουσα f συνεχής x x 0 f A lim f x , lim f x ,      ,αφού •   2 x x ln x lim f x lim 2x 1 2x              ,καθώς  x lim 2x    και 2 x DLH x DLH x ln x lnx 1 lim lim lim 0 2x x x           •  x 0 lim f x   ,καθώς  x 0 lim 2x 0   και    2 x 0 x 0 lim ln x lim lnx lnx        αφού x 0 lim lnx   . 21 1 2 2 e 2 f ln 1 0 e e e e e                   f 1 2 0   και επειδή f συνεχής και γν.φθίνουσα σε συνδυασμό
  • 20. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 19 με το Θ.Bolzano,συμπεραίνουμε ότι η εξίσωση  f x 0 ,έχει μοναδική ρίζα, η οποία βρίσκεται στο 1 ,1 e       .   x 0 2x 2x 2x 2x e x 1 ln e x 0 2x 2x lnx 0           Για κάθε  x 1,  είναι: 2x 2x lnx 0   ,οπότε:   2 2x 2x lnx 0 2x lnx 2x 2x lnx 2x                0 x 1 2 lnx 2x ln x 2x f x 0, x 0,1           που σε συνδυασμό με τα προηγούμενα αποδεικνύει το ζητούμενο. Γ. Είναι:      F x f x , x 0,    και      F x f x 0, x 0,     . Αποδείξαμε ότι υπάρχει μοναδικό o 1 x ,1 e       ,τέτοιο ώστε  of x 0 . Η συνάρτηση F είναι γν.φθίνουσα στο  0, ,οπότε: •       F γν.φθίνουσα o o o0 x x F x F x f x 0         •       F γν.φθίνουσα o o ox x F x F x f x 0        και έτσι η συνάρτηση F είναι γν.αύξουσα στο  o0,x και γν.φθίνουσα στο  ox , ,που σημαίνει ότι η συνάρτηση F έχει μοναδικό ολικό μέγιστο το  oF x . Δ.                 2 2 22 2 2 1 1 1 1 1 F x f x dx F x F x dx F x F 2 F 1 2 2                       F 1 F 2 F 2 F 1 2       . Εφαρμόζοντας Θ.Μ.Τ για την F στο  1,2 ,συμπεραίνουμε ότι υπάρχει  1ξ 1,2 , τέτοιο ώστε        1 1F ξ f ξ F 2 F 1    . Έστω συνάρτηση w με τύπο          w x 2F x F 1 F 2 , x 1,2    .Είναι: • w συνεχής στο  1,2 (προφανώς) •      w 1 F 1 F 2  •      w 2 F 2 F 1 
  • 21. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 20         2 w 1 w 2 F 2 F 1 0,       καθώς:         f γν.φθίνουσα o 1 o 1x 1 ξ f x f ξ 0 F 2 F 1 .       Έτσι σύμφωνα με το Θ.Bolzano,υπάρχει  2ξ 1,2 ,τέτοιο ώστε  2w ξ 0        2 F 1 F 2 F ξ 2    και έτσι:          2 1 2 1 F x f x dx f ξ F ξ   ,με  1 2ξ ,ξ 1,2 . Ε1. Η συνάρτηση g είναι συνεχής στο 1,καθώς:            x 1 x 1 F x F 1 lim g x lim F 1 f 1 2 g 1 x 1            .Για κάθε  x 1,  είναι:                   2 F x F 1 f xF x x 1 F x F 1 x 1g x x 1x 1             . Εφαρμόζοντας Θ.Μ.Τ για την F στο  1,x , x 1 ,συμπεραίνουμε ότι υπάρχει  ξ 1,x ,τέτοιο ώστε        F x F 1 F ξ f ξ x 1      , με     f γν.φθίνουσα 1 ξ x f x f ξ    ,οπότε:      f x f ξ g x 0, x 1 x 1       . Επομένως η συνάρτηση g είναι γν.φθίνουσα στο  1, . Ε2.            g γν.φθίνουσα F 3 F 1 2 3 g 2 g 3 F 2 F 1 2                      2 3 1 1 2 F 2 F 1 F 3 F 1 2 F x F x                 2 3 1 1 2 f x dx f x dx  . 2η προτεινόμενη λύση (Τάκης Καταραχιάς) Α. Είναι 𝑥2 𝑓΄΄(𝑥) + 𝑥𝑓΄(𝑥) = 2 − 2𝑥 για 𝑥 > 0 . Επειδή η Cf έχει σημείο καμπής το (e,f(e)) και η f είναι δύο φορές παραγωγίσιμη, θα είναι 𝑓΄΄(𝑒) = 0 οπότε από την αρχική σχέση προκύπτει 𝑓΄(𝑒) = 2 𝑒 − 2. Θέτω g(x) = F(x) + 2x. Ισχύει F(x) + 2x ≤ F(1) + 2  g(x) ≤ g(1) επόμενα από θεώρημα FERMAT θα είναι g΄(1)=0  F΄(1) + 2 =0  f(1)=-2. Τώρα: για 𝑥 > 0 𝑥2 𝑓΄΄(𝑥) + 𝑥𝑓΄(𝑥) = 2 − 2𝑥  𝑥𝑓΄΄(𝑥) + 𝑓΄(𝑥) = 2 𝑥 − 2  (𝑥𝑓΄(𝑥))΄= (2𝑙𝑛𝑥 − 2𝑥)΄  𝑥𝑓΄(𝑥)= 2𝑙𝑛𝑥 − 2𝑥 + 𝑐1 , και επειδή 𝑓΄(𝑒) = 2 𝑒 − 2 θα είναι 𝑐1 =
  • 22. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 21 0. Δηλαδή 𝑥𝑓΄(𝑥)= 2𝑙𝑛𝑥 − 2𝑥  𝑓΄(𝑥)= 2𝑙𝑛𝑥 𝑥 − 2  𝑓΄(𝑥)= (𝑙𝑛2 𝑥 − 2𝑥 )΄ 𝑓(𝑥)= 𝑙𝑛2 𝑥 − 2𝑥 + 𝑐 .΄Ομως f(1)=-2  𝑐 = 0 . ΄Αρα 𝑓(𝑥)= 𝑙𝑛2 𝑥 − 2𝑥. Β. ΄Εχω 𝑓΄(𝑥)= 2𝑙𝑛𝑥 𝑥 − 2 = 2(𝑙𝑛𝑥−𝑥) 𝑥 ≤ −2 𝑥 < 0 για 𝑥 > 0 διότι lnx ≤ x − 1, για κάθε x > 0. Συνεπώς f γνήσια φθίνουσα στο ( 0 , +∞ ). Τώρα η f συνεχής στο [ 1 𝑒 , 1] ως παραγωγίσιμη. Επί πλέον f(1)=-2< 0 , f( 1 𝑒 ) = 1− 2 𝑒 > 0, επόμενα από θεώρημα BOLZANO υπάρχει μοναδικό ρє( 1 𝑒 , 1) (επειδή f γνήσια φθίνουσα στο ( 0 , +∞ ) ) ώστε f(ρ)=0  𝑙𝑛2 𝜌 − 2𝜌 = 0  𝑙𝑛2 𝜌 = 2𝜌  𝑙𝑛 𝜌 = −√2𝜌 διότι ρє( 1 𝑒 , 1) . Συνεπώς 𝑙𝑛𝜌 + √2𝜌 = 0  √2𝜌 𝑙𝑛𝜌 + 2𝜌 = 0  𝑒√2𝜌 𝑙𝑛 𝜌+2𝜌 = 1  𝑒2𝜌 ∙ 𝜌√2𝜌 = 1 Για 0<x<ρ είναι f(x) > f(ρ)f(x) > 0 𝑙𝑛2 𝑥 > 2𝑥(𝑙𝑛𝑥 − √2𝑥 )( 𝑙𝑛𝑥 + √2𝑥 ) >0 𝑙𝑛𝑥 + √2𝑥 <0 𝑒√2𝑥 𝑙𝑛 𝑥+2𝑥 < 1 𝑒2𝑥 ∙ 𝑥√2𝑥 < 1. ΄Ομοια για x>ρ είναι 𝑒2𝑥 ∙ 𝑥√2𝑥 > 1. ΄Αρα η εξίσωση 𝑒2𝑥 ∙ 𝑥√2𝑥 = 1 έχει μοναδική θετική ρίζα ρ στο ( 1 𝑒 , 1). Γ. 𝛦ί𝜈𝛼𝜄 𝐹΄(𝜌) = 𝑓(𝜌) = 0. Για 0 < 𝑥 < 𝜌  𝑓(𝑥) > 𝑓(𝜌)  𝐹΄(𝜒) > 0. Για 𝑥 > 𝜌  𝑓(𝑥) < 𝑓(𝜌)  𝐹΄(𝜒) < 0 . ΄Αρα η F παρουσιάζει στο x=ρ ολικό μέγιστο. Δ. Aπό τη σχέση F(x) + 2x ≤ F(1) + 2 για x=2 έχω F(2) + 4 ≤ F(1) + 2  F(2) ≤ F(1) - 2< F(1) . Οπότε F(2) < 𝐹(1)+𝐹(2) 2 < F(1) συνεπώς από θεώρημα ενδιαμέσων τιμών υπάρχει ξ2є(1 , 2) ώστε F(ξ2)= 𝐹(1)+𝐹(2) 2 (1). Eπίσης από θεώρημα Μέσης Τιμής για την F(x) στο [1 , 2 ] υπάρχει ξ1є(1 , 2) ώστε F΄( ξ1) = F(2) - F(1)  f(ξ1 ) = F(2) - F(1) (2). Tώρα από τις σχέσεις (1) και (2) : f(ξ1 ) F(ξ2)= 𝐹2(2)−𝐹2(1) 2 = ∫ 𝐹(𝑥)𝐹΄(𝑥)𝑑𝑥 = 2 1 ∫ 𝐹(𝑥)𝑓(𝑥)𝑑𝑥. 2 1 E1. Η g είναι συνεχής στο (1 , +∞) ως πηλίκο συνεχών συναρτήσεων. Επί πλέον lim 𝑥→1+ 𝐹(𝑥)−𝐹(1) 𝑥−1 = 𝐹΄(1) = 𝑓(1) = −2 = 𝑔(0) . Επόμενα η g είναι συνεχής στο [1 , +∞) .Επίσης για x>1 είναι g παραγωγίσιμη με 𝑔΄(𝑥) = 𝑓(𝑥)(𝑥−1)−𝐹(𝑥)+𝐹(1) (𝑥−1)2 < 0 διότι από θεώρημα Μέσης Τιμής για την F(x) στο [1 , 𝑥 ] υπάρχει σє(1 , 𝑥) ώστε F΄(
  • 23. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 22 σ) = f(σ ) = 𝐹(𝑥)−𝐹(1) 𝑥−1 > f(x) επειδή f γνήσια φθίνουσα στο ( 0 , +∞ ). ΄Αρα g γνήσια φθίνουσα στο [1 , +∞). E2. Από E1 g γνήσια φθίνουσα στο [1 , +∞) επόμενα g(2) > g(3)  𝐹(2) − 𝐹(1) > 𝐹(3) − 𝐹(2)  ∫ 𝑓(𝑥)𝑑𝑥 > ∫ 𝑓(𝑥)𝑑𝑥 3 2 2 1  2 ∫ 𝑓(𝑥)𝑑𝑥 > ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥  3 2 2 1 2 1 2 ∫ 𝑓(𝑥)𝑑𝑥 > 2 1 ∫ 𝑓(𝑥)𝑑𝑥 3 1 . 3η προτεινόμενη λύση (Μάκης Μάντζαρης) A. H 𝑓 έχει Σ.Κ. το (𝑒, 𝑓(𝑒)) άρα 𝑓′′(𝑒) = 0 από την 1η δεδομένη σχέση για 𝑥 = 𝑒 είναι 𝑒2 𝑓′′(𝑒) + 𝑒𝑓′(𝑒) = 2 − 2𝑒 ⇒ 𝒇′(𝒆) = 𝟐 𝒆 − 𝟐 Έστω 𝐺(𝑥) = 𝐹(𝑥) + 2𝑥 , 𝑥 > 0 παραγωγίσιμη από τη 3η δεδομένη σχέση είναι 𝐹(𝑥) + 2𝑥 ≤ 𝐹(1) + 2 ⇒ 𝐺(𝑥) ≤ 𝐺(2) άρα η 𝐺 έχει μέγιστο το G(1) στο (0,+∞) .Τότε από Θ.Fermat είναι 𝐺’(1) = 0 ⇒ 𝐹′(1) + 2 = 0 ⇒ 𝒇(𝟏) = −𝟐 Έστω 𝐻(𝑥) = 𝑥𝑓′(𝑥) − 2𝑙𝑛𝑥 + 2𝑥 , 𝑥 ∈ (0, +∞) παραγωγίσιμη τότε 𝐻′(𝑥) = 𝑥𝑓′′(𝑥) + 𝑓′(𝑥) − 2 𝑥 + 2 = 𝑥2 𝐹′′(𝑥)+𝑥𝐹′(𝑥)−2+2𝑥 𝑥 = 2−2𝑥−2+2𝑥 𝑥 = 0 άρα H σταθερή και επειδή H(e)=0 , θα είναι 𝐻(𝑥) = 0 ⇔ 𝑥𝑓′(𝑥) − 2𝑙𝑛𝑥 + 2𝑥 = 0 ⇔ 𝑓′(𝑥) = 2 𝑙𝑛𝑥 𝑥 − 2 ⇔ 𝑓′(𝑥) = (ln2 𝑥 − 2𝑥)′ ⇔ 𝑓(𝑥) = ln2 𝑥 − 2𝑥 + 𝑐 , 𝑐 ∈ 𝑅 όμως 𝑓(1) = −2 ⇒ 𝑐 = 0 άρα 𝒇(𝒙) = 𝐥𝐧 𝟐 𝒙 − 𝟐𝒙 , 𝒙 ∈ (𝟎, +∞) B. 𝑓′(𝑥) = 2 𝑙𝑛𝑥 𝑥 − 2 = 2 𝑙𝑛𝑥−𝑥 𝑥 < 0 αφού 𝑙𝑛𝑥 ≤ 𝑥 − 1 < 𝑥 άρα 𝑓 ↘ 𝜎𝜏𝜊 (0, +∞) και 1-1
  • 24. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 23 𝑒2𝑥 𝑥√2𝑥 = 1 ⇔ 𝑙𝑛(𝑒2𝑥 𝑥√2𝑥)= 0 ⇔ 2𝑥 + √2𝑥 𝑙𝑛𝑥 = 0 ⇔ − 2𝑥 = √2𝑥 𝑙𝑛𝑥 ⇔ 0<𝑥<1 ⇔ −2𝑥 = √2𝑥 𝑙𝑛𝑥 0<𝑥<1 ⇔ 4𝑥2 = 2𝑥𝑙𝑛2 𝑥 0<𝑥<1 ⇔ 2𝑥 = 𝑙𝑛2 𝑥 ⇔ ⇔ 𝑓(𝑥) = 0 , 0 < 𝑥 < 1 για την 𝑓 έιναι 𝑓 ( 1 𝑒 ) = 1 − 2 𝑒 > 0 και 𝑓(1) = −2 < 0 . Από Θ.Bolzano υπάρχει τουλάχιστον μια ρίζα της εξίσωσης 𝑓(𝑥) = 0 στο ( 1 𝑒 , 1) και εφόσον η 𝑓 είναι 1 − 1 𝜎𝜏𝜊 (0, +∞) έχει μοναδική ρίζα στο (0, +∞) άρα και η 𝒆 𝟐𝒙 𝒙√𝟐𝒙 = 𝟏 έχει μοναδική ρίζα στο (𝟎, +∞) η οποία βρίσκεται στο ( 𝟏 𝒆 , 𝟏) Γ. Είναι 𝐹′(𝑥) = 𝑓(𝑥) , 𝑥 > 0 .Στο ερώτημα Β. αποδείξαμε ότι η 𝑓 έχει μοναδική ρίζα, έστω 𝜉 ,αρα και η 𝐹′ έχει μοναδική ρίζα με 𝐹′(𝜉) = 0 . Ακόμα 𝑓 ↘ στο (0, +∞) ,οπότε για 𝑥 > 𝜉 ⇒ 𝑓(𝑥) < 𝑓(𝜉) = 0 ⇒ 𝐹′(𝑥) < 0 ⇒ 𝐹 ↘ 𝜎𝜏𝜊 [𝜉, +∞) για 0 < 𝑥 < 𝜉 ⇒ 𝑓(𝑥) > 𝑓(𝜉) = 0 ⇒ 𝐹′(𝑥) > 0 ⇒ 𝐹 ↗ 𝜎𝜏𝜊 (0, 𝜉] άρα η F έχει μοναδικό ακρότατο (μέγιστο). Δ. Εφαρμόζοντας ΘΜΤ στο [1,2] για την F , ∃ 𝜉1 ∈ (1,2): 𝐹′(𝜉1) = 𝐹(2)−𝐹(1) 2−1 ⇒ 𝒇(𝝃 𝟏) = 𝑭(𝟐) − 𝑭(𝟏) Στο Γ. δείξαμε ότι η F είναι ↘ στο [ξ,+∞) με ξ<1 άρα F ↘ στο [1,2] οπότε 𝐹(1) > 𝐹(1)+𝐹(2) 2 > 𝐹(2) και επειδή F συνεχής στο [1,2] από ΘΕΤ θα υπάρχει 𝜉2 ∈ (1,2): 𝑭(𝝃 𝟐) = 𝑭(𝟏) + 𝑭(𝟐) 𝟐 Αρα 𝒇(𝝃 𝟏)𝑭(𝝃 𝟐) = (𝐹(2) − 𝐹(1)) 𝐹(1)+𝐹(2) 2 = 𝐹2(2) 2 − 𝐹2(1) 2 = ∫ ( 𝐹2(𝑥) 2 ) ′ 𝑑𝑥 = 2 1 ∫ 2𝐹′(𝑥)𝐹(𝑥) 2 𝑑𝑥 = 2 1 ∫ 𝒇(𝒙)𝑭(𝒙)𝒅𝒙 𝟐 𝟏
  • 25. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 24 Σχόλιο : Επειδή δε διευκρινίζεται αν 𝜉1 ≠ 𝜉2 στην εκφώνηση μπορούμε να εφαρμόσουμε ΘΜΤ για την 𝐺(𝑥) = 𝐹2 (𝑥) στο [1,2] και να θεωρήσουμε ότι 𝜉1 = 𝜉2 = 𝜉 οπότε θα προκύπτει πάλι το ζητούμενο. Ε.1 𝑔(𝑥) = { 𝐹(𝑥)−𝐹(1) 𝑥−1 , 𝑥 > 1 −2, , 𝑥 = 1 Lim 𝑥→1 𝑔(𝑥) = lim 𝑥→1 𝐹(𝑥)−𝐹(1) 𝑥−1 = 𝐹′(1) = 𝑓(1) = −2 = 𝑔(1), ά𝜌𝛼 𝑔 𝜎𝜐𝜈𝜀𝜒ή𝜍 𝜎𝜏𝜊 1 και g συνεχής στο (1,+∞) ως πηλίκο συνεχών συναρτήσεων ,άρα g συνεχής στο [1,+∞) 𝑔’(𝑥) = (𝑥−1)𝐹′(𝑥)−(𝐹(𝑥)−𝐹(1)) (𝑥−1)2 𝛾𝜄𝛼 𝑥 > 1. Εφαρμόζοντας ΘΜΤ στο [1, 𝑥] για την F θα ∃ 𝜌 ∈ (1, 𝑥) ∶ 𝐹′(𝜌) = 𝐹(𝑥) − 𝐹(1) 𝑥 − 1 𝐹′′(𝑥) = 𝑓′(𝑥) < 0 (από ερώτημα Β.) άρα F’ ↘ στο [1, +∞) ,άρα 𝜌 < 𝑥 ⇒ 𝐹′(𝜌) > 𝐹′(𝑥) ⇒ 𝐹(𝑥)−𝐹(1) 𝑥−1 > 𝐹′(𝑥) ⇒ 𝐹(𝑥) − 𝐹(1) > 𝐹′(𝑥)(𝑥 − 1) Συνεπώς 𝑔’(𝑥) < 0 , 𝑥 > 1 και εφόσον g συνεχής στο [1, +∞) θα είναι g ↘ στο [𝟏, +∞). Ε.2. Εφαρμόζοντας ΘΜΤ για την F στα ,[1,2], [2,3] θα ∃ 𝑥1 ∈ (1,2) , 𝑥2 ∈ (2,3) ∶ 𝐹′(𝑥1) = 𝐹(2) − 𝐹(1) 2 − 1 , 𝐹′(𝑥2) = 𝐹(3) − 𝐹(2) 3 − 2 F’ ↘ στο (0, +∞) θα είναι 𝐹′(𝑥1) > 𝐹′(𝑥2) ⇒ 𝐹(2) − 𝐹(1) > 𝐹(3) − 𝐹(2) ⇒ 2𝐹(2) − 2𝐹(1) > 𝐹(3) − 𝐹(1) ⇒ 2 ∫ 𝐹′(𝑥)𝑑𝑥 > ∫ 𝐹′(𝑥)𝑑𝑥 ⇒ 3 1 2 1 ⇒ 𝟐 ∫ 𝒇(𝒙)𝒅𝒙 > ∫ 𝒇(𝒙)𝒅𝒙 𝟑 𝟏 𝟐 𝟏
  • 26. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 25 4η προτεινόμενη λύση (Κώστας Δεββές) A. Διαιρώντας με χ τη δοσμένη ισότητα έχω: χf΄΄(χ)+f΄(χ)= 2 𝜒 − 2 ή (f΄(χ)χ)΄=(2lnχ- 2χ)΄ ή f΄(χ)χ=2lnχ-2χ+c (1). Eφαρμόζοντας Fermat για τη Φ(χ)=F(χ)+2χ, αφού η δοσμένη ανισότητα γράφεται Φ(χ)≤Φ(1) θα είναι Φ΄(1)=0 δηλ. f(1)=-2 και f΄΄(e)=0 από το Σ.Κ. Για χ=e στην αρχική έχω f΄(e)= 2 𝑒 -2 (2) και με χ=e στην (1) έχω c=0. H (1) δίνει f΄(χ)χ=2lnχ-2χ ή f΄(χ)= 2𝑙𝑛𝑥 𝜒 − 2=(ln2 χ-2χ)΄ και τελικά f(χ)=ln2 χ-2χ. B. Η εξίσωση είναι ισοδύναμη με την ln(𝑒2𝑥 𝑥√2𝑥) = 0 ή 2χ+√2𝜒 lnχ=0 και θέτοντας Φ(χ)= 2χ+√2𝜒 lnχ, χ∈[ 1 𝑒 ,1] με Φ(1)=2>0, Φ( 1 𝑒 )= 2 𝑒 − √ 2 𝑒 <0 (γιατί χ2 -χ<0 με 0<χ<1), από το Bolzano η Φ έχει ρίζα στο ( 1 𝑒 ,1). Είναι Φ΄(χ)=2+ 𝑙𝑛𝑥+2 √2𝑥 >0 για χ> 1 𝑒 > 1 𝑒2 δηλ. η ρίζα μοναδική. C. F΄(χ)= f(χ)=ln2 χ-2χ και f΄(χ)= 2 𝜒 (𝑙𝑛𝑥 − 𝑥) < 0 αφού lnχ≤ 𝜒 − 1 < 𝜒 με χ>0. Άρα f γν. φθίν. στο (0,+∞) με lim 𝜒→0 𝑓(𝜒) = +∞ και lim 𝜒→+∞ 𝑓(𝜒) = lim 𝜒→+∞ 2𝜒 ( 𝑙𝑛2 𝑥 2𝑥 − 1) = −∞ αφού με de L’ H. lim 𝜒→+∞ 𝑙𝑛2 𝑥 2𝑥 = 0. Άρα το Σ.Τ. της f είναι το R δηλ. η F΄ μηδενίζεται σε μοναδικό χ0>0. Δηλ. με χ>χ0 είναι f(χ)<f(χ0)=0 άρα F γν. φθ. στο [χ0,+ ∞) και όμοια F γν. αύξ. στο (0,χ0]. Τελικά η F έχει μοναδικό ακρότατο (μέγιστο) στο χ0 το F(χ0). D. ∫ 𝐹(𝜒)𝑓(𝜒)𝑑𝜒 = [ 𝐹2(𝜒) 2 ] 1 2 2 1 = 𝐹2(2)−𝐹2(1) 2 = (𝐹(2) − 𝐹(1)) 𝐹(2)+𝐹(1) 2 . Mε ΘΜΤ για την F στο [1,2] υπάρχει ξ1 στο (1,2) με F΄(ξ1)=f(ξ1)= 𝐹(2) − 𝐹(1) και από το ΘΕΤ για την F στο [1,2] υπάρχει ξ2 στο (1,2) με F(ξ2)= 𝐹(2)+𝐹(1) 2 , αφού είναι F(2)<F(1) (θέτοντας στην αρχική ανισότητα χ=2) θα ισχύει F(2)< 𝐹(2)+𝐹(1) 2 <F(1). E. 1. lim 𝜒→1 𝑔(𝜒) = lim 𝜒→1 𝐹(𝜒)−𝐹(1) 𝜒−1 = 𝐹΄(1) = 𝑓(1) = −2 = 𝑔(1) δηλ. g συνεχής στο 1. Για χ>1 είναι g΄(χ)= 𝑓(𝜒)(𝜒−1)−(𝐹(𝜒)−𝐹(1)) (𝜒−1)2 = 𝑓(𝜒)− 𝐹(𝜒)−𝐹(1) 𝜒−1 𝜒−1 = 𝑓(𝜒)−𝑓(𝜉) 𝜒−1 από το ΘΜΤ για την F στο [1,χ]. Επειδή f γν. φθ. θα είναι f(χ)<f(ξ) δηλ. g γν. φθ. στο [1,+∞). (Θα μπορούσαμε με Κ(χ)= 𝑓(𝜒)(𝜒 − 1) − 𝐹(𝜒) + 𝐹(1), χ≥ 1 και Κ΄(χ)=f΄(χ)(χ-1)<0 δηλ. Κ γν. φθ. να δείξουμε Κ(χ)<Κ(1) δηλ. 𝑓(𝜒)(𝜒 − 1) − 𝐹(𝜒) + 𝐹(1)<0.)
  • 27. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 26 17η άσκηση Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού Προτάθηκε από τον Παύλο Τρύφων (18-1-2016) Αποστολή λύσεων έως την Κυριακή 24/1/2016 Θεωρούμε συνεχή συνάρτηση  f : 0, R  με         2 f x x 2lnx k,x 0,1 1, ά k R             6 2x f 1 x R : 3 x 2                α) προσδιορίστε τη συνάρτηση f β) μελετήστε την f ως προς την κυρτότητα γ) αποδείξτε ότι     8 2 4 4 ln , 256               για κάθε , R  με , 1   δ) αποδείξτε ότι    f x f 1 x 2,   για κάθε  x 0,1 ε) αν 1 m 0, 2       αποδείξτε ότι   1 m m f x dx 1 2m    στ) αποδείξτε ότι δεν υπάρχει ,0 0, 2 2                τέτοιο, ώστε  2 2 4 ln 4       
  • 28. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 27 1η προτεινόμενη λύση (Παύλος Τρύφων) α) Γνωρίζουμε από τη γενική θεωρία ότι x x ,  για κάθε x R (με την ισότητα να ισχύει μόνο για x 0 )  * Οπότε,      * 6 2x 3 x 2 x 3 x 3 2 x 3 x 3 x 3 0 x 3                                Έτσι,     6 2x f 1 x R : 3 x f 1 3 2                 Τώρα, από τη συνέχεια της f στο  0, , άρα και στο 1, προκύπτει ότι      x 1 x 1 2 f 1 f x x 2ln x k 1 klim lim          Οπότε, 1 k 3 k 2    Τελικά,    2 f x x 2ln x 2,x 0,     β) Η f είναι δύο φορές παραγωγίσιμη στο  0, με   2 2 2 2 x 1 f x 2 2 , x 0 x x       x 0 1    f x   f   O
  • 29. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 28 Η f είναι κοίλη στο  0,1 και κυρτή στο  1, γ) Α΄ τρόπος Για , 1   έχουμε:                       8 2 4 4 4 2 2 2 4 2 2 2 4 2 2 2 2 2 2 ln 256 2ln 16 2 2ln 2ln 2ln a 2 4ln 2ln a 2 2 4ln 2 4 2ln 2 2ln 2 2 2 2f 2                                                                                                         f f (*)          Αρκεί να αποδείξουμε τη σχέση (*) Για a   η σχέση (*) ισχύει ως ισότητα. Έστω   . Εφαρμόζουμε το ΘΜΤ για την f στα διαστήματα , , , 2 2                Οπότε εξασφαλίζεται η ύπαρξη 1 2x , , x , 2 2                   τέτοια, ώστε:             1 2 f f a f f 2 2 f x 2 2 f f f f 2 2 f x 2 2                                                              
  • 30. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 29 Όμως 1 2x x και η f είναι γνησίως αύξουσα στο  1, , άρα                 0 1 2 f f f f 2 2 f x f x a a 2 2 f f f f 2f f f 2 2 2                                                          Για    εργαζόμαστε παρόμοια. Β΄ τρόπος Για    η ζητούμενη σχέση ισχύει ως ισότητα. Για    θα αποδείξουμε ότι                 8 2 4 4 42 2 2 2 2 2 ln 256 ln 4 4ln 4 ln , 4 4                                                        το τελευταίο όμως ισχύει, διότι από τη γνωστή σχέση ln x x 1,x 0   (με την ισότητα να ισχύει μόνο για x 1 ) έχουμε         2 2 2 2 1 ln 1 4 4a 4 4                      (σχόλιο: αφού         2 2 2 2 0 1 ln 1 4 4 4                           : γνήσια ανισότητα) δ) Έστω  x 0,1 , τότε  1 x 0,1 .  Οπότε,                 f x 4x 1 f x 4x 1 f x f 1 x 2 f 1 x 4 1 x 1 f 1 x 3 4x                               
  • 31. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 30 ε) Έστω 1 m 0, . 2       Στο ολοκλήρωμα   1 m m f x dx   θέτουμε 1 x.   Τότε,                          1 m m 1 m 1 m 1 m) m 1 m m m m 1 m 1 m 1 m 1 m m m m m f x dx f 1 d f 1 d 2 f d 2 1 m m f d f x dx 2 1 2m f x dx 2 f x dx 2 1 2m f x dx 1 2m.                                              στ) Έστω ότι υπάρχει ,0 0, 2 2                τέτοιο, ώστε         2 2 2 2 4 ln 4 4 2ln 4 1 2ln 2 4 1 f 4 1,                               το οποίο είναι αδύνατο διότι  f x 4x 1,  για κάθε  x 0,1 , άρα και  f 4 1,    για ,0 0, . 2 2                2η προτεινόμενη λύση (Ηλίας Ζωβοΐλης) Α.     π 6 2x π 3 συν x συν x 3 x 3 ημ x 3 x 3 2 2                         x 3 0 x 3     , καθώς γνωρίζουμε ότι: ημx x x 0   . Επομένως:       f συνεχής στο 1 2 x 1 x 1 f 1 3 limf x 3 lim x 2lnx k 3 k 2            και έτσι για τον τύπο της συνάρτησης f έχουμε:     2 2x 2lnx 2, 0 x 1 f x f x x 2lnx 2, x 0 3 , x 1             . Β. Είναι    2 2 f x x 2lnx 2 2x 0, x 0 x         και έτσι η συνάρτηση f είναι γν.αύξουσα στο  0, . Επίσης    2 2 2 2 x 12 2 f x 2x 2 , x 0 x x x             .
  • 32. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 31 •   x 0 f x 0 x 1      •   x 0 f x 0 x 1      •   x 0 f x 0 0 x 1       Επομένως η συνάρτηση f είναι κοίλη στο  0,1 και κυρτή στο  1, . Γ. Θα προτιμήσω την ακόλουθη λύση, παρακάμπτοντας τη συνάρτηση f . Θεωρούμε τη συνάρτηση h με τύπο  h x 4lnx x, x 0   . Είναι   4 4 x h x 1 , x 0 x x       . •  h x 0 x 4    •   x 0 h x 0 0 x 4       •  h x 0 x 4      2 α β 4  και 4αβ 4 ,καθώς  α,β 1,+  και επειδή          h γν.φθίνουσα στο 4,+ 2 2 α β 4αβ 4 h α β h 4αβ                   2 2 2 2α β 4ln α β α β 4ln 4αβ 4αβ 4ln α β 4αβ 4αβ                         42 8 22 2 4 4 α β α β ln α β 2αβ 4αβ ln α β 4αβ 256α β                         ,με την ισότητα να ισχύει για α β . Δ. Η εφαπτομένη της fC στο σημείο της  1,3 ,έχει εξίσωση: ψ 4x 1  , οπότε εκμεταλλευόμενοι την κυρτότητα της f στο  0,1 ,έχουμε:  f x 4x 1  για κάθε  x 0,1 ,με την ισότητα να ισχύει μόνο για x 1 . Άρα για κάθε  x 0,1 ισχύει:  f x 4x 1  . Επίσης για κάθε  x 0,1 είναι 0 1 x 1   ,οπότε:    f 1 x 4 1 x 1    . Προσθέτοντας κατά μέλη, προκύπτει:      f x f 1 x 2, x 0,1    . Ε. Έστω F μια αρχική συνάρτηση της f στο 1 0, 2      .Θεωρούμε τη συνάρτηση g με τύπο       1 g x F 1 x F x 2x 1, x 0, 2           .Είναι:
  • 33. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 32       1 g x f 1 x f x 2 0, x 0, 2            και έτσι g γν.αύξουσα στο 1 0, 2      , οπότε:       g γν.αύξουσα 1 1 0 m g m g F 1 m F m 2m 1 0 2 2                   1-m m f x dx 1 2m   . ΣΤ. π π α ,0 0, 0 συνα 1 2 2                  και επειδή για κάθε  x 0,1 ισχύει:  f x 4x 1  ,αντικαθιστώντας x συνα ,προκύπτει:    2 f συνα 4συνα 1 συν α 2ln συνα 2 4συνα 1           22 2 2 1 ημ α ln συνα 2 4συνα 1 4 ln συν α 4συνα ημ α          . 3η προτεινόμενη λύση (Κώστας Δεββές) α) 1 (1) lim ( ) 1 x f f x k     H εξίσωση γράφεται: 3 (3 ) 3        αφού    0  . Άρα (1) 3f  1 3 2k k     και 2 ( ) 2ln 2, 0f x x x x    . β)   2 2 ( ) 1 1 0 1f x x x x x        με ( ) 0 (0,1)f x x    και ( ) 0 (1, )f x x     δηλαδή f κοίλη στο (0,1] και κυρτή στο [1, ) . γ) Για α=β η αποδεικτέα γράφεται: 8 2 8 (2 ) ln 0 0 ( ) 256         που ισχύει ως ισότητα. Χωρίς βλάβη γενικότητας θεωρώ 1<α<β και από την ανισότητα Jensen (2 ΘΜΤ για την f στα [ , ],[ , ] 2 2        και χρήση μονοτονίας f στο [1, ) ) , έχω 2 2 2 8 8 2 2 4 4 4 ( ) ( ) ( ) ( ) 8ln 2 2 4ln( ) 2 2 2 ( ) ( ) ln 4ln( ) ( ) ln ( ) 4 256 a f a f a f a a a a a                                    δ) Με ( ) ( ) (1 ), (0,1)h x f x f x x    είναι 1 ( ) ( ) (1 ) 0 2 h x f x f x x        αφού f κοίλη στο (0,1) και για 1 0 1 ( ) (1 ) 2 x x x f x f x h          στο 1 (0, ] 2
  • 34. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 33 και στο 1 [ ,1) 2 δηλ. έχει max στο ½ το 51 1 9 5 2 ( ) 4ln 2 4 4ln 2 2 4ln 2 5 ln 256 256 2 2 2 2 f e            που ισχύει αφού 5 5 3 243 256e    . ε) Με 1 (0, ) 2 m είναι 1m m  και ολοκληρώνοντας την ανισότητα του δ) έχω: 1 1 1 ( ) (1 ) 2 2(1 2 ) m m m m m m f x dx f x dx dx m           και με 1u x  1 1 ( ) (1 ) m m m m f x dx f x dx      προκύπτει η αποδεικτέα. στ) Θα δείξω ότι  ( , ) 0 2 2 x       είναι : 2 2 4 ln( ) 4       . Θέτω 2 2 ( ) 4 ln( ) 4          με ( , ) 2 2 x     και ισχύει   2 ( ) 2 1΄      με ρίζα το 0 και φ στο ( ,0] 2   ενώ στο [0, ) 2  δηλ. έχει max στο 0 το φ(0)=0. Άρα ( ) 0   με  ( , ) 0 2 2       . 4η προτεινόμενη λύση (Δημήτρης Χατζάκης) α)  3 + 𝜎𝜐𝜈 ( 𝜋+6−2𝑥 2 ) = 𝑥 ⟺ 𝜎𝜐𝜈 ( 𝜋 2 + 3 − 𝑥) = 𝑥 − 3 ⟺ −𝜂𝜇(3 − 𝑥) = −(3 − 𝑥) 𝜂𝜇(3 − 𝑥) = (3 − 𝑥) . Επειδή |𝜂𝜇𝑥| ≤ |𝑥| , ∀𝑥 ∈ ℝ και το ίσον ισχύει μόνο όταν 𝑥 = 0 τότε 𝜂𝜇(3 − 𝑥) = (3 − 𝑥) ⟺ 𝑥 = 3. Άρα 𝑓(1) = 3.Είναι 𝑓 συνεχής (0, +∞) άρα 𝑓(1) = lim 𝑥→1+ 𝑓(𝑥) ⟺ 3 = 1 + 𝑘 ⟺ 𝑘 = 2 ⇢ 𝑓(𝑥) = 𝑥2 + 2𝑙𝑛𝑥 + 2 β) 𝑓(𝑥) = 𝑥2 + 2𝑙𝑛𝑥 + 2 , 𝑓′(𝑥) = 2𝑥 + 2 𝑥 και 𝑓′′(𝑥) = 2 − 2 𝑥2 = 2 𝑥2 (𝑥2 − 1) 𝑥 0 1 𝑓′′ − + 𝑓 ∩ ∪ γ) Έστω :
  • 35. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 34 𝑙 𝑛 ( (𝑎 + 𝛽)8 256𝛼4 𝛽4 ) ≤ (𝑎 − 𝛽)2 ⟺ 𝑙 𝑛(𝑎 + 𝛽)8 − 𝑙 𝑛(256) − 𝑙 𝑛(𝛼4 𝛽4) ≤ (𝑎 − 𝛽)2 ⟺ 8𝑙 𝑛(𝑎 + 𝛽) − 8𝑙 𝑛 2 − 4𝑙 𝑛 𝛼 − 4𝑙𝑛𝛽 ≤ 𝛼2 − 2𝛼𝛽 + 𝛽2 ⟺ 8𝑙 𝑛 ( 𝑎 + 𝛽 2 ) ≤ 𝛼2 − 2𝛼𝛽 + 𝛽2 + 4𝑙 𝑛 𝛼 + 4𝑙𝑛𝛽 (1)  Για 𝛼 = 𝛽 ισχύει η ισότητα  Για 1 < 𝛼 < 𝛽 ∶ Εφόσον 𝑓 κυρτή στο (1, +∞) από την ανισότητα Jensen έχουμε : 2𝑓 ( 𝑎 + 𝛽 2 ) < 𝑓(𝑎) + 𝑓(𝛽) ⟺ 2 ( 𝑎 + 𝛽 2 ) 2 + 4𝑙𝑛 ( 𝑎 + 𝛽 2 ) < 𝑎2 + 2𝑙𝑛𝑎 + 𝛽2 + 2𝑙𝑛𝛽 (𝑎 + 𝛽) 2 2 + 4𝑙𝑛 ( 𝑎 + 𝛽 2 ) < 𝑎2 + 2𝑙𝑛𝑎 + 𝛽2 + 2𝑙𝑛𝛽 ⟺ (𝑎 + 𝛽)2 + 8𝑙𝑛 ( 𝑎 + 𝛽 2 ) < 2𝑎2 + 4𝑙𝑛𝑎 + 2𝛽2 + 4𝑙𝑛𝛽 ⟺ 8𝑙 𝑛 ( 𝑎+𝛽 2 ) ≤ 𝛼2 − 2𝛼𝛽 + 𝛽2 + 4𝑙 𝑛 𝛼 + 4𝑙𝑛𝛽 . Όποτε η (1) ισχύει για 1 < 𝛼 < 𝛽. δ) Η εφαπτόμενη της 𝐶𝑓 στο 1 είναι 𝑦 = 4𝑥 − 1 . Αφού η 𝑓 κοίλη για 0 < 𝑥 ≤ 1 τότε 𝑓(𝑥) < 4𝑥 − 1 (2) και 𝑓(1 − 𝑥) < 4(1 − 𝑥) − 1 (3) για 0 < 𝑥 < 1 . Προσθέτουμε κατά μέλη (2) και (3) και έχουμε : 𝑓(𝑥) + 𝑓(1 − 𝑥) < 4𝑥 − 1 + 4(1 − 𝑥) − 1 = 2 ε) Θεωρούμε την ℎ(𝑚) = 𝐹(1 − 𝑚) − 𝐹(𝑚) + 2𝑚 − 1 , 0 < 𝑚 < 1 2 όπου 𝐹 μια αρχική της 𝑓 και ℎ′(𝑚) = −𝑓(𝑚) − 𝑓(1 − 𝑚) + 2 > 0 ⟶ ℎ ↑ , 0 < 𝑚 < 1 2  ∫ 𝑓( 𝑥) 𝑑𝑥 < 1 − 2𝑚 ⟺ [ 𝐹( 𝑥)] 𝑚 1−𝑚1−𝑚 𝑚 + 2𝑚 − 1 < 0 ⟺ 𝐹(1 − 𝑚) − 𝐹(𝑚) + 2𝑚 − 1 < 0 ⟺ ℎ(𝑚) < ℎ ( 1 2 ) ⟺ 𝑚 < 1 2 που ισχύει . στ) Αφού 𝑎 ∈ (− 𝜋 2 , 0) ∪ (0, 𝜋 2 ) τότε 0 < 𝜎𝜐𝜈𝛼 < 1. Η εφαπτόμενη της 𝐶𝑓 στο 1 είναι 𝑦 = 4𝑥 − 1 . Αφού η 𝑓 κοίλη για 0 < 𝑥 < 1 τότε 𝑓(𝑥) < 4𝑥 − 1  𝑥 = 𝜎𝜐𝜈𝛼 ⇢ 𝑓(𝜎𝜐𝜈𝛼) < 4𝜎𝜐𝜈𝛼 − 1 Έστω 4 + 𝑙𝑛(𝜎𝜐𝜈𝛼) ≥ 4𝜎𝜐𝜈𝛼 + 𝜂𝜇2 𝛼 ⟺ ⋯ ⟺ 𝑓(𝜎𝜐𝜈𝛼) ≥ 4𝜎𝜐𝜈𝛼 − 1 ⇢ Άτοπο
  • 36. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 35 5η προτεινόμενη λύση (Τάκης Καταραχιάς) α)΄Εχουμε 3+συν( 2 26 x )= x  συν( )3( 2  x  )= x -3  ημ( x -3)= x -3  x =3 διότι |ημ x | ≤| x | για κάθε x ϵ R (η ισότητα ισχύει μόνο όταν x =0) Τώρα f( x )= kxx  ln22 . f συνεχής οπότε )1()(lim1 fxf x    1+k=3  k=2. Συνεπώς f(χ)= 2ln22  xx . β) f΄(x)=2 x + 0 2  x   ,0x δηλαδή f γνήσια αύξουσα στο  ,0 . Επίσης f΄΄( x )=2- 2 2 x 10  x . f΄΄(x)  1,00  x . f΄΄(x) 10  x . ¨Aρα f κοίλη στο  1,0 , κυρτή στο  ,1 . Το σημείο (1,3) είναι σημείο καμπής για την f. γ) Επειδή f κυρτή στο  ,1 από ανισότητα JENSEN θα είναι 2f( ) 2   f(α)+f(β) ( η απόδειξη από Θ.Μ.Τ στα             , 2 , 2 , a a ) δηλαδή 2                       3 2 ln2 2 2  3ln23ln2 22   a  4ln ) 2 ( a - 2lnα-2lnβ  2 222    8ln ) 2 ( a -4lnα-4lnβ  2 )(    ln 8 ) 2 ( a -lnα4 -lnβ4  2 )(    ln        44 8 256 )(    2 )(   δ) Ισχύει: e<3 256243355  e δηλαδή e5 <256  e5 <28  5<ln28  5<8ln2  4 5 <2ln2  4 9 - 2ln2<1  4 1 - 2ln2+2<1  f( ) 2 1 <1 (1).
  • 37. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 36 ΄Όμως για    1,0)1(1,0  xx , f κοίλη στο  1,0 θα είναι από ανισότητα JENSEN f( x)+f(1- x) 2 f( ) 2 1 (2). ΄Αρα από (1) και (2) f( x)+f(1- x) <2 . ε) Είναι f( x)+f(1- x) <2        m m m m m m dxdxxfdxxf 1 1 1 2)1()( (3). ΄Όμως θέτοντας 1- x=u dudx  προκύπτει ότι:        m m m m m m duufduufdxxf 1 1 1 )()()1( . Επόμενα η σχέση (3) γίνεται:        m m m m m m m m m m mdxxfdxdxxfdxdxxf 11 11 1 21)()(2)(2 . στ) Αν g( x)=f( x) -4 x +1 , x  1,0 g΄( x)=f΄( x)-4=2 x+ 2 1 24 2        x x x >0 για x  1,0 συνεπώς g γνήσια αύξουσα στο  1,0 . Δηλαδή για 0< x<1 14)(0)()1()(  xxfxggxg . Τώρα αν α𝜖 (− 𝜋 2 , 0)  (0, 𝜋 2 ) θα είναι 0<συνα<1 οπότε f(συνα)<4συνα-1  συν2 α+2ln(συνα)+2<4συνα-1  1- ημ2 α+2ln(συνα)+2<4συνα-1  4+ ln(συν2 α)<4συνα+ ημ2 α. ΄Αρα δεν υπάρχει α𝜖 (− 𝜋 2 , 0)  (0, 𝜋 2 )τέτοιο ώστε: 4+ln(συν2 α)≥4συνα+ ημ2 α.
  • 38. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 37 6η προτεινόμενη λύση (Μάκης Μάντζαρης) A. 6 x 3 ( ) x (x 3) x 3 (x 3) x 3 2               όμως από την ανισότητα , R    η ισότητα ισχύει μόνο για α=0 , άρα x 3 0 x 3   η οποία επαληθεύει την εξίσωση. Άρα 6 2x f(1) x R :3 x {3} f(1) 3 2                  Όμως f συνεχής στο 1 άρα x 1 limf(x) f(1) 1 3 2          άρα 2 f(x) x 2ln x 2 ,x (0, )     B. f δυο φορές παραγωγίσιμη με 2 '( ) 2f x x x   2 2 ''( ) 2f x x   Γ. αν α=β >1 τότε προφανώς ισχύει η ισότητα. Για α,β>1 με α<β (χ.β.γ.) , η f πληροί τις προϋποθέσεις του ΘΜΤ στα a a a, , , 2 2             και τότε θα υπάρχουν 1 2 a a a, , , 2 2                  ώστε 1 2 a a f( ) f(a) f( ) f( ) 2 2f '( ) , f '( ) 2 2            x 0 1 +∞ f ’’ - + f ↷ ⤻
  • 39. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 38 όμως f ' στο    , 1,    (ερώτημα Β) άρα 1 2 1 2f '( ) f '( ) 2                        2 2 2 2 22 2 2 2 2 4 2 2 2 2 2 4 a a f ( ) f (a) f ( ) f ( ) 2 2 2 2 a a f ( ) f (a) f ( ) f ( ) 2 2 2ln a 2ln a 2ln 2ln 2 2 2 2 2ln ln a ln a 2 2 ln a 16 2 2ln 16                                                                                              22 2 2 2 8 2 4 4 2a 2 ln 256                Δ. Έστω g(x) f(x) f(1 x) 2 ,x (0,1)     παραγωγίσιμη με g'(x) f '(x) f '(1 x) ,x (0,1)    . Όμως f '  0,1 άρα για 1 1 x x 1 x f '(x) f '(1 x) g'(x) 0 g ,1 2 2                 για 1 0 x x 1 x 2 1 f '(x) f '(1 x) g'(x) 0 g 0, 2                  και 1 g'( ) 0 2  .Οπότε η g έχει ολικό μέγιστο με 1 1 5 g(x) g( ) f(x) f(1 x) 2 2f( ) 2 2 2ln 2 0 2 2 4 f(x) f(1 x) 2                   
  • 40. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 39 Ε. 1 m 0, m 1 m 2          . u 1 x1 m m 1 m m 1 m m f(1 x)dx f(u)du f(x)dx (1)           Από ερώτημα Γ είναι (1)1 m 1 m 1 m m m m 1 m 1 m m m f(x) f(1 x) 2 f(x)dx f(1 x)dx 2dx 2 f(x)dx 2(1 2m) f(x)dx 1 2m                        ΣΤ. η εφαπτόμενη της f στο 1 είναι η y f(1) f '(1)(x 1) y 3 4(x 1) y 4x 1          η f είναι κοίλη στο (0,1] άρα η γραφική της παράσταση βρίσκεται κάτω από τη εφαπτόμενη εκτός του σημείου επαφής ,άρα f(x) 4x 1 , x (0,1)    για κάθε 0 0, (0,1) 2 2                   , οπότε 2 2 2 2 2 2 f( ) 4 1 ln 2 4 1 1 ln 2 4 1 4 ln 4                                  άρα δεν υπάρχει 2 2 0 0, : 4 ln 4 2 2                       
  • 41. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 40 18η άσκηση Γ΄ Λυκείου – Μαθηματικά Προσανατολισμού Προτάθηκε από τον Ηλία Ζωβοΐλη (25-1-2016) Αποστολή λύσεων έως την Κυριακή 31/1/2016 Έστω συνάρτηση f συνεχής στο  0, ,για την οποία ισχύουν: •    F x x 1 f x , x 0 x 1 x      ,όπου F μια αρχική συνάρτηση της f στο  0, •       e 1 f x dx f 1 F e  Α. Να αποδείξετε ότι   1 f x lnx , x 0 x    . Β. Να εξετάσετε αν οι fC και FC δέχονται κοινές εφαπτομένες. Γ1. Να αποδείξετε ότι υπάρχει μοναδικό  ox 1,e ,τέτοιο ώστε  oF x 0 . Γ2. Να λυθεί η εξίσωση:     1 F x oF x e e, 0 x x    . Γ3. Να αποδείξετε ότι      o x x 1 2 o o 2x x o f x x e x x 1 lim F x x 1             . Δ. Να λυθεί η εξίσωση:          f x F x ln f x , x 0 f x 1     . Ε1. Να αποδείξετε ότι η εξίσωση:     x 2 1 t 1 f f t dt 2, x 0 t     , έχει ακριβώς δυο ρίζες. Ε2. Αν 1 2x ,x είναι οι ρίζες της παραπάνω εξίσωσης, με 1 20 x x  , να αποδείξετε ότι υπάρχει  1 2ξ x ,x ,τέτοιο ώστε, η εφαπτομένη της fC στο σημείο   Μ ξ,f ξ να διέρχεται από το σημείο  0,e .
  • 42. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 41 1η προτεινόμενη λύση (Ηλίας Ζωβοΐλης) Α.                     e e 1 1 f x dx f 1 F e F x f 1 F e F e F 1 f 1 F e               F 1 f 1   .Για x 1 στην αρχική ισότητα, έχουμε:               F 1 f 1 F 1 1 f 1 2f 1 f 1 1 2 f 1 1 2           .Η συνάρτηση f είναι παραγωγίσιμη στο  0, ,ως πράξεις παραγωγίσιμων συναρτήσεων, οπότε:                 2 2 2 F x x f x 1f x 1 x 1 F x x 1 1x 1f x x x 1 xx 1                   2 2 2 1 1 f x 1 f x 1 1 1 1 1x x , x 0 x 1 x x 1 x x x              .Έτσι:     1 1 f x lnx f x lnx c x x            .Για x 1 :    f 1 1 f 1 1 c c 0      ,οπότε   1 f x lnx , x 0 x    .Επίσης προκύπτει:    F x x 1 lnx x, x 0     . Β.   2 2 1 1 x 1 f x , x 0 x x x       .Είναι: •  f x 0 x 1    •  f x 0 x 1    •  f x 0 0 x 1     Έτσι:f γν.φθίνουσα στο  1A 0,1 και f γν.αύξουσα στο  2A 1,  .         f γν.φθίνουσα 1 f συνεχής x 0 f A f 1 , lim f x 1,     ,καθώς  x 0 x 0 1 1 lim lnx lim 1 x lnx x x                     , αφού x 0 1 lim x    και      DLHx 0 x 0 x 0 x 0 x 0 2 1 lnxlnx xlim x lnx lim lim lim lim x 0 1 1 1 x x x                            .         f γν.αύξουσα 2 f συνεχής x f A f 1 , lim f x 1,      ,καθώς x 1 lim lnx x         ,αφού
  • 43. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 42 x lim lnx    και x 1 lim 0 x  . Έτσι το σύνολο τιμών της συνάρτησης f είναι το  1, και επομένως  f x 1 ,για κάθε  x 0,  ,με την ισότητα να ισχύει μόνο για x 1 ,δηλαδή:  f x 1 x 1   (*) Έτσι:    F x f x 1, x 0    και   2 x 1 1 f x x 4     ,καθώς   2 x 2 0   2 x 4x 4 0       x 0 2 2 x 1 1 x 4 x 1 x 4       .Συμπεραίνουμε λοιπόν, ότι οι fC και FC δεν δέχονται κοινές εφαπτομένες ,εφόσον οι συντελεστές δ/νσης των εφαπτομένων της FC είναι διαφορετικοί από τους συντελεστές δ/νσης των εφαπτομένων της fC ,για κάθε  x 0,  . Γ1. Είναι    F x f x 1, x 0    ,οπότε η συνάρτηση F είναι γν.αύξουσα και 1- 1 στο  0,  και σε συνδυασμό με το Θ.Bolzano καθώς  F 1 1  και  F e 1 ,προκύπτει ότι υπάρχει μοναδικό  ox 1,e τέτοιο, ώστε  oF x 0 . Γ2. Η συνάρτηση F είναι γν.αύξουσα στο  0,  ,οπότε για o0 x x  είναι    oF x F x 0  ,οπότε η εξίσωση είναι ΑΔΥΝΑΤΗ στο  o0,x . Τώρα για ox x είναι    oF x F x 0  ,οπότε η εξίσωση ισοδύναμα γίνεται:                1 * F x 1 ln F x e lne lnF x 1 f F x 1 F x 1 F x                      F:1-1 F x F e x e    . Γ3.     o o x x 1o o o o o o o o x F x 0 x 1 lnx x 0 lnx x e x 1             .Είναι:             ο ο xο x 1ο o o o o xxx x 1x 1x 1x 0 2 2 e xf συνεχήςx 1 0 ο x x DLH x x x x ο 1 1 1 e 1 ex e x 1 x 1x e lim lim lim F x F x f x f x                              2 ο ο ο 2 2 ο ο ο ο x x x 1 1 x 1 x 1 f x f x        .Έτσι:
  • 44. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 43                o o o 2x ο οx 1 x 2 2f συνεχήςx 1 ο ο ο ο 2x x x x x x ο ο x x 1 f x x e x 1 x x 1x e lim lim f x lim f x F x F x f x x 1                      . Δ.                    f x F x ln f x f x 1 ln f x f x F x f x 1                   F:1-1 F f x F x f x x f x x 0.       Θεωρούμε συνάρτηση u με τύπο    u x f x x, x 0   . Είναι     2 2 2 1 1 x x 1 u x f x 1 1 0 x x x            ,οπότε u γν.φθίνουσα στο  0,  και επομένως u ‘‘1-1’’ στο  0,  . Άρα       u:1-1 f x x 0 u x u 1 x 1      . Ε1.              x x x 2 1 1 1 t 1 f f t dt 2 f t F f t dt 2 F f t dt 2 t                                    f 1 1 F 1 1x 1 F f t 2 F f x F f 1 2 F f x 2 F 1 F f x 1                       F:1-1 F f x F e f x e    . • Επειδή  1e f A και f γν.φθίνουσα στο  1A 0,1 ,συμπεραίνουμε ότι υπάρχει μοναδικό  1x 0,1 τέτοιο, ώστε  1f x e . • Επειδή  2e f A και f γν.αύξουσα στο  2A 1,  ,συμπεραίνουμε ότι υπάρχει μοναδικό  2x 1,  τέτοιο, ώστε  2f x e . Αποδείξαμε λοιπόν, ότι η αρχική εξίσωση έχει ακριβώς 2 ρίζες τις 1 2x ,x με 1 20 x 1 x   . Ε2. Θεωρούμε τη συνάρτηση g με τύπο    f x e g x , x 0 x    . Είναι       2 x f x f x e g x , x 0 x       . • g συνεχής στο  1 2x ,x ως πηλίκο συνεχών συναρτήσεων • g παραγωγίσιμη στο  1 2x ,x ως πηλίκο παραγωγίσιμων συναρτήσεων •    1 2g x g x 0  ,
  • 45. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 44 οπότε σύμφωνα με το Θ.Rolle,υπάρχει ένα τουλάχιστον  1 2ξ x ,x τέτοιο, ώστε          g ξ 0 ξ f ξ f ξ e 0 ξ f ξ f ξ e            . Η εφαπτομένη της fC στο σημείο   Μ ξ,f ξ ,έχει εξίσωση:      ψ f ξ f ξ x ξ    . Για x 0 ,προκύπτει:    ψ f ξ ξ f ξ e    ,που σημαίνει ότι η συγκεκριμένη εφαπτομένη διέρχεται από το σημείο  0,e . 2η προτεινόμενη λύση (Παντελής Δέτσιος) Έστω f συνεχής στο  0,  με F(x) x 1 f(x) ,x 0 (1) x 1 x      , F αρχική της f ( F (x) f(x)  ) και e 1 f(x)dx f(1) F(e)  (2) Α.     x 1 e e 11 1 F(1) 2f(1) 3 , (2): F (x)dx f(1) F(e) F(x) f(1) F(e) f(1) F(1) 0             , άρα έχουμε f(1) 1, F(1) 1   , η (1) γίνεται             2 2 2 F(x) x 1 x 1 F (x) F (x) x 1 F(x) x 1 x x 1 x x F (x) x 1 F(x) x 1 x x 1 x 1 x x 1                           2 2 2 F(x) x 2x 1 x 1 1 1 F(x) 1 ln x ln x c x 1 x x 1 x 1 x 1x x 1 x 1                             , από την οποία για x 1 έχουμε c 1  , άρα   F(x) 1 ln x 1 F(x) x 1 ln x x , x 0 x 1 x 1           οπότε   1 1 f(x) F (x) ln x x 1 1 f(x) ln x , x 0 x x         
  • 46. ___________________________________________________________________________ ΙΑΝΟΥΑΡΙΟΣ 2016 η άσκηση της ημέρας από το http://lisari.blogspot.gr 45 Β. 2 2 1 1 x 1 f (x) , x 0 x x x       , από τον πίνακα μεταβολών η f για x 1 έχει ολικό ελάχιστο με f(1) 1 μόνο για x 1 εφόσον    ff x 1 f(x) f(1) , 0 x 1 f(x) f(1)       21 Για να έχουν οι F fC ,C κοινή εφαπτομένη πρέπει να υπάρχουν  1 2x ,x 0,  ώστε        1 2 1 2F x f x f x f x     , αδύνατο εφόσον 2 2 x 1 f(x) 1 f (x) 1 0 x x 1 x          που ισχύει διότι 3 0    Γ1. Για την F που είναι συνεχής έχουμε F(1) 1, F(e) 1   , άρα από Θ. Bolzano υπάρχει  0x 1,e ώστε  0F x 0 που είναι και μοναδικό εφόσον F (x) f(x) 1 0    και άρα  F '1 1' 1 Γ2. Έχουμε την εξίσωση 1 F(x) 0F(x) e e , 0 x x    , αν     F 0 00 x x F(x) F x F(x) 0      1 οπότε η εξίσωση είναι αδύνατη, ενώ αν     F 0 0x x F(x) F x F(x) 0     1 η εξίσωση γίνεται   1 F(x) 1 ln F(x) e lne ln F(x) 1 f F(x) 1 F(x)              που από Β ισχύει μόνο για x 1 , οπότε F('1 1') F(x) 1 F(x) F(e) x e       Γ3. Από Γ1 έχουμε     0 0 x x 10 0 0 0 0 0 0 0 x F x 0 x 1 ln x x 0 ln x e x x 1            (3)     0 0 0 0 xx 3 F ή x 1x 1 0 0 0 0 x x x x lim x e x e x x 0 , lim F(x) F x 0                   , άρα