SlideShare a Scribd company logo
Artificial Intelligence Techniques
applied to Engineering
Part 2. Genetic Fuzzy Systems
Enrique Onieva Caracuel
@EnriqueOnieva
1.Fuzzy Logic
2.Genetic Algorithms
3.Genetic Fuzzy Systems
4.Applications to Intelligent Transportation
Systems: My Experience
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 2
Intelligent Transportation Systems
Intelligent Transportation Systems integrate
information and communication technologies with
transportation of passengers and goods
 Mobility
 Safety
 Productivity
 Energy consumption
 Capacity
1
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 3
Intelligent Transportation Systems
 Common services
 Information Systems
 Route planning
 Air transport
 Maritime transport
 Road transport
 Intelligent infrastructure
 Intelligent vehicles
Active assistances
Pasive assistances
2
Autonomous Driving?
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 4
Motivation
 Fuzzy Logic
 IF the vehicle is derived through the right, steer to the left
 IF the vehicle is derived through the left, steer to the right
 IF the vehicle is slow, press the throttle
 IF the vehicle is fast, press the brake
1
Control System Driver
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 5
Motivation 2
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 6
AUTOPIA Program 1
1998
2012
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 7
AUTOPIA Program
 Throttle
 Pedal signals commuted
 Orders communicated by an
Analog Card
 Brake
 Intervention on the ABS
 Electro-hydraulic system
Motor
Deposit
3 valves: Limiter, Proportional,
Nothing-All
 Orders communicated by a
CAN controller
2
WLAN
Antenna
Power
Supply
GPS
Receiver
Computer
IMU
GPS
Antenna
CAN-USB
converter
Auxiliary
Battery
CAN
Module
Electro-
hydraulic
system
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 8
Speed Control for Cities
 Inputs
 Speed error(km/h)
 Acceleration (km/h/s)
 Outputs
 Throttle [0,1] Throttle [0,0.4]
 Brake [0,1] Brake [0,0.2]
1
Comfort
acceleration
≤ 2.5 m/s2
Ac+ Ac0 Ac-
EV+ B02 B01 B01
EV0 T00 t01 T01
EV- T01 T02 t04
E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516.
Speed Error (km/h)
Acceleration (km/h/s)
Negative NegativeZero Positive
Negative Zero Positive
T00 T01 T02 T04
B00 B01 B02
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 9
Speed Control for Cities
 First gear (speed > 16 km/h)
 Error measured after transitory
state (5 s)
 Bigger error at 15 km/h
 (1st to 2nd gear)
 Similar results (speed≤ 20 km/h)
 Better results at 25 km/h
2
E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516.
Human System
10km/h ±0.63 ±0.71
15km/h ±0.88 ±0.98
20km/h ±0.72 ±0.84
25km/h ±1.22 ±0.9
Speed Target
Speed Target
Speed Target
Speed Target
Speed Target
Time (s)
Speed(km/h)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 10
Speed Control on-line Learning
1. Rules’ consequents modification in real time
Speed error
Acceleration
Rule activation
 9 cased reward
Positive or Negative error
Acceleration and comfort acceleration
Acceleration decreases when error  0
1
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 11
Speed Control on-line Learning
1. Rules’ consequents modification in real time
2
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Speed(km/h)
Time (s)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 12
Speed Control on-line Learning
2. Trapezoids’ modification
 After a certain time (100 seconds)
 Input values histogram analysis
A trapezoid is added if it is low-covered
A trapezoid is narrowed if covers several frequent values
3
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 13
Speed Control on-line Learning 4
 Test with 40 vehicles in TORCS
 Different dynamics
 Different behaviors
 Simple initial controller
 2x2 membership functions
 All the singletons = 0 (do nothing)
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 14
Speed Control on-line Learning
1. Speed change test
2. Fixed speed test (15 km/h)
3. Fixed speed test (5 km/h)
5
E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 15
Information capture
Information Processing
Simplification
Extension
Steering control by Genetic
Algorithms 1
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Lateral Error Angular Error
Steering
Lateral Error Angular Error
Steering
Lateral
Error
Angular
Error
Reference Line
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 16
Steering control by Genetic
Algorithms
 Membership functions Representation
 Rule base representation
 Integer coding
 Length = Number of rules
 21 Singletons in [-1,1]
2
LAT/ ANG
θ
{VeryLeft}
Left
No
Right
{VeryRigth}
Θ M M M M M
{VeryLeft} M C C C C C
Left M C C C C C
No M C C C C C
Right M C C C C C
{VeryRigth} M C C C C C
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Left NO Right VeryLeft VeryRightLeft NO Right
R10, R9, R8, R7, … R1 L1, L2, L3, L4, … L10NO
Right (Clockwise) Left
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 17
Steering control by Genetic
Algorithms
 Genetic fuzzy system
in 2 stages
 Membership function
optimization
Real coding
BLX-𝛼 crossover
 Rule base optimization
Integer coding
One point crossover
 Steady state Genetic Algorithm
 Binary Tournament
 Uniform Mutation
 Worse individual replacement
3
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 18
Steering control by Genetic
Algorithms
Objective function
 Mean squared error (MSE)
 Highest jump in the control surface (Dist)
Fitness Function (Min): 0.75·MSE + 0.25·Dist
4
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 19
Steering control by Genetic
Algorithms 5
E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94.
E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
Controllers Speeds
Labels Rule Base Average Maximum
3x3 Marginal 12.8 22.4
3x3 Central 14.6 22.1
3x3 Total 13.5 24
5x5 Marginal 14.9 22.1
5x5 Central 14.8 28.6
5x5 Total 14.8 27.9
Lateral errorAngular error Honorable
Mention to
best student
work
ESTYLF 2008
East (m)
North(m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 20
Intersection decision by genetic
algorithms
Decision making in non-
cooperative intersections
Non yielding always
strategy
Safe and efficient
maneuver
 Slightly accelerate to pass
before the manual one
 Slightly brake to yield
 Without stopping
1
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Accidents at
intersections
Intelligent
Trasnportation Systems
Intersections
Manual Manual Autonomous
Autonomous Autonomous Autonomous
Coordination
Accidents
Roads
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 21
Intersection decision by genetic
algorithms
1. Check if the vehicle is going to cross and by where
 Fuzzy rule based system  3 inputs
 Manually adjusted
2. Decide the autonomous vehicle’s speed to finish the
maneuver
 Without risk
 As soon as possible
 Fuzzy rule based system  4 inputs
 Coded with {2,3,4} membership functions  81
Granularities
 2 types of outputs
 Relative / Absolute Speed
 162 controllers adjusted by a Genetic Algorithm
3. Move the pedals to reach the desires speed
 Vehicle’s longitudinal dynamics model
 Flat surface
2
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Manual
Autonomous
Time
Speed
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 22
Intersection decision by genetic
algorithms
 Evaluation in a variable number of
scenarios
 Nsc=1+19·(g/G)
 2 Executions
 Free (EF)  (Keep SA)
What happens if speed does not vary?
 Controlled (EC)
Does the fuzzy system avoid the
collision
 3 possible results
 No collision
 Lateral collision
 Frontal collision
3
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
No Collision Lateral Collision Frontal Collision
Keep
Speed
up
Slow
Down
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 23
Intersection decision by genetic
algorithms
 Partial fitness depending on:
 Result in free execution
 Result in controlled execution
 How much has been the speed varied
 Fitness function  Minimize the sum of partial fitnesses
4
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Description Meaning Partial fitness
No collision (EF=EC=NO) |∫SA
c-∫SA
l|
A lateral collision is avoided (EF=LA & EC=NO)
•|∫SA
c-∫SA
l|, if speeds up
•2.500, if brakes down
A frontal collision is avoided (EF=FR & EC=NO)
•|∫SA
c-∫SA
l|, if brakes down
•2.500, if speeds up
Collision is not avoided (EF≠NO & EC ≠ NO) 5.000
Collision is caused (EF=NO & EC ≠ NO) 10.000
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 24
Intersection decision by genetic
algorithms
 Safety vs Number of rules
 Safety > 90%
 Some relatives are worse that a ‘do nothing’ system
 Absolute ones are safer
 ABS4423, ABS3433, ABS3344 y ABS2442  100%
 Is the safety dependent on the type (absolute / relative) of
controller?
5
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Relative Controllers
Absolute Controllers
Number of Rules
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 25
Intersection decision by genetic
algorithms
 Granularities correlation
 Most systems are near the diagonal
 54% vs 46% of structures are safer with a specific model
 Safe structures are both when relative and absolute
output
6
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Safety for Relative FRBS
SafetyforAbsoluteFRBS
Structures with higher
safety in Absolute
mode (46%)
Structures with higher
safety in Relative mode
(54%)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 26
Intersection decision by genetic
algorithms
 A ‘stop always’ policy  safety 100 %
 No efficient, neither intelligent
 Fitness function measures the efficiency of the systems
 Lineal relationship
 Safety comes with efficiency
7
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Relative Controllers
Absolute Controllers
Safety
FitnessFunction
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 27
Intersection decision by genetic
algorithms
 Both vehicles start at same speed
 Free execution  Frontal collision
 System must brake
 All of them do
 ABS4242 brake less
 REL3344 speeds up once the risk disappear
 Autonomous one starts slightly faster
 Free execution  Lateral collision
 System must speed up
 All of them avoid the collision
 REL3344 does it by speeding up
 Autonomous one starts much faster
 Free execution  No collision
 System must maintain speed
 All of them avoid the collision
 REL3344 varies less the speed
8
E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157
Time (s)
Speed
(km/h)
Distance
(m)
Time (s)
Speed
(km/h)
Distance
(m)
Time (s)
Speed
(km/h)
Distance
(m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 28
Videos
Learning to steer in an autonomous vehicle
Self-Archive
Autonomous Driving Citroën C3 Pluriel
https://www.youtube.com/watch?v=qm-nh7_fJvY
Grand Cooperative Driving Challenge (GCDC) - Technische Universiteit Eindhoven
https://www.youtube.com/watch?v=BprHHm5j_hA
Other Applications
Composition: https://www.youtube.com/user/GrupoAUTOPIA/videos
Autonomous Driving @ High Speed
https://www.youtube.com/watch?v=1zoTg_Pnxbg
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 29
2009 Simulated Car Racing
Championship 1
Gears
Change current gear Rule system (RPM)
Use reverse gear Angle + Deviation
Steer
Centered vehicle Laser Sensors
Reverse gear Angle
Go back to track Angle + Deviation
Pedals
Adequate speed Speed error
ABS / TCL Filters Speed-Wheels
Objective Desires Speed Fuzzy System
Learning
Off track
Decision systemBorders crashs
Long straights
Opponents
Overtaking
Rule SystemAvoid collisions
Emergency braking
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 30
2009 Simulated Car Racing
Championship
Gear Control
 Change current gear according with RPM
[1ª-3ª] ↑ if RPM>9000
[4ª-5ª] ↑ if RPM>9500
[2ª-4ª] ↓ if RPM<3000
[5ª-6ª] ↓ if RPM<3500
 Reverse gear?
 Continue race
2
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 31
2009 Simulated Car Racing
Championship
Pedals control
 Throttle and brake
Pedal [-1,1]
 Speed and wheels’ speed based filters
[ABS  Brake]
[TCS  Throttle]
 Special case: Reverse Gear
Pedal = 0.25
3
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Speed – Target (km/h)
Pedal
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 32
2009 Simulated Car Racing
Championship
Steer control
 Reverse gear
 Off-track
 Inside track
4
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Steer
Angle (rad)
Angle (rad)
Steer
Deviation (m)
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 33
2009 Simulated Car Racing
Championship
Objective speed
 IF FRONT is High  200 km/h
 IF FRONT is Medium  175 km/h
 IF FRONT is Low Y MAX10 is High  150 km/h
 IF FRONT is Low Y MAX10 is Medium  125 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is High  100 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is Medium  75 km/h
 IF FRONT is Low Y MAX10 is Low Y MAX20 is Low  50 km/h
 Non-Fuzzy rule:
 IF FRONT = 100  300 km/h
5
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
FrontMax10Max20
Low Medium High
Low Medium High
Low Medium High
Front = P0
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 34
2009 Simulated Car Racing
Championship
Opponents
 Modify the steer to overtake
Sensors at {±90º} SI (measure/speed)<Tolerance  (steer+=Increment)
 Modify the steer to avoid collisions
Sensors at {±30º} SI (measure<10)  (steer±=0.25)
 Emergency breaking
Sensors at {±20º} SI (measure<10)  (VELobj *=0.8)
6
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 35
2009 Simulated Car Racing
Championship
 3 International Conferences
 Rules
 3 unknown tracks
 Classification phase  race alone: 200 seconds
 Race among the 8 classified.
10 races, 10 laps, different starting
F1 punctuation scheme:
 Fastest lap  +2
 Less damage +2
Final score  Median over 10 races
7
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 36
2009 Simulated Car Racing
Championship 8
CEC GECCO CIG FINAL
Proposal 22 32 29 83
Cobostar 28.5 16.5 30 75
Champ2008 20 23 12.5 55.5
Perez &Saez 16 11 12.5 36.5
Best student
work award
ESTYLF 2010
E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 37
2010 Simulated Car Racing
Championship
Similar architecture
 Punctual modifications in certain modules
 Removing of the fuzzy system in charge of determining
the desired speed
 Optimized Steer and target speed:
Generational Genetic
Algorithm
Controller evaluation
in 4 tracks
Maximize the sum of
distances coverted
1
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 38
2010 Simulated Car Racing
Championship
Real optimization
 10 component vector
Steer control
Target speed
 BLX-𝛼 Crossover
 Uniform mutation
2
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 39
2010 Simulated Car Racing
Championship
Winner in 2010
 System to beat at
2011, 2012 y 2013
Not beaten until now
3
E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
Proposal Muñoz Mr. Racer Polimi
GECCO_1 12 5.5 9 6
GECCO_2 12 8 4 4.5
GECCO_3 10 9 3 5.5
WCCI_1 10 10 4 5
WCCI_2 8 10 3 5
WCCI_3 6 8 2 6
CIG_1 8 4 3 10
CIG_2 12 2 4 6
CIG_3 5 6 8 8
Proposal Muñoz Mr. Racer Polimi
GECCO 34 17 16 6
WCCI 24 28 9 16
CIG 25 12 15 24
TOTAL 83 57 40 46
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 40
Racing overtakes
Opponents that oppose to be
overtaken are implemented.
They try to reach the position
of the overtaker
3 types:
 Limited
 Slow
 Complete
Opponent must be overtaken
1
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
Limited
Slow
Complete
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 41
Racing overtakes
 Fuzzy Rule Based System
 4 inputs:
 Longitudinal distance (Dx)
 Lateral distance (Dy)
 Lateral deviation (DL)
 Time to Collision (TtC)
 2 outputs
 Required lateral position
 Pedal (Emergency braking)
 Manually tuned rule base
 600 potential rules  3·8·5·5 Labels
 Common sense  If the maneuver is finished go back to the center
 Grouping  If lateral distance is long, do not move
 81 rules in the final rule base
2
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 42
Racing overtakes
 They were tested:
 The proposal
 Controllers included in TORCS
 Against:
 Slow at 12 different speeds
 Limited at 12 different speeds
 Complete at 12 different speeds
 It is measured:
 % of finished maneuvers
 % of maneuvers without frontal damage
(system’s fault)
 % of maneuvers without lateral damage
(opponent’s fault)
3
Proposal Berniw Bt Inferno Lliaw Olethros Simplix Tita
%S 100 34.4 21.9 37.5 37.5 31.3 25 37.5
%Bf
D 90.6 75 87.5 78.1 78.1 100 100 81.3
%Lf
D 87.5 62.5 96.9 65.6 65.6 93.8 100 65.6
E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
2º Best Work
IEEE-CIG 2010
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 43
Videos
Highlight from the Simulated Car Racing Competition at CEC-2009 - Driver by Onieva and Pelta
https://www.youtube.com/watch?v=k5FgzAmJdzs
2010 Simulated Car Racing Championship - First Leg @ GECCO-2010
https://www.youtube.com/watch?v=SXDJMXpiRs0
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 44
 We collect traffic data from the
 California Department of Transportation
 About 15 km long
14 (actually more) loops detectors
6 loops detectors which give us flow, speed and density
8 loops detectors which give us only flow
Congestion Prediction 1
Objective:
When congestion is going
to occur here ?
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 45
Congestion Prediction
 We group the information in 14 possible input variables
 3 flows in the main highway F1 F2 F3
 3 densities in the main highway D1 D2 D3
 3 speeds in the main highway S1 S2 S3
 2 input flows from the entrances iF1 iF2
 2 output flows from the exits oF1 oF2
2
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 46
Congestion Prediction
We define a hierarchical fuzzy system structure to
predict congestions at desired
 Example: 4 input variables with 3 membership
functions per variable
3
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
The same example with N input variables :
3N rules in the non-hierarchical system
9·(N-1) rules in the hierarchical system
14 variables:
4.782.969 Vs 117 Rules
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 47
Congestion Prediction
The systems is optimized by a Genetic Algorithm:
 3-part coding
Input variables’ order  Variable selection
Membership Functions
Rules’ consequents
 2 operator groups:
Permutation
Real Coding
4
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 48
Congestion Prediction
3 experiments:
 97% 5 minutes ahead 9 variables
 94% 15 minutes ahead 7 variables
 93% 30 minutes ahead 10 variables
5
X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part
C: Emerging Technologies. 43, pp. 127-142. 2014
Técnicas de Inteligencia Artificial aplicadas a la Ingeniería
@EnriqueOnieva 2014/2015 49
Assignment
 Write an abstract of your thesis work (max. 250
words)
 Look for 2-3 works that applies fuzzy logic to your
thesis’ topic.
 Write a brief summary (max. 100 words/each)
 Look for 2-3 works that applies genetic algorithms to
your thesis’ topic .
 Write a brief summary (max. 100 words/each)
 Look for 2-3 works that applies genetic fuzzy system to
your thesis’ topic .
 Write a brief summary (max. 100 words/each)
Thank you very much
Any Question?

More Related Content

What's hot

intelligent transport system bgsbu coet
intelligent transport system bgsbu coetintelligent transport system bgsbu coet
intelligent transport system bgsbu coet
junaid bashir
 
Practices of AI guided traffic analysis
Practices of AI guided traffic analysisPractices of AI guided traffic analysis
Practices of AI guided traffic analysis
JumpingJaq
 
Intelligent transport system
Intelligent transport systemIntelligent transport system
Intelligent transport system
vchhajed
 
Intelligent Transportation Systems - ITS
Intelligent Transportation Systems - ITSIntelligent Transportation Systems - ITS
Intelligent Transportation Systems - ITS
Vijai Krishnan V
 
Intelligent Transportation System (ITS)
Intelligent Transportation System (ITS)Intelligent Transportation System (ITS)
Intelligent Transportation System (ITS)
Jonathan D'Cruz
 
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITYPROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
664601
 
Smart Parking
Smart ParkingSmart Parking
Smart Parking
Aditya Basu
 
Futuristic intelligent transportation system architecture for sustainable roa...
Futuristic intelligent transportation system architecture for sustainable roa...Futuristic intelligent transportation system architecture for sustainable roa...
Futuristic intelligent transportation system architecture for sustainable roa...
Tristan Wiggill
 
Intelligent Transportation System
Intelligent Transportation SystemIntelligent Transportation System
Intelligent Transportation System
GAURAV. H .TANDON
 
Automated vigilance assistance system with crime detection for upcoming smart...
Automated vigilance assistance system with crime detection for upcoming smart...Automated vigilance assistance system with crime detection for upcoming smart...
Automated vigilance assistance system with crime detection for upcoming smart...
Sameer Shah
 
Ie3415061510
Ie3415061510Ie3415061510
Ie3415061510
IJERA Editor
 
Intelligent transport system
Intelligent transport systemIntelligent transport system
Intelligent transport systemCivil Engineers
 
IRJET- Simulation based Automatic Traffic Controlling System
IRJET- Simulation based Automatic Traffic Controlling SystemIRJET- Simulation based Automatic Traffic Controlling System
IRJET- Simulation based Automatic Traffic Controlling System
IRJET Journal
 
Intelligent Transport Systems India
Intelligent Transport Systems IndiaIntelligent Transport Systems India
Intelligent Transport Systems India
chaanz
 
Advance Traffic management system
Advance Traffic management systemAdvance Traffic management system
Advance Traffic management system
Trafiksol ITS Technologies Pvt. Ltd
 
Intelligent transportation system its
Intelligent transportation system itsIntelligent transportation system its
Intelligent transportation system its
Harish Naik
 
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
IJET - International Journal of Engineering and Techniques
 
IRJET- Intelligent Queue Management System at Airports using Image Processing...
IRJET- Intelligent Queue Management System at Airports using Image Processing...IRJET- Intelligent Queue Management System at Airports using Image Processing...
IRJET- Intelligent Queue Management System at Airports using Image Processing...
IRJET Journal
 
Intelligent transportation system based on iot service for traffic control
Intelligent transportation system based on iot service for traffic controlIntelligent transportation system based on iot service for traffic control
Intelligent transportation system based on iot service for traffic control
MahmudulHasan474
 

What's hot (20)

intelligent transport system bgsbu coet
intelligent transport system bgsbu coetintelligent transport system bgsbu coet
intelligent transport system bgsbu coet
 
Practices of AI guided traffic analysis
Practices of AI guided traffic analysisPractices of AI guided traffic analysis
Practices of AI guided traffic analysis
 
Intelligent transport system
Intelligent transport systemIntelligent transport system
Intelligent transport system
 
Intelligent Transportation Systems - ITS
Intelligent Transportation Systems - ITSIntelligent Transportation Systems - ITS
Intelligent Transportation Systems - ITS
 
Intelligent Transportation System (ITS)
Intelligent Transportation System (ITS)Intelligent Transportation System (ITS)
Intelligent Transportation System (ITS)
 
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITYPROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
PROPOSED INTELLIGENT TRANSPORT SYSTEM DEPLOYMENTS IN KAJANG CITY
 
Smart Parking
Smart ParkingSmart Parking
Smart Parking
 
Futuristic intelligent transportation system architecture for sustainable roa...
Futuristic intelligent transportation system architecture for sustainable roa...Futuristic intelligent transportation system architecture for sustainable roa...
Futuristic intelligent transportation system architecture for sustainable roa...
 
Intelligent Transportation System
Intelligent Transportation SystemIntelligent Transportation System
Intelligent Transportation System
 
Automated vigilance assistance system with crime detection for upcoming smart...
Automated vigilance assistance system with crime detection for upcoming smart...Automated vigilance assistance system with crime detection for upcoming smart...
Automated vigilance assistance system with crime detection for upcoming smart...
 
Ie3415061510
Ie3415061510Ie3415061510
Ie3415061510
 
Intelligent transport system
Intelligent transport systemIntelligent transport system
Intelligent transport system
 
IRJET- Simulation based Automatic Traffic Controlling System
IRJET- Simulation based Automatic Traffic Controlling SystemIRJET- Simulation based Automatic Traffic Controlling System
IRJET- Simulation based Automatic Traffic Controlling System
 
Intelligent Transport Systems India
Intelligent Transport Systems IndiaIntelligent Transport Systems India
Intelligent Transport Systems India
 
TeamVision
TeamVisionTeamVision
TeamVision
 
Advance Traffic management system
Advance Traffic management systemAdvance Traffic management system
Advance Traffic management system
 
Intelligent transportation system its
Intelligent transportation system itsIntelligent transportation system its
Intelligent transportation system its
 
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
[IJET-V1I5P12] Authors: Omkar Dhorge, ShantanuShamraj ,Sumedh Melkunde, Rohit...
 
IRJET- Intelligent Queue Management System at Airports using Image Processing...
IRJET- Intelligent Queue Management System at Airports using Image Processing...IRJET- Intelligent Queue Management System at Airports using Image Processing...
IRJET- Intelligent Queue Management System at Airports using Image Processing...
 
Intelligent transportation system based on iot service for traffic control
Intelligent transportation system based on iot service for traffic controlIntelligent transportation system based on iot service for traffic control
Intelligent transportation system based on iot service for traffic control
 

Similar to 2015 Artificial Intelligence Techniques at Engineering Seminar - Chapter 2 - Part 4: Intelligent Transportation Systems

Smart Driving Test Track
Smart Driving Test TrackSmart Driving Test Track
Smart Driving Test Track
IRJET Journal
 
Intelauto
IntelautoIntelauto
Intelautounexlab
 
Ppt on image processing
Ppt on image processingPpt on image processing
Ppt on image processing
9177547219
 
International conference on electronics and communication systems 2016 (2)
International conference on electronics and communication systems 2016 (2)International conference on electronics and communication systems 2016 (2)
International conference on electronics and communication systems 2016 (2)
P. RAMANI RANJAN SENAPATI
 
Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...
paperpublications3
 
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
INTELLIGENT TRANSPORTATION SYSTEMS..pptxINTELLIGENT TRANSPORTATION SYSTEMS..pptx
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
AnandKUMAR1882
 
A1803040103
A1803040103A1803040103
A1803040103
IOSR Journals
 
Speed adaptation using Neuro fuzzy approach
Speed adaptation using Neuro fuzzy approachSpeed adaptation using Neuro fuzzy approach
Speed adaptation using Neuro fuzzy approachLucky Amesar
 
Vehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN AlgorithmVehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN Algorithm
IRJET Journal
 
Human in automotive safety design
Human in automotive safety designHuman in automotive safety design
Human in automotive safety design
TNO
 
Development and testing of braking and acceleration features for vehicle adv...
Development and testing of braking and acceleration features  for vehicle adv...Development and testing of braking and acceleration features  for vehicle adv...
Development and testing of braking and acceleration features for vehicle adv...
IJECEIAES
 
Driver-less cars by avaneesh shuka
Driver-less cars by avaneesh shuka Driver-less cars by avaneesh shuka
Driver-less cars by avaneesh shuka
avaneesh shukla
 
Will Cars Always Be Cars
Will Cars Always Be CarsWill Cars Always Be Cars
Will Cars Always Be Cars
guest5879dd
 
IRJET- Smart Travel Automated Vehicle
IRJET- Smart Travel Automated VehicleIRJET- Smart Travel Automated Vehicle
IRJET- Smart Travel Automated Vehicle
IRJET Journal
 
Vtt transport vehicle_systems
Vtt transport vehicle_systemsVtt transport vehicle_systems
Vtt transport vehicle_systems
VTT Technical Research Centre of Finland Ltd
 
Mona sherki_Senior Engg_Automotive Electronics
Mona sherki_Senior Engg_Automotive ElectronicsMona sherki_Senior Engg_Automotive Electronics
Mona sherki_Senior Engg_Automotive Electronics
MONA SHERKI
 
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
SanjayLove1
 
Semi-Autonomous Vehicle
Semi-Autonomous VehicleSemi-Autonomous Vehicle
Semi-Autonomous Vehicle
IRJET Journal
 

Similar to 2015 Artificial Intelligence Techniques at Engineering Seminar - Chapter 2 - Part 4: Intelligent Transportation Systems (20)

Smart Driving Test Track
Smart Driving Test TrackSmart Driving Test Track
Smart Driving Test Track
 
Intelauto
IntelautoIntelauto
Intelauto
 
Ppt on image processing
Ppt on image processingPpt on image processing
Ppt on image processing
 
International conference on electronics and communication systems 2016 (2)
International conference on electronics and communication systems 2016 (2)International conference on electronics and communication systems 2016 (2)
International conference on electronics and communication systems 2016 (2)
 
40120140504005
4012014050400540120140504005
40120140504005
 
40120140504005 2
40120140504005 240120140504005 2
40120140504005 2
 
Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...
 
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
INTELLIGENT TRANSPORTATION SYSTEMS..pptxINTELLIGENT TRANSPORTATION SYSTEMS..pptx
INTELLIGENT TRANSPORTATION SYSTEMS..pptx
 
A1803040103
A1803040103A1803040103
A1803040103
 
Speed adaptation using Neuro fuzzy approach
Speed adaptation using Neuro fuzzy approachSpeed adaptation using Neuro fuzzy approach
Speed adaptation using Neuro fuzzy approach
 
Vehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN AlgorithmVehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN Algorithm
 
Human in automotive safety design
Human in automotive safety designHuman in automotive safety design
Human in automotive safety design
 
Development and testing of braking and acceleration features for vehicle adv...
Development and testing of braking and acceleration features  for vehicle adv...Development and testing of braking and acceleration features  for vehicle adv...
Development and testing of braking and acceleration features for vehicle adv...
 
Driver-less cars by avaneesh shuka
Driver-less cars by avaneesh shuka Driver-less cars by avaneesh shuka
Driver-less cars by avaneesh shuka
 
Will Cars Always Be Cars
Will Cars Always Be CarsWill Cars Always Be Cars
Will Cars Always Be Cars
 
IRJET- Smart Travel Automated Vehicle
IRJET- Smart Travel Automated VehicleIRJET- Smart Travel Automated Vehicle
IRJET- Smart Travel Automated Vehicle
 
Vtt transport vehicle_systems
Vtt transport vehicle_systemsVtt transport vehicle_systems
Vtt transport vehicle_systems
 
Mona sherki_Senior Engg_Automotive Electronics
Mona sherki_Senior Engg_Automotive ElectronicsMona sherki_Senior Engg_Automotive Electronics
Mona sherki_Senior Engg_Automotive Electronics
 
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
0TH-AN INTELLIGENT TRAFFIC LIGHT CONTROL SYSTEM USING CNN.pptx
 
Semi-Autonomous Vehicle
Semi-Autonomous VehicleSemi-Autonomous Vehicle
Semi-Autonomous Vehicle
 

Recently uploaded

ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 

Recently uploaded (20)

ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 

2015 Artificial Intelligence Techniques at Engineering Seminar - Chapter 2 - Part 4: Intelligent Transportation Systems

  • 1. Artificial Intelligence Techniques applied to Engineering Part 2. Genetic Fuzzy Systems Enrique Onieva Caracuel @EnriqueOnieva 1.Fuzzy Logic 2.Genetic Algorithms 3.Genetic Fuzzy Systems 4.Applications to Intelligent Transportation Systems: My Experience
  • 2. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 2 Intelligent Transportation Systems Intelligent Transportation Systems integrate information and communication technologies with transportation of passengers and goods  Mobility  Safety  Productivity  Energy consumption  Capacity 1
  • 3. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 3 Intelligent Transportation Systems  Common services  Information Systems  Route planning  Air transport  Maritime transport  Road transport  Intelligent infrastructure  Intelligent vehicles Active assistances Pasive assistances 2 Autonomous Driving?
  • 4. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 4 Motivation  Fuzzy Logic  IF the vehicle is derived through the right, steer to the left  IF the vehicle is derived through the left, steer to the right  IF the vehicle is slow, press the throttle  IF the vehicle is fast, press the brake 1 Control System Driver
  • 5. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 5 Motivation 2
  • 6. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 6 AUTOPIA Program 1 1998 2012
  • 7. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 7 AUTOPIA Program  Throttle  Pedal signals commuted  Orders communicated by an Analog Card  Brake  Intervention on the ABS  Electro-hydraulic system Motor Deposit 3 valves: Limiter, Proportional, Nothing-All  Orders communicated by a CAN controller 2 WLAN Antenna Power Supply GPS Receiver Computer IMU GPS Antenna CAN-USB converter Auxiliary Battery CAN Module Electro- hydraulic system
  • 8. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 8 Speed Control for Cities  Inputs  Speed error(km/h)  Acceleration (km/h/s)  Outputs  Throttle [0,1] Throttle [0,0.4]  Brake [0,1] Brake [0,0.2] 1 Comfort acceleration ≤ 2.5 m/s2 Ac+ Ac0 Ac- EV+ B02 B01 B01 EV0 T00 t01 T01 EV- T01 T02 t04 E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516. Speed Error (km/h) Acceleration (km/h/s) Negative NegativeZero Positive Negative Zero Positive T00 T01 T02 T04 B00 B01 B02
  • 9. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 9 Speed Control for Cities  First gear (speed > 16 km/h)  Error measured after transitory state (5 s)  Bigger error at 15 km/h  (1st to 2nd gear)  Similar results (speed≤ 20 km/h)  Better results at 25 km/h 2 E. Onieva, et al., Throttle and Brake Pedals Automation for Populated Areas, Robotica, vol. 28, n. 4, pp 509-516. Human System 10km/h ±0.63 ±0.71 15km/h ±0.88 ±0.98 20km/h ±0.72 ±0.84 25km/h ±1.22 ±0.9 Speed Target Speed Target Speed Target Speed Target Speed Target Time (s) Speed(km/h)
  • 10. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 10 Speed Control on-line Learning 1. Rules’ consequents modification in real time Speed error Acceleration Rule activation  9 cased reward Positive or Negative error Acceleration and comfort acceleration Acceleration decreases when error  0 1 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 11. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 11 Speed Control on-line Learning 1. Rules’ consequents modification in real time 2 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053. Speed(km/h) Time (s)
  • 12. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 12 Speed Control on-line Learning 2. Trapezoids’ modification  After a certain time (100 seconds)  Input values histogram analysis A trapezoid is added if it is low-covered A trapezoid is narrowed if covers several frequent values 3 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 13. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 13 Speed Control on-line Learning 4  Test with 40 vehicles in TORCS  Different dynamics  Different behaviors  Simple initial controller  2x2 membership functions  All the singletons = 0 (do nothing) E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 14. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 14 Speed Control on-line Learning 1. Speed change test 2. Fixed speed test (15 km/h) 3. Fixed speed test (5 km/h) 5 E. Onieva et al., On-Line Learning of a Fuzzy Controller for a Precise Vehicle Cruise Control System, Expert Systems with Applications. 40 (4) , pp. 1046-1053.
  • 15. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 15 Information capture Information Processing Simplification Extension Steering control by Genetic Algorithms 1 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Lateral Error Angular Error Steering Lateral Error Angular Error Steering Lateral Error Angular Error Reference Line
  • 16. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 16 Steering control by Genetic Algorithms  Membership functions Representation  Rule base representation  Integer coding  Length = Number of rules  21 Singletons in [-1,1] 2 LAT/ ANG θ {VeryLeft} Left No Right {VeryRigth} Θ M M M M M {VeryLeft} M C C C C C Left M C C C C C No M C C C C C Right M C C C C C {VeryRigth} M C C C C C E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Left NO Right VeryLeft VeryRightLeft NO Right R10, R9, R8, R7, … R1 L1, L2, L3, L4, … L10NO Right (Clockwise) Left
  • 17. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 17 Steering control by Genetic Algorithms  Genetic fuzzy system in 2 stages  Membership function optimization Real coding BLX-𝛼 crossover  Rule base optimization Integer coding One point crossover  Steady state Genetic Algorithm  Binary Tournament  Uniform Mutation  Worse individual replacement 3 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
  • 18. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 18 Steering control by Genetic Algorithms Objective function  Mean squared error (MSE)  Highest jump in the control surface (Dist) Fitness Function (Min): 0.75·MSE + 0.25·Dist 4 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011
  • 19. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 19 Steering control by Genetic Algorithms 5 E. Onieva, et al., Genetic fuzzy-based steering wheel controller using a mass-produced car, Int. J. of Innovative Computing, Information and Control. vol. 8, n. 5B, pp. 77-94. E. Onieva, et al., Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing Journal. 11 - 1, pp. 1303 - 1309, 2011 Controllers Speeds Labels Rule Base Average Maximum 3x3 Marginal 12.8 22.4 3x3 Central 14.6 22.1 3x3 Total 13.5 24 5x5 Marginal 14.9 22.1 5x5 Central 14.8 28.6 5x5 Total 14.8 27.9 Lateral errorAngular error Honorable Mention to best student work ESTYLF 2008 East (m) North(m)
  • 20. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 20 Intersection decision by genetic algorithms Decision making in non- cooperative intersections Non yielding always strategy Safe and efficient maneuver  Slightly accelerate to pass before the manual one  Slightly brake to yield  Without stopping 1 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Accidents at intersections Intelligent Trasnportation Systems Intersections Manual Manual Autonomous Autonomous Autonomous Autonomous Coordination Accidents Roads
  • 21. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 21 Intersection decision by genetic algorithms 1. Check if the vehicle is going to cross and by where  Fuzzy rule based system  3 inputs  Manually adjusted 2. Decide the autonomous vehicle’s speed to finish the maneuver  Without risk  As soon as possible  Fuzzy rule based system  4 inputs  Coded with {2,3,4} membership functions  81 Granularities  2 types of outputs  Relative / Absolute Speed  162 controllers adjusted by a Genetic Algorithm 3. Move the pedals to reach the desires speed  Vehicle’s longitudinal dynamics model  Flat surface 2 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Manual Autonomous Time Speed
  • 22. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 22 Intersection decision by genetic algorithms  Evaluation in a variable number of scenarios  Nsc=1+19·(g/G)  2 Executions  Free (EF)  (Keep SA) What happens if speed does not vary?  Controlled (EC) Does the fuzzy system avoid the collision  3 possible results  No collision  Lateral collision  Frontal collision 3 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 No Collision Lateral Collision Frontal Collision Keep Speed up Slow Down
  • 23. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 23 Intersection decision by genetic algorithms  Partial fitness depending on:  Result in free execution  Result in controlled execution  How much has been the speed varied  Fitness function  Minimize the sum of partial fitnesses 4 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Description Meaning Partial fitness No collision (EF=EC=NO) |∫SA c-∫SA l| A lateral collision is avoided (EF=LA & EC=NO) •|∫SA c-∫SA l|, if speeds up •2.500, if brakes down A frontal collision is avoided (EF=FR & EC=NO) •|∫SA c-∫SA l|, if brakes down •2.500, if speeds up Collision is not avoided (EF≠NO & EC ≠ NO) 5.000 Collision is caused (EF=NO & EC ≠ NO) 10.000
  • 24. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 24 Intersection decision by genetic algorithms  Safety vs Number of rules  Safety > 90%  Some relatives are worse that a ‘do nothing’ system  Absolute ones are safer  ABS4423, ABS3433, ABS3344 y ABS2442  100%  Is the safety dependent on the type (absolute / relative) of controller? 5 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Relative Controllers Absolute Controllers Number of Rules
  • 25. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 25 Intersection decision by genetic algorithms  Granularities correlation  Most systems are near the diagonal  54% vs 46% of structures are safer with a specific model  Safe structures are both when relative and absolute output 6 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Safety for Relative FRBS SafetyforAbsoluteFRBS Structures with higher safety in Absolute mode (46%) Structures with higher safety in Relative mode (54%)
  • 26. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 26 Intersection decision by genetic algorithms  A ‘stop always’ policy  safety 100 %  No efficient, neither intelligent  Fitness function measures the efficiency of the systems  Lineal relationship  Safety comes with efficiency 7 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Relative Controllers Absolute Controllers Safety FitnessFunction
  • 27. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 27 Intersection decision by genetic algorithms  Both vehicles start at same speed  Free execution  Frontal collision  System must brake  All of them do  ABS4242 brake less  REL3344 speeds up once the risk disappear  Autonomous one starts slightly faster  Free execution  Lateral collision  System must speed up  All of them avoid the collision  REL3344 does it by speeding up  Autonomous one starts much faster  Free execution  No collision  System must maintain speed  All of them avoid the collision  REL3344 varies less the speed 8 E. Onieva, et al., Genetic Optimization of a Vehicle Fuzzy Decision System for Intersections, Expert Systems with Applications. 39 (18) , pp. 13148-13157 Time (s) Speed (km/h) Distance (m) Time (s) Speed (km/h) Distance (m) Time (s) Speed (km/h) Distance (m)
  • 28. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 28 Videos Learning to steer in an autonomous vehicle Self-Archive Autonomous Driving Citroën C3 Pluriel https://www.youtube.com/watch?v=qm-nh7_fJvY Grand Cooperative Driving Challenge (GCDC) - Technische Universiteit Eindhoven https://www.youtube.com/watch?v=BprHHm5j_hA Other Applications Composition: https://www.youtube.com/user/GrupoAUTOPIA/videos Autonomous Driving @ High Speed https://www.youtube.com/watch?v=1zoTg_Pnxbg
  • 29. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 29 2009 Simulated Car Racing Championship 1 Gears Change current gear Rule system (RPM) Use reverse gear Angle + Deviation Steer Centered vehicle Laser Sensors Reverse gear Angle Go back to track Angle + Deviation Pedals Adequate speed Speed error ABS / TCL Filters Speed-Wheels Objective Desires Speed Fuzzy System Learning Off track Decision systemBorders crashs Long straights Opponents Overtaking Rule SystemAvoid collisions Emergency braking E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 30. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 30 2009 Simulated Car Racing Championship Gear Control  Change current gear according with RPM [1ª-3ª] ↑ if RPM>9000 [4ª-5ª] ↑ if RPM>9500 [2ª-4ª] ↓ if RPM<3000 [5ª-6ª] ↓ if RPM<3500  Reverse gear?  Continue race 2 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 31. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 31 2009 Simulated Car Racing Championship Pedals control  Throttle and brake Pedal [-1,1]  Speed and wheels’ speed based filters [ABS  Brake] [TCS  Throttle]  Special case: Reverse Gear Pedal = 0.25 3 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. Speed – Target (km/h) Pedal
  • 32. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 32 2009 Simulated Car Racing Championship Steer control  Reverse gear  Off-track  Inside track 4 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. Steer Angle (rad) Angle (rad) Steer Deviation (m)
  • 33. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 33 2009 Simulated Car Racing Championship Objective speed  IF FRONT is High  200 km/h  IF FRONT is Medium  175 km/h  IF FRONT is Low Y MAX10 is High  150 km/h  IF FRONT is Low Y MAX10 is Medium  125 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is High  100 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is Medium  75 km/h  IF FRONT is Low Y MAX10 is Low Y MAX20 is Low  50 km/h  Non-Fuzzy rule:  IF FRONT = 100  300 km/h 5 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011. FrontMax10Max20 Low Medium High Low Medium High Low Medium High Front = P0
  • 34. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 34 2009 Simulated Car Racing Championship Opponents  Modify the steer to overtake Sensors at {±90º} SI (measure/speed)<Tolerance  (steer+=Increment)  Modify the steer to avoid collisions Sensors at {±30º} SI (measure<10)  (steer±=0.25)  Emergency breaking Sensors at {±20º} SI (measure<10)  (VELobj *=0.8) 6 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 35. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 35 2009 Simulated Car Racing Championship  3 International Conferences  Rules  3 unknown tracks  Classification phase  race alone: 200 seconds  Race among the 8 classified. 10 races, 10 laps, different starting F1 punctuation scheme:  Fastest lap  +2  Less damage +2 Final score  Median over 10 races 7 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 36. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 36 2009 Simulated Car Racing Championship 8 CEC GECCO CIG FINAL Proposal 22 32 29 83 Cobostar 28.5 16.5 30 75 Champ2008 20 23 12.5 55.5 Perez &Saez 16 11 12.5 36.5 Best student work award ESTYLF 2010 E. Onieva, et al., A Fuzzy Based Driving Architecture for Non-player Characters in a Car Racing Game, Soft Computing vol. 15, n. 8, pp. 1617-1629, 2011.
  • 37. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 37 2010 Simulated Car Racing Championship Similar architecture  Punctual modifications in certain modules  Removing of the fuzzy system in charge of determining the desired speed  Optimized Steer and target speed: Generational Genetic Algorithm Controller evaluation in 4 tracks Maximize the sum of distances coverted 1 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
  • 38. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 38 2010 Simulated Car Racing Championship Real optimization  10 component vector Steer control Target speed  BLX-𝛼 Crossover  Uniform mutation 2 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012.
  • 39. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 39 2010 Simulated Car Racing Championship Winner in 2010  System to beat at 2011, 2012 y 2013 Not beaten until now 3 E. Onieva, et al., An evolutionary tuned driving system for virtual car racing games: The AUTOPIA driver, Int. Journal of Intelligent Systems, vol. 27, n. 3, pp. 217–241, 2012. Proposal Muñoz Mr. Racer Polimi GECCO_1 12 5.5 9 6 GECCO_2 12 8 4 4.5 GECCO_3 10 9 3 5.5 WCCI_1 10 10 4 5 WCCI_2 8 10 3 5 WCCI_3 6 8 2 6 CIG_1 8 4 3 10 CIG_2 12 2 4 6 CIG_3 5 6 8 8 Proposal Muñoz Mr. Racer Polimi GECCO 34 17 16 6 WCCI 24 28 9 16 CIG 25 12 15 24 TOTAL 83 57 40 46
  • 40. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 40 Racing overtakes Opponents that oppose to be overtaken are implemented. They try to reach the position of the overtaker 3 types:  Limited  Slow  Complete Opponent must be overtaken 1 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010 Limited Slow Complete
  • 41. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 41 Racing overtakes  Fuzzy Rule Based System  4 inputs:  Longitudinal distance (Dx)  Lateral distance (Dy)  Lateral deviation (DL)  Time to Collision (TtC)  2 outputs  Required lateral position  Pedal (Emergency braking)  Manually tuned rule base  600 potential rules  3·8·5·5 Labels  Common sense  If the maneuver is finished go back to the center  Grouping  If lateral distance is long, do not move  81 rules in the final rule base 2 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010
  • 42. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 42 Racing overtakes  They were tested:  The proposal  Controllers included in TORCS  Against:  Slow at 12 different speeds  Limited at 12 different speeds  Complete at 12 different speeds  It is measured:  % of finished maneuvers  % of maneuvers without frontal damage (system’s fault)  % of maneuvers without lateral damage (opponent’s fault) 3 Proposal Berniw Bt Inferno Lliaw Olethros Simplix Tita %S 100 34.4 21.9 37.5 37.5 31.3 25 37.5 %Bf D 90.6 75 87.5 78.1 78.1 100 100 81.3 %Lf D 87.5 62.5 96.9 65.6 65.6 93.8 100 65.6 E. Onieva, et al., Overtaking Opponents with Blocking Strategies Using Fuzzy Logic, IEEE Conference on Computational Intelligence in Games, 2010 2º Best Work IEEE-CIG 2010
  • 43. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 43 Videos Highlight from the Simulated Car Racing Competition at CEC-2009 - Driver by Onieva and Pelta https://www.youtube.com/watch?v=k5FgzAmJdzs 2010 Simulated Car Racing Championship - First Leg @ GECCO-2010 https://www.youtube.com/watch?v=SXDJMXpiRs0
  • 44. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 44  We collect traffic data from the  California Department of Transportation  About 15 km long 14 (actually more) loops detectors 6 loops detectors which give us flow, speed and density 8 loops detectors which give us only flow Congestion Prediction 1 Objective: When congestion is going to occur here ? X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 45. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 45 Congestion Prediction  We group the information in 14 possible input variables  3 flows in the main highway F1 F2 F3  3 densities in the main highway D1 D2 D3  3 speeds in the main highway S1 S2 S3  2 input flows from the entrances iF1 iF2  2 output flows from the exits oF1 oF2 2 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 46. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 46 Congestion Prediction We define a hierarchical fuzzy system structure to predict congestions at desired  Example: 4 input variables with 3 membership functions per variable 3 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014 The same example with N input variables : 3N rules in the non-hierarchical system 9·(N-1) rules in the hierarchical system 14 variables: 4.782.969 Vs 117 Rules
  • 47. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 47 Congestion Prediction The systems is optimized by a Genetic Algorithm:  3-part coding Input variables’ order  Variable selection Membership Functions Rules’ consequents  2 operator groups: Permutation Real Coding 4 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 48. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 48 Congestion Prediction 3 experiments:  97% 5 minutes ahead 9 variables  94% 15 minutes ahead 7 variables  93% 30 minutes ahead 10 variables 5 X. Zhang, E. Onieva, et al., Hierarchical Fuzzy Rule Based System Optimized with Genetic Algorithms for Short Term Traffic Congestion Prediction. Transportation Research Part C: Emerging Technologies. 43, pp. 127-142. 2014
  • 49. Técnicas de Inteligencia Artificial aplicadas a la Ingeniería @EnriqueOnieva 2014/2015 49 Assignment  Write an abstract of your thesis work (max. 250 words)  Look for 2-3 works that applies fuzzy logic to your thesis’ topic.  Write a brief summary (max. 100 words/each)  Look for 2-3 works that applies genetic algorithms to your thesis’ topic .  Write a brief summary (max. 100 words/each)  Look for 2-3 works that applies genetic fuzzy system to your thesis’ topic .  Write a brief summary (max. 100 words/each)
  • 50. Thank you very much Any Question?