SlideShare a Scribd company logo
[2/2] Find scary C++ bugs
before they find you
Konstantin Serebryany, Google
May 2014 @compsciclub.ru
[1/2] Fantastic C++ Bugs
and Where to Find Them
Agenda
● How bad the bugs are?
● Most common C++ bugs
○ Memory access bugs
○ Threading bugs
○ Other undefined behavior bugs
● Quiz
● Lecture 2/2: tools that find bugs
Why bugs are scary
● Increased development cost
● Increased CPU/RAM consumption
● Decreased user satisfaction
● May cost money or even lives
● Security!
Undefined Behavior (UB)
● UB != undefined result
● UB: the program may misbehave depending
on compiler, hardware, system load, current
date, outside temperature, etc
● UB: the program may turn hostile to the host
system or launch nuclear missiles
Memory access bugs
Typical Address Space Layout
Stack
Heap
Globals
Constants (RO)
Code
NULL Page
Malloc Header
User Chunk
Malloc Header
User Chunk
...
Return Address
Local Variables
Return Address
Local Variables
...
Global Variable
Global Variable
...
Virtual Function Table (VPTR)
class Foo {
public:
virtual void f1();
virtual void f2();
private:
int data1;
int data2;
};
VPTR
data1
data2
f1
f2
Buffer overflow (global, heap, stack)
● Access invalid memory
○ SEGV (Good!!)
● Access some other object in memory
○ Read garbage or corrupt data
■ Subvert further execution
○ Leak private data or memory layout
○ Overwrite function pointers or VPTR
int ar[10];
… ar[i]…
Buffer overflow (stack)
int foo(int i) {
int ar[10];
… ar[i] …
● May access the return address and
call arbitrary code
Buffer overflow (stack)
void bad() {
std::cout << "I am BADn";
}
int main() {
long a, b, ar[10];
std::cin >> a >> b;
ar[a] = b;
}
Buffer overflow (heap)
int foo(int i) {
int *ar = new int [10];
… ar[i] ...
● Access malloc header
○ Crash later in new/delete
○ Deallocate wrong amount of memory
Buffer overflow (heap)
void good() {
cout << "I am goodn";
}
void bad() {
cout << "I am BADn";
}
typedef void (*F)(void);
struct Object {
Object(F f) : f_(f) {}
F f_;
};
int main() {
long a, b;
long *x = new long[1];
Object *o = new Object(good);
cin >> a >> b;
x[a] = b;
o->f_();
}
Erroneous type cast
struct Base { int data; };
struct Derived : Base { int more_data; };
Base b;
int main() {
Derived *d = (Derived*)&b;
d->more_data = 0; // OOPS
}
Use-after-free (heap)
● Even worse than heap-buffer-overflow
because touches arbitrary part of heap
int *x = new int[10];
delete [] x;
x[5] = 0;
Use-after-free: privilege escalation
struct Thing { bool has_access; };
int main() {
Thing *security_check = new Thing;
security_check->has_access = false;
delete security_check;
int *x = new int(42);
if (security_check->has_access) // OOPS
cout << "Access Grantedn";
}
Use-after-return (stack)
● Relatively rare, but
combines the worst of
heap-use-after-free and
stack-buffer-overflow
int *x;
void foo() {
int local;
x = &local;
}
*x = ...
stack-u-a-r: VPTR replacement
struct Foo {
virtual void good() {
cout << "goodn";
}};
struct Bar {
virtual void bad() {
cout << "BADn";
}};
long **p;
void leak() {
long *local[10];
p = &local[0]; };
void use(Foo *foo) {
*p[5] -= 0x20;
foo->good(); }
void oops() {
Foo foo;
use(&foo); }
int main() {leak(); oops();}
Use-after-scope (stack)
int *p;
if (...) {
int a;
p = &a;
}
if (...) {
int b[100];
*p = … // oops
}
● Behavior depends on
compiler version, flags,
function size, etc
[De]allocation bugs
● Double-free
● Invalid free
● “new []” vs “delete”
Memory leaks, other resource leaks
● Excessive memory consumption
● [D]DOS attacks
void foo() {
int *x = new int [10];
if (...) return;
delete [] x;
}
Use of uninitialized memory
● Reading garbage from
heap or stack
● Results change from
run-to run
● Values could be
controlled by attacker
void foo() {
int x[10];
if (x[5])
Something();
}
Use after destruction
struct Foo {
void set(string *s) {
s_ = s;
}
~Foo () {
cout << *s_ << endl;
}
string *s_;
};
struct Bar {
Foo foo;
string s;
};
int main() {
Bar b;
b.s = "hello world";
b.foo.set(&b.s);
}
Why SEGV?
● NULL dereference
● Buffer overflow
● Use-after-free
● Read from uninitialized pointer
● Stack overflow
Threading bugs
Mutex Deadlock
void Thread1() {
mu1.lock()
mu2.lock()
mu2.unlock()
mu1.unlock()
}
void Thread2() {
mu2.lock()
mu1.lock()
mu2.unlock()
mu1.unlock()
}
std::mutex mu1, mu2;
Data Races
int var;
void Thread1()
{ var--; }
void Thread2()
{ var++; }
● Two accesses to the same
memory location
● At least one is a store
● No happens-before relation
(no explicit synchronization)
Race on a bitfield
struct Foo {
int a : 20;
int b : 12;
};
Foo foo;
void Thread1() {
foo.a++;
}
void Thread2() {
foo.b++;
}
Race During Destruction
std::set<int> s; // Global variable
void Thread() {
for (int i = 0; i < 1000000; i++)
s.insert(rand());
}
int main() { new std::thread(Thread); }
struct A {
virtual ...
};
struct B : public A {
virtual ...
};
B b;
● ‘A’ is constructed
○ VPTR = A::VPTR
● ‘B’ is constructed
○ VPTR = B::VPTR
● ‘B’ is destroyed
○ VPTR = B::VPTR
● ‘A’ is destroyed
○ VPTR = A::VPTR
VPTR: construction order
Race on VPTR
struct A {
A() : done_(false) {}
virtual void F() { printf("A::Fn"); }
void Done() {
std::unique_lock<std::mutex> lk(m_);
done_ = true;
cv_.notify_one();
}
virtual ~A() { // Wait for Done()
std::unique_lock<std::mutex> lk(m_);
cv_.wait(lk, [this] {return done_;});
}
private:
std::mutex m_; std::condition_variable cv_; bool done_;
};
Race on VPTR (cont)
class B : public A {
public:
virtual void F() { printf("B::Fn"); }
virtual ~B() {}
};
int main() {
A *a = new B;
std::thread t1([a] {a->F(); a->Done();});
std::thread t2([a] {delete a;});
t1.join(); t2.join();
}
Atomicity violationstruct ProtectedVector {
bool empty() { // Protected by m_
std::lock_guard<std::mutex> g(m_);
return v_.empty();
}
void pop_back() { // Protected by m_
std::lock_guard<std::mutex> g(m_);
v_.pop_back();
} ...
private:
std::mutex m_;
std::vector<int> v_;
};
Atomicity violation (cont)
ProtectedVector v;
void Thread1() {
if (!v.empty())
v.pop_back();
}
void Thread2() {
if (!v.empty())
v.pop_back();
}
Threading bugs cause memory bugs
● Racey use-after-free
● Race on reference counter
○ double-free
○ leak
Async-signal safety
● No real threading
● But similar to races
● malloc is not safe in
signal handlers!
struct Node {
Node *next, *prev;
};
Node *head;
void PushFront() {
Node *n = new Node;
n->next = head;
n->prev = NULL;
if(head) head->prev = n;
head = n;
}
void SignalHandler(...) {
assert(!head || !head->prev);
}
Other Undefined Behavior
Init Order Fiasco
// in a.cc
int foo();
int X = foo();
// in b.cc
int Y = X;
int foo() {
return 42;
}
ODR (one definition rule) Violation
// in a.cc/a.so
int X;
// in b.cc/b.so
double X;
Lack of Sequence Point
int i = 0;
i = ++i + i++;
// What is i?
std::map<int> m;
m[10] = m.size();
// What is m[10]?
● Clang and GCC will
give different
answers (GOOD!)
Integer Overflow
Remember:
UB != undefined result
void f (int *array) {
int val = 0x03020100;
for(int i = 0; i < 64; i++) {
array[i] = val;
// Overflow when i==63
val += 0x04040404;
}
}
Some more...
● Shift by oversized or negative value
● Missing return statement
● Infinite loops
● ...
Quiz: find all bugs
#include <thread> // C++11
int main() {
int *a = new int[4];
int *b = new int[4];
std::thread t{[&](){b++;}};
delete a;
t.detach();
return *a + (*++b) + b[3];
}
Links
● https://en.wikipedia.org/wiki/Buffer_overflow
● https://en.wikipedia.org/wiki/Dangling_pointer
● http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
● https://code.google.com/p/thread-sanitizer/wiki/AboutRaces
● (*) http://people.freebsd.org/~lstewart/articles/cpumemory.pdf
● (*) https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Boehm.pdf

More Related Content

What's hot

Алексей Кутумов, Coroutines everywhere
Алексей Кутумов, Coroutines everywhereАлексей Кутумов, Coroutines everywhere
Алексей Кутумов, Coroutines everywhereSergey Platonov
 
Devirtualizing FinSpy
Devirtualizing FinSpyDevirtualizing FinSpy
Devirtualizing FinSpyjduart
 
Implementing Software Machines in Go and C
Implementing Software Machines in Go and CImplementing Software Machines in Go and C
Implementing Software Machines in Go and CEleanor McHugh
 
シェル芸でライフハック(特論)
シェル芸でライフハック(特論)シェル芸でライフハック(特論)
シェル芸でライフハック(特論)Yuki Shimazaki
 
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RI
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RIThe Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RI
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RIEleanor McHugh
 
Rust Mozlando Tutorial
Rust Mozlando TutorialRust Mozlando Tutorial
Rust Mozlando Tutorialnikomatsakis
 
Encrypt all transports
Encrypt all transportsEncrypt all transports
Encrypt all transportsEleanor McHugh
 
Playing 44CON CTF for fun and profit
Playing 44CON CTF for fun and profitPlaying 44CON CTF for fun and profit
Playing 44CON CTF for fun and profit44CON
 
Rust concurrency tutorial 2015 12-02
Rust concurrency tutorial 2015 12-02Rust concurrency tutorial 2015 12-02
Rust concurrency tutorial 2015 12-02nikomatsakis
 
Abusing text/template for data transformation
Abusing text/template for data transformationAbusing text/template for data transformation
Abusing text/template for data transformationArnaud Porterie
 
Whats new in_csharp4
Whats new in_csharp4Whats new in_csharp4
Whats new in_csharp4Abed Bukhari
 
The Ring programming language version 1.5.3 book - Part 25 of 184
The Ring programming language version 1.5.3 book - Part 25 of 184The Ring programming language version 1.5.3 book - Part 25 of 184
The Ring programming language version 1.5.3 book - Part 25 of 184Mahmoud Samir Fayed
 
NSOperation objective-c
NSOperation objective-cNSOperation objective-c
NSOperation objective-cPavel Albitsky
 

What's hot (20)

Алексей Кутумов, Coroutines everywhere
Алексей Кутумов, Coroutines everywhereАлексей Кутумов, Coroutines everywhere
Алексей Кутумов, Coroutines everywhere
 
Devirtualizing FinSpy
Devirtualizing FinSpyDevirtualizing FinSpy
Devirtualizing FinSpy
 
Implementing Software Machines in Go and C
Implementing Software Machines in Go and CImplementing Software Machines in Go and C
Implementing Software Machines in Go and C
 
シェル芸でライフハック(特論)
シェル芸でライフハック(特論)シェル芸でライフハック(特論)
シェル芸でライフハック(特論)
 
Rust-lang
Rust-langRust-lang
Rust-lang
 
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RI
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RIThe Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RI
The Ruby Guide to *nix Plumbing: on the quest for efficiency with Ruby [M|K]RI
 
Rust Mozlando Tutorial
Rust Mozlando TutorialRust Mozlando Tutorial
Rust Mozlando Tutorial
 
Encrypt all transports
Encrypt all transportsEncrypt all transports
Encrypt all transports
 
Playing 44CON CTF for fun and profit
Playing 44CON CTF for fun and profitPlaying 44CON CTF for fun and profit
Playing 44CON CTF for fun and profit
 
Rust concurrency tutorial 2015 12-02
Rust concurrency tutorial 2015 12-02Rust concurrency tutorial 2015 12-02
Rust concurrency tutorial 2015 12-02
 
Qt Rest Server
Qt Rest ServerQt Rest Server
Qt Rest Server
 
Singly Linked List
Singly Linked ListSingly Linked List
Singly Linked List
 
Abusing text/template for data transformation
Abusing text/template for data transformationAbusing text/template for data transformation
Abusing text/template for data transformation
 
Whats new in_csharp4
Whats new in_csharp4Whats new in_csharp4
Whats new in_csharp4
 
The Ring programming language version 1.5.3 book - Part 25 of 184
The Ring programming language version 1.5.3 book - Part 25 of 184The Ring programming language version 1.5.3 book - Part 25 of 184
The Ring programming language version 1.5.3 book - Part 25 of 184
 
Debugging TV Frame 0x0D
Debugging TV Frame 0x0DDebugging TV Frame 0x0D
Debugging TV Frame 0x0D
 
Whispered secrets
Whispered secretsWhispered secrets
Whispered secrets
 
System Calls
System CallsSystem Calls
System Calls
 
NSOperation objective-c
NSOperation objective-cNSOperation objective-c
NSOperation objective-c
 
Rust言語紹介
Rust言語紹介Rust言語紹介
Rust言語紹介
 

Viewers also liked

Viewers also liked (10)

20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20141223 kuznetsov distributed
20141223 kuznetsov distributed20141223 kuznetsov distributed
20141223 kuznetsov distributed
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10
 
20120413 videorecognition konushin_lecture01
20120413 videorecognition konushin_lecture0120120413 videorecognition konushin_lecture01
20120413 videorecognition konushin_lecture01
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01
 
2012 03 14_parallel_programming_lecture05
2012 03 14_parallel_programming_lecture052012 03 14_parallel_programming_lecture05
2012 03 14_parallel_programming_lecture05
 
Quimica
QuimicaQuimica
Quimica
 

Similar to 20140531 serebryany lecture01_fantastic_cpp_bugs

Tema3_Introduction_to_CUDA_C.pdf
Tema3_Introduction_to_CUDA_C.pdfTema3_Introduction_to_CUDA_C.pdf
Tema3_Introduction_to_CUDA_C.pdfpepe464163
 
Rust: код может быть одновременно безопасным и быстрым, Степан Кольцов
Rust: код может быть одновременно безопасным и быстрым, Степан КольцовRust: код может быть одновременно безопасным и быстрым, Степан Кольцов
Rust: код может быть одновременно безопасным и быстрым, Степан КольцовYandex
 
GPU Programming on CPU - Using C++AMP
GPU Programming on CPU - Using C++AMPGPU Programming on CPU - Using C++AMP
GPU Programming on CPU - Using C++AMPMiller Lee
 
Степан Кольцов — Rust — лучше, чем C++
Степан Кольцов — Rust — лучше, чем C++Степан Кольцов — Rust — лучше, чем C++
Степан Кольцов — Rust — лучше, чем C++Yandex
 
Introduction to CUDA C: NVIDIA : Notes
Introduction to CUDA C: NVIDIA : NotesIntroduction to CUDA C: NVIDIA : Notes
Introduction to CUDA C: NVIDIA : NotesSubhajit Sahu
 
DesignPatterns-IntroPresentation.pptx
DesignPatterns-IntroPresentation.pptxDesignPatterns-IntroPresentation.pptx
DesignPatterns-IntroPresentation.pptxMariusIoacara2
 
JVM Mechanics: When Does the JVM JIT & Deoptimize?
JVM Mechanics: When Does the JVM JIT & Deoptimize?JVM Mechanics: When Does the JVM JIT & Deoptimize?
JVM Mechanics: When Does the JVM JIT & Deoptimize?Doug Hawkins
 
Fantom - Programming Language for JVM, CLR, and Javascript
Fantom - Programming Language for JVM, CLR, and JavascriptFantom - Programming Language for JVM, CLR, and Javascript
Fantom - Programming Language for JVM, CLR, and JavascriptKamil Toman
 
Rust LDN 24 7 19 Oxidising the Command Line
Rust LDN 24 7 19 Oxidising the Command LineRust LDN 24 7 19 Oxidising the Command Line
Rust LDN 24 7 19 Oxidising the Command LineMatt Provost
 
Silicon Valley JUG: JVM Mechanics
Silicon Valley JUG: JVM MechanicsSilicon Valley JUG: JVM Mechanics
Silicon Valley JUG: JVM MechanicsAzul Systems, Inc.
 
main.pdf java programming practice for programs
main.pdf java programming practice for programsmain.pdf java programming practice for programs
main.pdf java programming practice for programsRavinderKSingla
 
为什么 rust-lang 吸引我?
为什么 rust-lang 吸引我?为什么 rust-lang 吸引我?
为什么 rust-lang 吸引我?勇浩 赖
 
Let’s talk about microbenchmarking
Let’s talk about microbenchmarkingLet’s talk about microbenchmarking
Let’s talk about microbenchmarkingAndrey Akinshin
 
C++ 11 Features
C++ 11 FeaturesC++ 11 Features
C++ 11 FeaturesJan Rüegg
 
Cross Platform App Development with C++
Cross Platform App Development with C++Cross Platform App Development with C++
Cross Platform App Development with C++Joan Puig Sanz
 
2011.02.18 marco parenzan - modelli di programmazione per le gpu
2011.02.18   marco parenzan - modelli di programmazione per le gpu2011.02.18   marco parenzan - modelli di programmazione per le gpu
2011.02.18 marco parenzan - modelli di programmazione per le gpuMarco Parenzan
 
Blocks and GCD(Grand Central Dispatch)
Blocks and GCD(Grand Central Dispatch)Blocks and GCD(Grand Central Dispatch)
Blocks and GCD(Grand Central Dispatch)Jigar Maheshwari
 
Zn task - defcon russia 20
Zn task  - defcon russia 20Zn task  - defcon russia 20
Zn task - defcon russia 20DefconRussia
 

Similar to 20140531 serebryany lecture01_fantastic_cpp_bugs (20)

Tema3_Introduction_to_CUDA_C.pdf
Tema3_Introduction_to_CUDA_C.pdfTema3_Introduction_to_CUDA_C.pdf
Tema3_Introduction_to_CUDA_C.pdf
 
Rust: код может быть одновременно безопасным и быстрым, Степан Кольцов
Rust: код может быть одновременно безопасным и быстрым, Степан КольцовRust: код может быть одновременно безопасным и быстрым, Степан Кольцов
Rust: код может быть одновременно безопасным и быстрым, Степан Кольцов
 
GPU Programming on CPU - Using C++AMP
GPU Programming on CPU - Using C++AMPGPU Programming on CPU - Using C++AMP
GPU Programming on CPU - Using C++AMP
 
Степан Кольцов — Rust — лучше, чем C++
Степан Кольцов — Rust — лучше, чем C++Степан Кольцов — Rust — лучше, чем C++
Степан Кольцов — Rust — лучше, чем C++
 
Introduction to CUDA C: NVIDIA : Notes
Introduction to CUDA C: NVIDIA : NotesIntroduction to CUDA C: NVIDIA : Notes
Introduction to CUDA C: NVIDIA : Notes
 
DesignPatterns-IntroPresentation.pptx
DesignPatterns-IntroPresentation.pptxDesignPatterns-IntroPresentation.pptx
DesignPatterns-IntroPresentation.pptx
 
JVM Mechanics: When Does the JVM JIT & Deoptimize?
JVM Mechanics: When Does the JVM JIT & Deoptimize?JVM Mechanics: When Does the JVM JIT & Deoptimize?
JVM Mechanics: When Does the JVM JIT & Deoptimize?
 
Fantom - Programming Language for JVM, CLR, and Javascript
Fantom - Programming Language for JVM, CLR, and JavascriptFantom - Programming Language for JVM, CLR, and Javascript
Fantom - Programming Language for JVM, CLR, and Javascript
 
Rust LDN 24 7 19 Oxidising the Command Line
Rust LDN 24 7 19 Oxidising the Command LineRust LDN 24 7 19 Oxidising the Command Line
Rust LDN 24 7 19 Oxidising the Command Line
 
Silicon Valley JUG: JVM Mechanics
Silicon Valley JUG: JVM MechanicsSilicon Valley JUG: JVM Mechanics
Silicon Valley JUG: JVM Mechanics
 
main.pdf java programming practice for programs
main.pdf java programming practice for programsmain.pdf java programming practice for programs
main.pdf java programming practice for programs
 
为什么 rust-lang 吸引我?
为什么 rust-lang 吸引我?为什么 rust-lang 吸引我?
为什么 rust-lang 吸引我?
 
Let’s talk about microbenchmarking
Let’s talk about microbenchmarkingLet’s talk about microbenchmarking
Let’s talk about microbenchmarking
 
Oop Presentation
Oop PresentationOop Presentation
Oop Presentation
 
C++ 11 Features
C++ 11 FeaturesC++ 11 Features
C++ 11 Features
 
Cross Platform App Development with C++
Cross Platform App Development with C++Cross Platform App Development with C++
Cross Platform App Development with C++
 
2011.02.18 marco parenzan - modelli di programmazione per le gpu
2011.02.18   marco parenzan - modelli di programmazione per le gpu2011.02.18   marco parenzan - modelli di programmazione per le gpu
2011.02.18 marco parenzan - modelli di programmazione per le gpu
 
Blocks and GCD(Grand Central Dispatch)
Blocks and GCD(Grand Central Dispatch)Blocks and GCD(Grand Central Dispatch)
Blocks and GCD(Grand Central Dispatch)
 
Why learn Internals?
Why learn Internals?Why learn Internals?
Why learn Internals?
 
Zn task - defcon russia 20
Zn task  - defcon russia 20Zn task  - defcon russia 20
Zn task - defcon russia 20
 

More from Computer Science Club

20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09Computer Science Club
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02Computer Science Club
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01Computer Science Club
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04Computer Science Club
 
20130928 automated theorem_proving_harrison
20130928 automated theorem_proving_harrison20130928 automated theorem_proving_harrison
20130928 automated theorem_proving_harrisonComputer Science Club
 
20130915 lecture1 2-tarski_matiyasevich
20130915 lecture1 2-tarski_matiyasevich20130915 lecture1 2-tarski_matiyasevich
20130915 lecture1 2-tarski_matiyasevichComputer Science Club
 
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachevComputer Science Club
 
20130429 dynamic c_c++_program_analysis-alexey_samsonov
20130429 dynamic c_c++_program_analysis-alexey_samsonov20130429 dynamic c_c++_program_analysis-alexey_samsonov
20130429 dynamic c_c++_program_analysis-alexey_samsonovComputer Science Club
 
20130407 csseminar ulanov_sentiment_analysis
20130407 csseminar ulanov_sentiment_analysis20130407 csseminar ulanov_sentiment_analysis
20130407 csseminar ulanov_sentiment_analysisComputer Science Club
 

More from Computer Science Club (20)

20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04
 
20140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-0320140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-03
 
20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture2_matiyasevich
20131006 h10 lecture2_matiyasevich20131006 h10 lecture2_matiyasevich
20131006 h10 lecture2_matiyasevich
 
20130922 h10 lecture1_matiyasevich
20130922 h10 lecture1_matiyasevich20130922 h10 lecture1_matiyasevich
20130922 h10 lecture1_matiyasevich
 
20130928 automated theorem_proving_harrison
20130928 automated theorem_proving_harrison20130928 automated theorem_proving_harrison
20130928 automated theorem_proving_harrison
 
20130922 lecture3 matiyasevich
20130922 lecture3 matiyasevich20130922 lecture3 matiyasevich
20130922 lecture3 matiyasevich
 
20130915 lecture1 2-tarski_matiyasevich
20130915 lecture1 2-tarski_matiyasevich20130915 lecture1 2-tarski_matiyasevich
20130915 lecture1 2-tarski_matiyasevich
 
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev
20130420 mathematics and_internet-advertizing_in_internet-viktor_lobachev
 
20130429 dynamic c_c++_program_analysis-alexey_samsonov
20130429 dynamic c_c++_program_analysis-alexey_samsonov20130429 dynamic c_c++_program_analysis-alexey_samsonov
20130429 dynamic c_c++_program_analysis-alexey_samsonov
 
20130407 csseminar ulanov_sentiment_analysis
20130407 csseminar ulanov_sentiment_analysis20130407 csseminar ulanov_sentiment_analysis
20130407 csseminar ulanov_sentiment_analysis
 
20120321 csseminar ulanov_duplicate
20120321 csseminar ulanov_duplicate20120321 csseminar ulanov_duplicate
20120321 csseminar ulanov_duplicate
 

20140531 serebryany lecture01_fantastic_cpp_bugs

  • 1. [2/2] Find scary C++ bugs before they find you Konstantin Serebryany, Google May 2014 @compsciclub.ru [1/2] Fantastic C++ Bugs and Where to Find Them
  • 2. Agenda ● How bad the bugs are? ● Most common C++ bugs ○ Memory access bugs ○ Threading bugs ○ Other undefined behavior bugs ● Quiz ● Lecture 2/2: tools that find bugs
  • 3. Why bugs are scary ● Increased development cost ● Increased CPU/RAM consumption ● Decreased user satisfaction ● May cost money or even lives ● Security!
  • 4. Undefined Behavior (UB) ● UB != undefined result ● UB: the program may misbehave depending on compiler, hardware, system load, current date, outside temperature, etc ● UB: the program may turn hostile to the host system or launch nuclear missiles
  • 6. Typical Address Space Layout Stack Heap Globals Constants (RO) Code NULL Page Malloc Header User Chunk Malloc Header User Chunk ... Return Address Local Variables Return Address Local Variables ... Global Variable Global Variable ...
  • 7. Virtual Function Table (VPTR) class Foo { public: virtual void f1(); virtual void f2(); private: int data1; int data2; }; VPTR data1 data2 f1 f2
  • 8. Buffer overflow (global, heap, stack) ● Access invalid memory ○ SEGV (Good!!) ● Access some other object in memory ○ Read garbage or corrupt data ■ Subvert further execution ○ Leak private data or memory layout ○ Overwrite function pointers or VPTR int ar[10]; … ar[i]…
  • 9. Buffer overflow (stack) int foo(int i) { int ar[10]; … ar[i] … ● May access the return address and call arbitrary code
  • 10. Buffer overflow (stack) void bad() { std::cout << "I am BADn"; } int main() { long a, b, ar[10]; std::cin >> a >> b; ar[a] = b; }
  • 11. Buffer overflow (heap) int foo(int i) { int *ar = new int [10]; … ar[i] ... ● Access malloc header ○ Crash later in new/delete ○ Deallocate wrong amount of memory
  • 12. Buffer overflow (heap) void good() { cout << "I am goodn"; } void bad() { cout << "I am BADn"; } typedef void (*F)(void); struct Object { Object(F f) : f_(f) {} F f_; }; int main() { long a, b; long *x = new long[1]; Object *o = new Object(good); cin >> a >> b; x[a] = b; o->f_(); }
  • 13. Erroneous type cast struct Base { int data; }; struct Derived : Base { int more_data; }; Base b; int main() { Derived *d = (Derived*)&b; d->more_data = 0; // OOPS }
  • 14. Use-after-free (heap) ● Even worse than heap-buffer-overflow because touches arbitrary part of heap int *x = new int[10]; delete [] x; x[5] = 0;
  • 15. Use-after-free: privilege escalation struct Thing { bool has_access; }; int main() { Thing *security_check = new Thing; security_check->has_access = false; delete security_check; int *x = new int(42); if (security_check->has_access) // OOPS cout << "Access Grantedn"; }
  • 16. Use-after-return (stack) ● Relatively rare, but combines the worst of heap-use-after-free and stack-buffer-overflow int *x; void foo() { int local; x = &local; } *x = ...
  • 17. stack-u-a-r: VPTR replacement struct Foo { virtual void good() { cout << "goodn"; }}; struct Bar { virtual void bad() { cout << "BADn"; }}; long **p; void leak() { long *local[10]; p = &local[0]; }; void use(Foo *foo) { *p[5] -= 0x20; foo->good(); } void oops() { Foo foo; use(&foo); } int main() {leak(); oops();}
  • 18. Use-after-scope (stack) int *p; if (...) { int a; p = &a; } if (...) { int b[100]; *p = … // oops } ● Behavior depends on compiler version, flags, function size, etc
  • 19. [De]allocation bugs ● Double-free ● Invalid free ● “new []” vs “delete”
  • 20. Memory leaks, other resource leaks ● Excessive memory consumption ● [D]DOS attacks void foo() { int *x = new int [10]; if (...) return; delete [] x; }
  • 21. Use of uninitialized memory ● Reading garbage from heap or stack ● Results change from run-to run ● Values could be controlled by attacker void foo() { int x[10]; if (x[5]) Something(); }
  • 22. Use after destruction struct Foo { void set(string *s) { s_ = s; } ~Foo () { cout << *s_ << endl; } string *s_; }; struct Bar { Foo foo; string s; }; int main() { Bar b; b.s = "hello world"; b.foo.set(&b.s); }
  • 23. Why SEGV? ● NULL dereference ● Buffer overflow ● Use-after-free ● Read from uninitialized pointer ● Stack overflow
  • 25. Mutex Deadlock void Thread1() { mu1.lock() mu2.lock() mu2.unlock() mu1.unlock() } void Thread2() { mu2.lock() mu1.lock() mu2.unlock() mu1.unlock() } std::mutex mu1, mu2;
  • 26. Data Races int var; void Thread1() { var--; } void Thread2() { var++; } ● Two accesses to the same memory location ● At least one is a store ● No happens-before relation (no explicit synchronization)
  • 27. Race on a bitfield struct Foo { int a : 20; int b : 12; }; Foo foo; void Thread1() { foo.a++; } void Thread2() { foo.b++; }
  • 28. Race During Destruction std::set<int> s; // Global variable void Thread() { for (int i = 0; i < 1000000; i++) s.insert(rand()); } int main() { new std::thread(Thread); }
  • 29. struct A { virtual ... }; struct B : public A { virtual ... }; B b; ● ‘A’ is constructed ○ VPTR = A::VPTR ● ‘B’ is constructed ○ VPTR = B::VPTR ● ‘B’ is destroyed ○ VPTR = B::VPTR ● ‘A’ is destroyed ○ VPTR = A::VPTR VPTR: construction order
  • 30. Race on VPTR struct A { A() : done_(false) {} virtual void F() { printf("A::Fn"); } void Done() { std::unique_lock<std::mutex> lk(m_); done_ = true; cv_.notify_one(); } virtual ~A() { // Wait for Done() std::unique_lock<std::mutex> lk(m_); cv_.wait(lk, [this] {return done_;}); } private: std::mutex m_; std::condition_variable cv_; bool done_; };
  • 31. Race on VPTR (cont) class B : public A { public: virtual void F() { printf("B::Fn"); } virtual ~B() {} }; int main() { A *a = new B; std::thread t1([a] {a->F(); a->Done();}); std::thread t2([a] {delete a;}); t1.join(); t2.join(); }
  • 32. Atomicity violationstruct ProtectedVector { bool empty() { // Protected by m_ std::lock_guard<std::mutex> g(m_); return v_.empty(); } void pop_back() { // Protected by m_ std::lock_guard<std::mutex> g(m_); v_.pop_back(); } ... private: std::mutex m_; std::vector<int> v_; };
  • 33. Atomicity violation (cont) ProtectedVector v; void Thread1() { if (!v.empty()) v.pop_back(); } void Thread2() { if (!v.empty()) v.pop_back(); }
  • 34. Threading bugs cause memory bugs ● Racey use-after-free ● Race on reference counter ○ double-free ○ leak
  • 35. Async-signal safety ● No real threading ● But similar to races ● malloc is not safe in signal handlers! struct Node { Node *next, *prev; }; Node *head; void PushFront() { Node *n = new Node; n->next = head; n->prev = NULL; if(head) head->prev = n; head = n; } void SignalHandler(...) { assert(!head || !head->prev); }
  • 37. Init Order Fiasco // in a.cc int foo(); int X = foo(); // in b.cc int Y = X; int foo() { return 42; }
  • 38. ODR (one definition rule) Violation // in a.cc/a.so int X; // in b.cc/b.so double X;
  • 39. Lack of Sequence Point int i = 0; i = ++i + i++; // What is i? std::map<int> m; m[10] = m.size(); // What is m[10]? ● Clang and GCC will give different answers (GOOD!)
  • 40. Integer Overflow Remember: UB != undefined result void f (int *array) { int val = 0x03020100; for(int i = 0; i < 64; i++) { array[i] = val; // Overflow when i==63 val += 0x04040404; } }
  • 41. Some more... ● Shift by oversized or negative value ● Missing return statement ● Infinite loops ● ...
  • 42. Quiz: find all bugs #include <thread> // C++11 int main() { int *a = new int[4]; int *b = new int[4]; std::thread t{[&](){b++;}}; delete a; t.detach(); return *a + (*++b) + b[3]; }
  • 43. Links ● https://en.wikipedia.org/wiki/Buffer_overflow ● https://en.wikipedia.org/wiki/Dangling_pointer ● http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html ● https://code.google.com/p/thread-sanitizer/wiki/AboutRaces ● (*) http://people.freebsd.org/~lstewart/articles/cpumemory.pdf ● (*) https://www.usenix.org/legacy/event/hotpar11/tech/final_files/Boehm.pdf