POWER MOS  TEC H NOLOGY PROCESS
X  ~ 600   m N + EPY Substrate  N +    ~ 10 m   • cm N +
N + N - BUFFER LAYER N - X  ~ 10   m  ~ 5    • cm Low Voltage ~ 100 V N - X  ~ 80   m  ~ 50    • cm Hight Voltage ~ 1000 V N -
N + N - X oxide  ~ 1   m OXIDE GROWTH SiO 2
N + N - Mask and  chemical attach Photoresist Photolitografy
N + N - P  - Ring Creation Ionic Implantation P (B o Al) and Diffusion
N + N - P - P + Ionic Implantation P +   Deep-body (P + )   x j  ~  3 ÷ 6    m C s  ~ 10 19  at/cm 3
N + N - P + P - Growth gate  oxide Polysilicon  deposition Oxide etching Gate  Creation
P + N - N + Gate Creation Polysilicon Gate oxide
P P + N - N + Implantation and diffusion B Photo-technic Channel Creation
Source Implantation N ++ P P + N - N + Diffusion Channel Creation
Dielectric Deposition N ++ P P + N - N + Contact Metallization Metal Dielectric
PMOS Structure N ++ P P + N - N + Metal Dielectric Polysilicon Gate Oxide
N ++ P P + N - N + W c L c
N ++ P P + N - N + 3D PMOS Structure
G S Layout PMOS
2D Simulation PMOS Cell 10 20 10 17 10 14 1  m at/cm 3
Parasitic Elements  in PowerMOS Structure
D G S PowerMOS Structure S G D
D G N - P + S Parasitic Elements in PowerMOS Structure S G D
G D N - P + N + S Parasitic Elements in PowerMOS Structure S G D
G D C R p N - P + N + S Parasitic Elements in PowerMOS Structure S G D
Parasitic ON conditions i · R p    V be Static Conditions Dynamic Conditions D C R p S dt dV i = C dt dV = R p  · C V be
PowerMOS Current capability
G S D + + - 0< V GS  < V T V DS  > 0 I D  = 0
G S D + + - V GS     V T V DS  > 0
V GS  > V T V DS  > 0 I D  > 0 G S D + + -
V DS  [V] I D  [A] R ON V G Current capability:  I D   On State: R ON Output Caracteristics PMOS 10 20 30 10 20 30 0 40 0
V DS  [V] I DS  [A] T=25  o C T=125  o C Current - Temperature 5 0 10 15 0 40 80 120  T  I D = f (  ,  )  T  V T  T 
The PMOS structure contain inside parasitic  Bipolar elements. The current flow vertically The current capability depends from geometric  parameters (W C ) and physical ones (X ox  , L C  , V T  ) Ron increasing with temperature
PMOS  Ron
G D S N - P + N + j-fet parasitic S G D
R epy R c R acc R jf R front R back R DSon  = R c  + R acc  + R jf  + R epy  + R front  + R back
R epy R epy R epy  =   N  X N A - k -
R c Channel resistance L c L c   Channel  Length W c   Channel  Perimeter L c d  Q N 1 W C L C R c  =  =   C ox (V G -V T ) 1 W C L C
Channel resistance R c R c  =     (V G -V T ) 1 W C L C X ox L c d
R acc  =     (V G -V T ) k 2 W C d X ox Channel resistance R acc d L c d d Distance  cell to cell
R j-fet  =  f(  )  j-fet Resistance d, Wc    , X j N - L c d R j-fet X j N -
R ON  of high voltage PMOS (> 500 V)  Depends from epitaxial layer  R epy  R ON  of low voltage PMOS (< 100 V) decrease with: high integration density
BV DSS  [ V ] 10 100 1000 10000 R ON  AREA [m   cm 2  ] 100 1 10 0.1 1000 PMOS Ron  PMOS
PMOS VLSI tecnology metal gate

1 Technology

  • 1.
    POWER MOS TEC H NOLOGY PROCESS
  • 2.
    X ~600  m N + EPY Substrate N +  ~ 10 m  • cm N +
  • 3.
    N + N- BUFFER LAYER N - X ~ 10  m  ~ 5  • cm Low Voltage ~ 100 V N - X ~ 80  m  ~ 50  • cm Hight Voltage ~ 1000 V N -
  • 4.
    N + N- X oxide ~ 1  m OXIDE GROWTH SiO 2
  • 5.
    N + N- Mask and chemical attach Photoresist Photolitografy
  • 6.
    N + N- P - Ring Creation Ionic Implantation P (B o Al) and Diffusion
  • 7.
    N + N- P - P + Ionic Implantation P + Deep-body (P + ) x j ~ 3 ÷ 6  m C s ~ 10 19 at/cm 3
  • 8.
    N + N- P + P - Growth gate oxide Polysilicon deposition Oxide etching Gate Creation
  • 9.
    P + N- N + Gate Creation Polysilicon Gate oxide
  • 10.
    P P +N - N + Implantation and diffusion B Photo-technic Channel Creation
  • 11.
    Source Implantation N++ P P + N - N + Diffusion Channel Creation
  • 12.
    Dielectric Deposition N++ P P + N - N + Contact Metallization Metal Dielectric
  • 13.
    PMOS Structure N++ P P + N - N + Metal Dielectric Polysilicon Gate Oxide
  • 14.
    N ++ PP + N - N + W c L c
  • 15.
    N ++ PP + N - N + 3D PMOS Structure
  • 16.
  • 17.
    2D Simulation PMOSCell 10 20 10 17 10 14 1  m at/cm 3
  • 18.
    Parasitic Elements in PowerMOS Structure
  • 19.
    D G SPowerMOS Structure S G D
  • 20.
    D G N- P + S Parasitic Elements in PowerMOS Structure S G D
  • 21.
    G D N- P + N + S Parasitic Elements in PowerMOS Structure S G D
  • 22.
    G D CR p N - P + N + S Parasitic Elements in PowerMOS Structure S G D
  • 23.
    Parasitic ON conditionsi · R p  V be Static Conditions Dynamic Conditions D C R p S dt dV i = C dt dV = R p · C V be
  • 24.
  • 25.
    G S D+ + - 0< V GS < V T V DS > 0 I D = 0
  • 26.
    G S D+ + - V GS  V T V DS > 0
  • 27.
    V GS > V T V DS > 0 I D > 0 G S D + + -
  • 28.
    V DS [V] I D [A] R ON V G Current capability: I D On State: R ON Output Caracteristics PMOS 10 20 30 10 20 30 0 40 0
  • 29.
    V DS [V] I DS [A] T=25 o C T=125 o C Current - Temperature 5 0 10 15 0 40 80 120  T  I D = f ( , )  T  V T  T 
  • 30.
    The PMOS structurecontain inside parasitic Bipolar elements. The current flow vertically The current capability depends from geometric parameters (W C ) and physical ones (X ox , L C , V T ) Ron increasing with temperature
  • 31.
  • 32.
    G D SN - P + N + j-fet parasitic S G D
  • 33.
    R epy Rc R acc R jf R front R back R DSon = R c + R acc + R jf + R epy + R front + R back
  • 34.
    R epy Repy R epy =  N  X N A - k -
  • 35.
    R c Channelresistance L c L c Channel Length W c Channel Perimeter L c d  Q N 1 W C L C R c = =  C ox (V G -V T ) 1 W C L C
  • 36.
    Channel resistance Rc R c =  (V G -V T ) 1 W C L C X ox L c d
  • 37.
    R acc =  (V G -V T ) k 2 W C d X ox Channel resistance R acc d L c d d Distance cell to cell
  • 38.
    R j-fet = f( ) j-fet Resistance d, Wc  , X j N - L c d R j-fet X j N -
  • 39.
    R ON of high voltage PMOS (> 500 V) Depends from epitaxial layer R epy R ON of low voltage PMOS (< 100 V) decrease with: high integration density
  • 40.
    BV DSS [ V ] 10 100 1000 10000 R ON AREA [m  cm 2 ] 100 1 10 0.1 1000 PMOS Ron PMOS
  • 41.