This document provides a survey of content-based image retrieval (CBIR) techniques using relevance feedback, interactive genetic algorithms, and neuro-fuzzy logic. It discusses how relevance feedback can help reduce the semantic gap between low-level image features and high-level concepts to improve retrieval accuracy. Interactive genetic algorithms make the retrieval process more interactive by evolving image content based on user feedback. Neuro-fuzzy systems combine fuzzy logic and neural networks to establish decoupled subsystems that perform classification and retrieval. The paper analyzes various CBIR systems that use these relevance feedback techniques and their performance based on precision, recall, and convergence ratio. It also outlines applications of CBIR in areas like crime prevention, security, medical diagnosis, and design.