SlideShare a Scribd company logo
1 of 69
Sparse and Redundant
Representations in Signal Processing

               Aggelos K. Katsaggelos

                     AT&T Chaired Professor
                     Northwestern University
                       Department of EECS
      Director Motorola Center for Seamless Communications
                    Department of Linguistics
               NorthSide University Hospital System
                   Argonne National Laboratory
                        Evanston, IL 60208
                www.ece.northwestern.edu/~aggk

          2nd Greek Signal Processing Jam, Thessaloniki, May 17, 2012
Talk Outline
• Underdetermined Linear Systems and Sparsity
• Processing of Sparsely‐Generated Signals
  – Compressive Sensing
  – Video Indexing and Retrieval
  – Recommendation Systems (Matrix Completion)
  – Robust PCA
• Final Thoughts
Underdetermined Linear Systems

• Problem formulation
 Ax = b     A is n £ m; n < m              A full rank

• Solution approach: Regularization


 • Choices of 
                 Unique solution, strictly convex function

                 More than one solutions, convex function

                 Even if infinitely many solutions, there exists at least 
                    one with at most n non‐zeros – sparse solution
Promoting Sparse Solutions

• As we move from     to     we promote sparser 
  solutions
• Do     norms with p<1 (no formal norms) lead to 
  sparser solutions?
• 0<p<1 non‐convex optimization
Sparsifying Norms




         Elad, Sparse and Redundant Representations, Springer, 2010
Promoting Sparse Solutions

    minimizekxk0 such that y = Ax


•  norm (p=0); extreme among all sparsifying norms; 
  combinatorial search, problem NP‐hard
• Under what conditions can uniqueness of solution 
  be claimed? 
• Can we perform a simple test to verify that an 
  available candidate solution is a global minimizer?
  (answers through coherence, sparc, and RIP)
Signal Processing Perspective
• Finding sparse solutions to underdetermined linear systems is 
  a better‐behaved problem
• A much more practical and relevant notion than we might 
  have thought of a few years ago
• Many media types can be sparsely represented
• Signal representation problem: given a dictionary A find a 
  single representation among the many possible ones for b
• With the     norm both the forward transform (from b to x) 
  and the inverse transform (from x to b) are linear
• With the     norm the inverse transform is linear but the 
  forward is highly non‐linear
Processing of Sparsely‐Generated 
                 Signals
     minimize kxk0
     subject to k y ¡ Ax k2 < ²

•   Compressed sensing 
•   Analysis (atomic decomposition)
•   Compression 
•   Denoising
•   Inverse problems (deblurring, SR)
•   Morphological component analysis (inpainting)
•   Sparsity‐based recognition
•   Sparse‐modeling image classification
•   Computational Photography
Dictionaries for Sparse Representation
• ON basis vs overcomplete dictionaries
• Choice of sparsifying dictionary critical. Based on
   – Mathematical modeling of data 
     (e.g., wavelets, wavelet packets and curvelets)
   – Training data
• Given A, find X (sparse coding)
• Design dictionary for sparse representation (solve for A 
  and X simultaneously)
• Sparse modeling for image classification (add 
  discriminative terms to the above formulation)
• Learning to sense (solve for A, X and S – sensing matrix)
Learning Restoration Approach




 R. Nakagaki and A. K. Katsaggelos, "A VQ‐Based Blind Image Restoration Algorithm," 
 IEEE Trans. Image Processing, vol.12, no.9, pp. 1044‐1053, Sept. 2003. 
Learning Restoration Approach
A Compressive Sensing System
Sensing by Sampling
Compressive Data Acquisition
• When data is sparse/compressible, can directly acquire a 
  condensed representation with no/little information loss
• Random projection will work




                                      Candes-Remberg-Tao, Donoho, 2004
Universality
• Random measurements can be used for signals sparse in any 
  basis
Millimeter‐Wave Radiometry
Usefulness of millimeter waves:
  Atmospheric Propagation: Millimeter Wave Radiation is 
  attenuated millions of times less in clouds, fog, smoke, 
  snow and sandstorms than visible or IR radiation.
                       Yujiri L. et al. 2006 “Passive Millimeter Wave Imaging”
 Differences in 
 emissivity of                                              *
 objects: Better 
 thermal contrast.




                           *Sub‐millimeter Wave λ ~[0.3 ‐ 1]mm 
Advantages
        Provide target information under all weather conditions.
             Visible and IR require clear atmospheric conditions for reliable operation.
        Offer better thermal contrast of objects:
             Emissivity differences of objects at these wavelengths.
             Reflectivity variations of common objects for millimeter waves:  (metal ~ 1, 
             water 0.6 and concrete 0.2).
        Minimally affected by sun or artificial illumination:
             Day and night application.


                              Atmospheric Attenuation                Apparent Temperature
                                 (drizzle and fog)                      (sky at 94 GHz)
          PMMW                      0.07 ~ 3 dB/km                             70 K
       Visible and IR                 100 dB/km                               220 K
Gopalsami et al. 2010 “Passive Millimeter Wave Imaging and Spectroscopy System for Terrestrial Remote
                                               Sensing”
Passive Millimeter Wave Imagers
Main types of Passive Millimeter Wave Imagers:
  Single Detector or Single Pixel Imager.
– Allows for the use of only one detector.
– Not practical for real time imaging due to the point‐
  by‐point required scanning.

  Array of Detectors (similar to CCD or CMOS optical 
  imagers).
– Suitable for real time imaging.
– Complex and expensive at mm wavelengths
Lens Scanning Imaging System 
           at ANL




   • Dicke‐switched radiometer
   • 16 Channel, each 0.5 GHz BW, spanning 146 to 154 GHz
   • 6 inch imaging lens
PMMW Image of Outdoor Scene 
Upper part of car body looks cooler due to cold‐sky‐reflected radiation.
The lower part of the car looks hotter from ground‐reflected radiation.
                                              R
Compressive Sensing System
6 inch imaging lens
                                Dicke‐switched Radiometer




                                                              Reconstruction
        Mask                                               and Super‐Resolution



 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz.
 Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding 
 cable noise) but a coded aperture mask is scanned at the focal plane of the 
 lens to produce a set of  coded aperture images
Compressive Sensing System
        Without Mask                                         With Mask




     Imaging and Spectroscopy                  Compressive Sensing Imaging System
              System
 Gopalsami et al. 2009 “Passive Millimeter   Babacan et al. 2011 “Compressive Passive Millimeter-
Wave Imaging and Spectroscopy System for                        Wave Imaging”
       Terrestrial Remote Sensing”
                                               Gopalsami et al. 2011 “Compressive Sampling in
                                                      passive millimeter-wave imaging”
Mask Construction
Compressive Sensing System
6 inch imaging lens
                                Dicke‐switched Radiometer




                                                              Reconstruction
        Mask                                               and Super‐Resolution



 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz.
 Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding 
 cable noise) but a coded aperture mask is scanned at the focal plane of the 
 lens to produce a set of  coded aperture images
Sparse Representation
Passive Millimeter Wave (PMMW) Images  are  
smooth and they contain no texture information.
If we ignore noise, gradient sparsity is expected to be 
higher than in natural images.

      Car Image




    Scissors Image
A Bayesian Compressive Sensing 
            Algorithm
An empirical Bayesian formulation is used, inference is based on an 
approximation of the posterior distribution.
We assume Gaussian noise; the forward model is given by:
                                  μ            ¶
                           N=2      ¯
            p (yjx; ¯) = ¯     exp ¡ ky ¡ ©xk2
                                    2
Due to the ill‐posedness of the inverse problem, it is necessary to use a 
priori information about the unknown image x. 
In CS, a requirement for successful reconstruction is that the signal is 
compressible in some basis, i.e., a basis exists in which the signal can be 
well represented using a small number of non‐zero coefficients.
A Bayesian Compressive Sensing 
           Algorithm
 For images, high spatial frequencies are represented by edges.
 Hence, it can be assumed that the output of a high pass filter is sparse.
 This knowledge is modeled using the following image prior:
             L
                                       Ã         L
                                                                 !
             X                               1   X
p(xjA) / j         DT ADk j¡1=2 exp ¡
                    k                                  xT DT ADk x
                                                           k
                                             2
             k=1                                 k=1


 Dk: High frequency filter matrices (2 horizontal, 2 vertical, 2 diagonal)
 A: Diagonal covariance matrix with a variance parameter for each pixel:
                      A = diag (®i )       i = 1; : : : ; N
 Following a fully Bayesian approach, we assign gamma priors to the 
                      ¯ ;®
 hyperparameters:            i
A Bayesian Compressive Sensing 
             Algorithm
  We use the evidence procedure and approximate the posterior by  xxxxx
                   p (x; A; ¯jy) = p (xjy; A; ¯) p (A; ¯jy)
  The first distribution is found to be Gaussian:

    p (xjy; A; ¯) = N (xj¹x ; §x )
                                                            N
                                                            X
    ¹x = §x ¯©T y                  §¡1 = ¯©T © +
                                    x                             Dk ADk
                                                            k=1

  We can also maximize                                             y) with respect to       and    
                            p (A; ¯jy) / p (A; ¯;                                     A
                      A
¯ ; the maximizer for       is given by:
         1+       2(a0
                  ¡ 1)                      Xh
                                            L
                                                                    ¡              ¢ i
    ®i =             ®
                                     vi =          (Dk ¹x )2 + DT Dk §x
                                                           i    k                    ii
           vi + 2b0
                  ®                         k=1
Reconstruction Results –
                Comparison
  Comparison with state of the art algorithm that solves the min‐TV problem with 
  quadratic constraints: 
                        subject to 
                                              Original Image
Bayesian




           10%         30%           50%           70%            90%
min-TV




           10%         30%           50%           70%            90%
Reconstruction Results –
             Comparison
Comparison with state of the art algorithm that solves the min‐TV problem with 
quadratic constraints: 
                      subject to 
Results – Algorithm Comparison
                  Reconstruction Comparison (Gaussian)                                                 Reconstruction Comparison (Binary)
       40                                                                                     40
                                                                                                         Proposed Bayesian Method
       38           Bayesian                                                                             TVAL3




                                                             PSNR range between experiments
                    TVAL3                                                                     35
       36
                    l1MAGIC
       34           NESTA
                                                                                              30
       32
PSNR




       30
                                                                                              25
       28

       26
                                                                                              20
       24

       22
                                                                                              15
       20
            0      0.2         0.4     0.6       0.8     1                                         0   0.2       0.4        0.6       0.8   1
                         #Measurements/#Pixels                                                               #Measurements/#Pixels



                The proposed method outperforms the others.
                It is more robust to measurement matrix selection. 
MSE Comparison
                             PSNR Comparison
       40
                     Bayesian (eq - spaced)
                     Bayesian (random) - mean of 10 experiments
                     TVAL3 (random) - mean of 10 experiments
       35




       30
PSNR




       25




       20




       15
        0.1   0.2   0.3     0.4       0.5      0.6       0.7      0.8   0.9
                          #Measurements/#Pixels
Sparse Representation for Video 
     Indexing and Retrieval
Motivation – QBE Case

                                     Content Provider Video DB



                      Network
                                            Located full size program




           Query by Example
           from a 5-sec QCIF video
           Highlights


Mobile

                                         TV Set
Luminance Field Trace (LUFT)

                                                                            PCA
                                                                                                        +
                                               scale




                                                               • Scaling to a common spatial scale,
                                 101
                               201                             for example,11x9 for noise reduction
                              1
                                                               and handling frame size variation

                                                     301       • PCA to identify the trace residing
                                                               subspace in R11x9.

     “foreman” seq in 2D (1st and 2nd component) PCA space
L. Gao, Z. Li, and A.K. Katsaggelos, "An Efficient Video Indexing and Retrieval Algorithm using the Luminance Field," 
IEEE Trans. Circuits and Systems for Video Technology, vol. 19, issue 10, 1566‐1570, Oct. 2009. 
Video Trace Examples
video as trace in PCA space with 1st,2nd and 3rd components


                                                                  •“foreman” : 400
      40                                                          frames
      30                                                          •“stefan” : 300 frames
      20                                                          •“mother-daughter”:
      10                                                          300 frames
       0                                                          •“mixed”: 40 shots of
      -10                                                         60 frames each from
      -20
       40
                                                                  randomly selected
            20
                                                      200
                                                            250   sequences.
                 0
                                                150
                     -20                  100
                                     50
                           -40   0




   . “foreman” . “stefan” . “mother-daughter” . “mixed”
Indexing Scheme
• For large video 
  collections, 
  exhaustive 
  search is not 
  efficient 

• Need to have 
  efficient  Query clip
  indexing                Example of video traces of
  scheme                  50K frames from TRECVID
Top‐down Iterative Data 
                       Partition Scheme
     •   Project data to the axis with the largest variance
     •   Split into Left and Right sets at median value 
     •   Store cutting plane index and median value, as well as Min Bounding 
         Box (MBB) at each node                                      (x2, v1)

                    R2
         (x1, v2)                   R4
                                                    (x1, v2)         (x1, v3)

                                       (x1, v3)

            R1
                                    R3               R1         R2        R3         R4
                         (x2, v1)

                                                               Kd-Tree: L=2

•   At retrieval time, query clip is traversing the tree by MBB intersections and 
    splits
Indexing Scheme
                                                                                         • Example:
                            luma space trace partition: L=12, d=2
      600
                                                                                            – For 5 hours of video from 
      500


      400
                                                                                              NIST TRECVID
      300                                                                                   – An index tree of 12 levels, 
      200
                                                                                              and 4096 leaf nodes level 
                                                                                              MBBs are plotted. Each 
x2




      100


        0


     −100
                                                                                              node has about 132 
     −200                                                                                     frames
     −300
                                                                                            – Indexing space dimension 
     −400
            0   200   400         600       800
                                             x1
                                                      1000          1200   1400   1600
                                                                                              shown d=2

 – Time to build this index: 530 sec on an 2.4GHz Celeron/256M 
   RAM Laptop in Matlab (not bad at all). 
Query Clip Example

• A positive query example
   – Query clip is localized 
     with a subset of leaf 
     nodes
   – Then the query clip is 
     matched
Sparse Representation
• Video Query

 • Database Ordering




  • Problem Formulation



P. Ruiz et al, “Video Retrieval using Sparse Bayesian Reconstruction”, ICME, July 2011.
Bayesian Formulation
• Joint distribution


• Noise Model


• Hierarchical Laplace prior on x



 S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Bayesian Compressive Sensing using Laplace Prors," 
 IEEE Transactions on Image Processing, vol. 19, issue 1, 53‐64, January 2010. 
Retrieval Algorithm
•         Gaussian



• Hyperparameter estimation




• Also greedy solution approach
Experimental Results
Experimental Results
Recommender Systems
•   E‐commerce leaders have made recommender systems a salient part of
    their websites
•   RS are based on two strategies: content‐filtering and collaborative 
    filtering
•   Content‐filtering approaches build product and user profiles which are 
    associated by programs; they rely on external information that may not be 
    available or easy to collect
•   Collaborative filtering relies on past user behavior; it is domain free but 
    suffers from the cold start problem (inability to address the system’s new 
    products and users)
•   Collaborative filtering is classified into neighborhood methods and latent 
    factor models
•   Some of the most successful realizations of latent factor models are based 
    on matrix factorization
User‐Oriented Neighborhood




Y. Koren, R Bell, C. Volinsky, “Matrix Factorization Techniques for Recommender Systems, Computer, pp. 42‐49, Aug. 2009.
Latent Factor Approach
Matrix Factorization and 
              Completion
• Old problem
• Numerous applications
  – Tracking and geolocation
  – Inpainting
  – System Identification
  – Sensor Networks
Estimation of Low‐Rank Matrices

• General Problem
  minimize rank(X)
  subject to Y = f (X):
• Solution Approaches
   minimize kXk¤
   subject to Y = f (X);


 • or
    minimize kXk¤
    subject to k Y ¡ f (X) k2 < ²;
                            F
Low‐Rank Modeling
 • Parameterization of the unknown
     X = ABT



where A is m £ r        B is n £ r rank(X) = r · min(m; n)

• Problem formulation
  minimize k A k2 + k B k2
                  F         F
                          2 < ²:
  subject to k Y ¡ f (X) kF
Bayesian Formulation
   • Sum of outer products
                              k
                              X
          X = ABT =                 a¢i b¢i T
                              i=1


   • Achieve column sparsity in A and B, through prior modeling
                       k
                       Y
         p(Aj°) =            N (a¢i j0; °i I)
                       i=1
                       k
                       Y
         p(Bj° ) =           N (b¢i j0; °i I)]
                       i=1
D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, Sparse Bayesian Methods for Low-Rank Matrix
Estimation, to appear, IEEE Trans. on Signal Processing (also ICASSP 2011).
Bayesian Formulation (cont’ed)
 • Alternatively

             μ          ¶     Ã     k
                                              !
               1    T            1 X ¡1 2
p(Aj° ) / exp ¡ Tr(A ¡A) = exp ¡       °i ¾A;i ;
               2                 2
                                   i=1
             μ          ¶     Ã     k
                                              !
               1    T            1 X ¡1 2
p(Bj° ) / exp ¡ Tr(B ¡B) = exp ¡       °i ¾B;i ;
               2                 2
                                                      i=1


 • Gamma Hyperprior on the variances

                       μ        ¶a+1      μ     ¶
                           1                 b
            p(°i ) /                   exp ¡      :
                           °i                °i
Matrix Completion Problem
• Observation Model
    Yij = Xij + Nij ;    (i; j) 2 Ð,
    Y = PÐ (X + N) ;

• Noise Model
                     Y          ¡                   ¢
                                               ¡1
   p(YjA; B; ¯) =             N Yij jXij ; ¯            ;
                    (i;j)2Ð

• Joint Distribution
   p(Y; A; B; ° ; ¯) = p(YjA; B; ¯) p(Aj° ) p(Bj° )p(° ) p(¯) :
Bayesian Inference
• Latent variables
     z = (A; B; °; ¯)

• Posterior of each latent variable
 log q(zk ) = h log p(Y; z)iznzk + const;
Estimation of A

• Posterior of the i‐th row of A

q(ai¢ ) = N (ai¢ jhai¢ i; §a ) ;
                           i

     T                                            ¡                    ¢¡1
hai¢ i =   h¯i §a hBi iT
                i
                                   T
                                yi¢ ;   §a
                                         i    =       h¯i hBT Bi i
                                                            i        +¡
                 X                            X ³                    ´
hBT Bi i
  i        =               hbj¢ T bj¢ i =        hbj¢ T ihbj¢ i + §b ;
                                                                   j
               j:(i;j)2Ð                    j:(i;j)2Ð
Estimation of B

• Posterior of the j‐th row of B
              ³                 ´
 q(bj¢ ) = N bj¢ jhbj¢ i; §b
                           j


     T                  T                  ¡                    ¢¡1
hbj¢ i =   h¯i §b
                j   hAj i   y¢j ; §b
                                   j   =       h¯i hAT Aj i
                                                     j        +¡    ;
Estimation of hyperparameters

           μ        ¶a+1+ m+n      μ           T a i + hb T b i ¶
               1           2          2b + ha¢i ¢i       ¢i  ¢i
q(°i ) /                        exp ¡
               °i                                 2°i

         2b + ha¢i T a¢i i + hb¢i T b¢i i
 h°i i =                                   :
                 2a + m + n
                    T
                               X¡ ¢
     T
ha¢i a¢i i = ha¢i i ha¢i i +        §a ii ;
                                       j
                                j
                                X³ ´
hb¢i T b¢i i = hb¢i iT hb¢i i +       §b  j  :
                                           ii
                                   j
               pmn
h¯i =                T ) k2 i
                              :
      h k Y ¡ PÐ (AB      F
Experimental Results
Experimental Results
Robust PCA
   • Observation Model
      Y =X+E+N
   • Noise Model                                 μ                        ¶
                    ¡    T      ¡1
                                   ¢                 ¯
 p(YjA; B; E; ¯) = N YjAB + E; ¯ I / exp               k Y ¡ ABT ¡ E k2
                                                                      F
                                                     2
              m n
              YY          ³         ´
   p(Ej®) =             N Eij j0; ®¡1 ;
                                   ij
              i=1 j=1

      p(®ij ) = const; 8i; j :
   • Joint Distribution
p(Y; A; B; E; °; ®; ¯) = p(YjA; B; E; ¯) p(Aj°) p(Bj°) p(Ej®) p(°) p(®) p(¯)
Estimation of E


           ¡              E
                            ¢
q(Eij ) = N Eij jhEij i; §ij ;

hEij i = h¯i §E (Yij ¡ hai¢ ihbj¢ iT ) ;
              ij

             1
§E =
 ij                  :
        h¯i + h®ij i
Experimental Results
Experimental Results
Experimental Results
Experimental Results
Final Comments 
• Sparsity is a new and powerful concept for a 
  number of image processing, computer vision, 
  pattern recognition, machine learning, and 
  communication problems
• In most cases, large amounts of scale/data 
  problems are encountered and improved 
  computational approaches are needed
• Advances on both theoretical and application 
  fronts
Current Collaborators
• University of Granada
   – Prof. Rafael Molina
   – Prof. Javier Mateos
   – Publo Ruiz, PhD student
• Northwestern University
   –   Derin Babacan, ex‐PhD student, UIUC
   –   Zhu Li, ex‐PhD student, Huawei
   –   Li Gao, PhD student
   –   Bruno Azimic, PhD student
   –   Martin Luessi, ex‐PhD student, Harvard Medical
   –   Leonidas Spinoulas, PhD student
   –   Michael Iliadis, PhD student

More Related Content

What's hot

Performance of Matching Algorithmsfor Signal Approximation
Performance of Matching Algorithmsfor Signal ApproximationPerformance of Matching Algorithmsfor Signal Approximation
Performance of Matching Algorithmsfor Signal Approximationiosrjce
 
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...IDES Editor
 
Real Time Localization Using Receiver Signal Strength Indicator
Real Time Localization Using Receiver Signal Strength IndicatorReal Time Localization Using Receiver Signal Strength Indicator
Real Time Localization Using Receiver Signal Strength IndicatorRana Basheer
 
Probablistic Inference With Limited Information
Probablistic Inference With Limited InformationProbablistic Inference With Limited Information
Probablistic Inference With Limited InformationChuka Okoye
 
Tree Based Collaboration For Target Tracking
Tree Based Collaboration For Target TrackingTree Based Collaboration For Target Tracking
Tree Based Collaboration For Target TrackingChuka Okoye
 
QRC-ESPRIT Method for Wideband Signals
QRC-ESPRIT Method for Wideband SignalsQRC-ESPRIT Method for Wideband Signals
QRC-ESPRIT Method for Wideband SignalsIDES Editor
 
Communication by Whispers Paradigm for Short Range Communication in Cognitive...
Communication by Whispers Paradigm for Short Range Communication in Cognitive...Communication by Whispers Paradigm for Short Range Communication in Cognitive...
Communication by Whispers Paradigm for Short Range Communication in Cognitive...IDES Editor
 
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...sipij
 
Multihop Routing In Camera Sensor Networks
Multihop Routing In Camera Sensor NetworksMultihop Routing In Camera Sensor Networks
Multihop Routing In Camera Sensor NetworksChuka Okoye
 
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...Anders Jorgensen
 
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...Rana Basheer
 
Thresholding eqns for wavelet
Thresholding eqns for waveletThresholding eqns for wavelet
Thresholding eqns for waveletajayhakkumar
 
Masters' Thesis Defense Slides
Masters' Thesis Defense SlidesMasters' Thesis Defense Slides
Masters' Thesis Defense SlidesRam Subramanian
 
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...IJMTST Journal
 

What's hot (20)

Performance of Matching Algorithmsfor Signal Approximation
Performance of Matching Algorithmsfor Signal ApproximationPerformance of Matching Algorithmsfor Signal Approximation
Performance of Matching Algorithmsfor Signal Approximation
 
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...
Comparative Analysis of Distortive and Non-Distortive Techniques for PAPR Red...
 
Real Time Localization Using Receiver Signal Strength Indicator
Real Time Localization Using Receiver Signal Strength IndicatorReal Time Localization Using Receiver Signal Strength Indicator
Real Time Localization Using Receiver Signal Strength Indicator
 
Probablistic Inference With Limited Information
Probablistic Inference With Limited InformationProbablistic Inference With Limited Information
Probablistic Inference With Limited Information
 
Tree Based Collaboration For Target Tracking
Tree Based Collaboration For Target TrackingTree Based Collaboration For Target Tracking
Tree Based Collaboration For Target Tracking
 
QRC-ESPRIT Method for Wideband Signals
QRC-ESPRIT Method for Wideband SignalsQRC-ESPRIT Method for Wideband Signals
QRC-ESPRIT Method for Wideband Signals
 
Communication by Whispers Paradigm for Short Range Communication in Cognitive...
Communication by Whispers Paradigm for Short Range Communication in Cognitive...Communication by Whispers Paradigm for Short Range Communication in Cognitive...
Communication by Whispers Paradigm for Short Range Communication in Cognitive...
 
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...
TARGET LOCALIZATION IN WIRELESS SENSOR NETWORKS BASED ON RECEIVED SIGNAL STRE...
 
Hr3114661470
Hr3114661470Hr3114661470
Hr3114661470
 
Multihop Routing In Camera Sensor Networks
Multihop Routing In Camera Sensor NetworksMultihop Routing In Camera Sensor Networks
Multihop Routing In Camera Sensor Networks
 
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...
High-Precision Optical Interferometry of Faint and Low-Contrast Targets Requi...
 
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...
Localization of Objects Using Cross-Correlation of Shadow Fading Noise and Co...
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Thresholding eqns for wavelet
Thresholding eqns for waveletThresholding eqns for wavelet
Thresholding eqns for wavelet
 
D1103023339
D1103023339D1103023339
D1103023339
 
Masters' Thesis Defense Slides
Masters' Thesis Defense SlidesMasters' Thesis Defense Slides
Masters' Thesis Defense Slides
 
05503983
0550398305503983
05503983
 
Ks3618311836
Ks3618311836Ks3618311836
Ks3618311836
 
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...
Spectrum Sensing Detection with Sequential Forward Search in Comparison to Kn...
 
Oo2423882391
Oo2423882391Oo2423882391
Oo2423882391
 

Viewers also liked

L0 norm sparse representation based on modified genetic algorithm
L0 norm sparse representation based on modified genetic algorithmL0 norm sparse representation based on modified genetic algorithm
L0 norm sparse representation based on modified genetic algorithmInternational Islamic University
 
Recovering Lost Sensor Data through Compressed Sensing
Recovering Lost Sensor Data through Compressed SensingRecovering Lost Sensor Data through Compressed Sensing
Recovering Lost Sensor Data through Compressed SensingZainul Charbiwala
 
CVPR2008 tutorial generalized pca
CVPR2008 tutorial generalized pcaCVPR2008 tutorial generalized pca
CVPR2008 tutorial generalized pcazukun
 

Viewers also liked (20)

L0 norm sparse representation based on modified genetic algorithm
L0 norm sparse representation based on modified genetic algorithmL0 norm sparse representation based on modified genetic algorithm
L0 norm sparse representation based on modified genetic algorithm
 
Foreground Detection : Combining Background Subspace Learning with Object Smo...
Foreground Detection : Combining Background Subspace Learning with Object Smo...Foreground Detection : Combining Background Subspace Learning with Object Smo...
Foreground Detection : Combining Background Subspace Learning with Object Smo...
 
Recovering Lost Sensor Data through Compressed Sensing
Recovering Lost Sensor Data through Compressed SensingRecovering Lost Sensor Data through Compressed Sensing
Recovering Lost Sensor Data through Compressed Sensing
 
CVPR2008 tutorial generalized pca
CVPR2008 tutorial generalized pcaCVPR2008 tutorial generalized pca
CVPR2008 tutorial generalized pca
 
Sparse and Low Rank Representations in Music Signal Analysis
 Sparse and Low Rank Representations in Music Signal  Analysis Sparse and Low Rank Representations in Music Signal  Analysis
Sparse and Low Rank Representations in Music Signal Analysis
 
Tribute to Nicolas Galatsanos
Tribute to Nicolas GalatsanosTribute to Nicolas Galatsanos
Tribute to Nicolas Galatsanos
 
Influence Propagation in Large Graphs - Theorems and Algorithms
Influence Propagation in Large Graphs - Theorems and AlgorithmsInfluence Propagation in Large Graphs - Theorems and Algorithms
Influence Propagation in Large Graphs - Theorems and Algorithms
 
Co-evolution, Games, and Social Behaviors
Co-evolution, Games, and Social BehaviorsCo-evolution, Games, and Social Behaviors
Co-evolution, Games, and Social Behaviors
 
The Tower of Knowledge A Generic System Architecture
The Tower of Knowledge A Generic System ArchitectureThe Tower of Knowledge A Generic System Architecture
The Tower of Knowledge A Generic System Architecture
 
Nonlinear Communications: Achievable Rates, Estimation, and Decoding
Nonlinear Communications: Achievable Rates, Estimation, and DecodingNonlinear Communications: Achievable Rates, Estimation, and Decoding
Nonlinear Communications: Achievable Rates, Estimation, and Decoding
 
Data Quality: Not Your Typical Database Problem
Data Quality: Not Your Typical Database ProblemData Quality: Not Your Typical Database Problem
Data Quality: Not Your Typical Database Problem
 
From Programs to Systems – Building a Smarter World
From Programs to Systems – Building a Smarter WorldFrom Programs to Systems – Building a Smarter World
From Programs to Systems – Building a Smarter World
 
A Classification Framework For Component Models
 A Classification Framework For Component Models A Classification Framework For Component Models
A Classification Framework For Component Models
 
Opening Second Greek Signal Processing Jam
Opening Second Greek Signal Processing JamOpening Second Greek Signal Processing Jam
Opening Second Greek Signal Processing Jam
 
Web Usage Miningand Using Ontology for Capturing Web Usage Semantic
Web Usage Miningand Using Ontology for Capturing Web Usage SemanticWeb Usage Miningand Using Ontology for Capturing Web Usage Semantic
Web Usage Miningand Using Ontology for Capturing Web Usage Semantic
 
Sparsity Control for Robustness and Social Data Analysis
Sparsity Control for Robustness and Social Data AnalysisSparsity Control for Robustness and Social Data Analysis
Sparsity Control for Robustness and Social Data Analysis
 
State Space Exploration for NASA’s Safety Critical Systems
State Space Exploration for NASA’s Safety Critical SystemsState Space Exploration for NASA’s Safety Critical Systems
State Space Exploration for NASA’s Safety Critical Systems
 
Semantic 3DTV Content Analysis and Description
Semantic 3DTV Content Analysis and DescriptionSemantic 3DTV Content Analysis and Description
Semantic 3DTV Content Analysis and Description
 
Part2
Part2Part2
Part2
 
Jamming in Wireless Sensor Networks
Jamming in Wireless Sensor NetworksJamming in Wireless Sensor Networks
Jamming in Wireless Sensor Networks
 

Similar to Sparse and Redundant Representations: Theory and Applications

Flat panel ---nihms864608
Flat panel ---nihms864608Flat panel ---nihms864608
Flat panel ---nihms864608Maria Vergakh
 
Meroli Grazing Angle Techinique Pixel2010
Meroli Grazing Angle Techinique Pixel2010Meroli Grazing Angle Techinique Pixel2010
Meroli Grazing Angle Techinique Pixel2010stefanome
 
Image Processing on SAR images
Image Processing on SAR imagesImage Processing on SAR images
Image Processing on SAR imagespankaj kumar
 
Construction of inexpensive Web-Cam based Optical Spectrometer using
Construction of inexpensive Web-Cam based Optical Spectrometer usingConstruction of inexpensive Web-Cam based Optical Spectrometer using
Construction of inexpensive Web-Cam based Optical Spectrometer usingSoares Fernando
 
Compressed sensing applications in image processing &amp; communication (1)
Compressed sensing applications in image processing &amp; communication (1)Compressed sensing applications in image processing &amp; communication (1)
Compressed sensing applications in image processing &amp; communication (1)Mayur Sevak
 
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...pmloscholte
 
Fully 3D-Integrated Pixel Detectors for X-Rays
Fully 3D-Integrated Pixel Detectors for X-RaysFully 3D-Integrated Pixel Detectors for X-Rays
Fully 3D-Integrated Pixel Detectors for X-RaysSunnySagar10
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LEDrpiitcbme
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimagingClifford Stone
 
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...JaeyoungHuh2
 
CT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QACT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QASambasivaselli R
 
Echo Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaEcho Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaAvinesh Shrestha
 
Technical aspects of dental CBCT - Dr. Kavan Gandhi
Technical aspects of dental CBCT - Dr. Kavan GandhiTechnical aspects of dental CBCT - Dr. Kavan Gandhi
Technical aspects of dental CBCT - Dr. Kavan GandhiKAVAN GANDHI
 
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET Journal
 

Similar to Sparse and Redundant Representations: Theory and Applications (20)

Flat panel ---nihms864608
Flat panel ---nihms864608Flat panel ---nihms864608
Flat panel ---nihms864608
 
Meroli Grazing Angle Techinique Pixel2010
Meroli Grazing Angle Techinique Pixel2010Meroli Grazing Angle Techinique Pixel2010
Meroli Grazing Angle Techinique Pixel2010
 
Image Processing on SAR images
Image Processing on SAR imagesImage Processing on SAR images
Image Processing on SAR images
 
Construction of inexpensive Web-Cam based Optical Spectrometer using
Construction of inexpensive Web-Cam based Optical Spectrometer usingConstruction of inexpensive Web-Cam based Optical Spectrometer using
Construction of inexpensive Web-Cam based Optical Spectrometer using
 
Compressed sensing applications in image processing &amp; communication (1)
Compressed sensing applications in image processing &amp; communication (1)Compressed sensing applications in image processing &amp; communication (1)
Compressed sensing applications in image processing &amp; communication (1)
 
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...
1998 Appl. Phys. A 66 (1998), p857 design and construction of a high resoluti...
 
Fully 3D-Integrated Pixel Detectors for X-Rays
Fully 3D-Integrated Pixel Detectors for X-RaysFully 3D-Integrated Pixel Detectors for X-Rays
Fully 3D-Integrated Pixel Detectors for X-Rays
 
NIST_Presentation
NIST_PresentationNIST_Presentation
NIST_Presentation
 
Analysis of LED
Analysis of LEDAnalysis of LED
Analysis of LED
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimaging
 
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...
MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOL...
 
HS Demo
HS DemoHS Demo
HS Demo
 
MOPG70_160830
MOPG70_160830MOPG70_160830
MOPG70_160830
 
W6P3622650776P65
W6P3622650776P65W6P3622650776P65
W6P3622650776P65
 
CT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QACT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QA
 
Echo Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaEcho Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh Shrestha
 
Nachman - Electromagnetics - Spring Review 2013
Nachman - Electromagnetics - Spring Review 2013Nachman - Electromagnetics - Spring Review 2013
Nachman - Electromagnetics - Spring Review 2013
 
Technical aspects of dental CBCT - Dr. Kavan Gandhi
Technical aspects of dental CBCT - Dr. Kavan GandhiTechnical aspects of dental CBCT - Dr. Kavan Gandhi
Technical aspects of dental CBCT - Dr. Kavan Gandhi
 
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
 
Projet Ma2
Projet Ma2Projet Ma2
Projet Ma2
 

More from Distinguished Lecturer Series - Leon The Mathematician

More from Distinguished Lecturer Series - Leon The Mathematician (9)

Machine Learning Tools and Particle Swarm Optimization for Content-Based Sear...
Machine Learning Tools and Particle Swarm Optimization for Content-Based Sear...Machine Learning Tools and Particle Swarm Optimization for Content-Based Sear...
Machine Learning Tools and Particle Swarm Optimization for Content-Based Sear...
 
Defying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital ConversionDefying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital Conversion
 
Mixture Models for Image Analysis
Mixture Models for Image AnalysisMixture Models for Image Analysis
Mixture Models for Image Analysis
 
Artificial Intelligence and Human Thinking
Artificial Intelligence and Human ThinkingArtificial Intelligence and Human Thinking
Artificial Intelligence and Human Thinking
 
Farewell to Disks: Efficient Processing of Obstinate Data
Farewell to Disks: Efficient Processing of Obstinate DataFarewell to Disks: Efficient Processing of Obstinate Data
Farewell to Disks: Efficient Processing of Obstinate Data
 
Artificial Intelligence and Human Thinking
Artificial Intelligence and Human ThinkingArtificial Intelligence and Human Thinking
Artificial Intelligence and Human Thinking
 
Descriptive Granularity - Building Foundations of Data Mining
Descriptive Granularity - Building Foundations of Data MiningDescriptive Granularity - Building Foundations of Data Mining
Descriptive Granularity - Building Foundations of Data Mining
 
Networked 3-D Virtual Collaboration in Science and Education: Towards 'Web 3....
Networked 3-D Virtual Collaboration in Science and Education: Towards 'Web 3....Networked 3-D Virtual Collaboration in Science and Education: Towards 'Web 3....
Networked 3-D Virtual Collaboration in Science and Education: Towards 'Web 3....
 
Success Factors in Industry - Academia Collaboration - An Empirical Study
 Success Factors in Industry - Academia Collaboration - An Empirical Study   Success Factors in Industry - Academia Collaboration - An Empirical Study
Success Factors in Industry - Academia Collaboration - An Empirical Study
 

Recently uploaded

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Recently uploaded (20)

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

Sparse and Redundant Representations: Theory and Applications

  • 1. Sparse and Redundant Representations in Signal Processing Aggelos K. Katsaggelos AT&T Chaired Professor Northwestern University Department of EECS Director Motorola Center for Seamless Communications Department of Linguistics NorthSide University Hospital System Argonne National Laboratory Evanston, IL 60208 www.ece.northwestern.edu/~aggk 2nd Greek Signal Processing Jam, Thessaloniki, May 17, 2012
  • 2. Talk Outline • Underdetermined Linear Systems and Sparsity • Processing of Sparsely‐Generated Signals – Compressive Sensing – Video Indexing and Retrieval – Recommendation Systems (Matrix Completion) – Robust PCA • Final Thoughts
  • 3. Underdetermined Linear Systems • Problem formulation Ax = b A is n £ m; n < m A full rank • Solution approach: Regularization • Choices of  Unique solution, strictly convex function More than one solutions, convex function Even if infinitely many solutions, there exists at least  one with at most n non‐zeros – sparse solution
  • 4. Promoting Sparse Solutions • As we move from     to     we promote sparser  solutions • Do     norms with p<1 (no formal norms) lead to  sparser solutions? • 0<p<1 non‐convex optimization
  • 5. Sparsifying Norms Elad, Sparse and Redundant Representations, Springer, 2010
  • 6. Promoting Sparse Solutions minimizekxk0 such that y = Ax • norm (p=0); extreme among all sparsifying norms;  combinatorial search, problem NP‐hard • Under what conditions can uniqueness of solution  be claimed?  • Can we perform a simple test to verify that an  available candidate solution is a global minimizer? (answers through coherence, sparc, and RIP)
  • 7. Signal Processing Perspective • Finding sparse solutions to underdetermined linear systems is  a better‐behaved problem • A much more practical and relevant notion than we might  have thought of a few years ago • Many media types can be sparsely represented • Signal representation problem: given a dictionary A find a  single representation among the many possible ones for b • With the     norm both the forward transform (from b to x)  and the inverse transform (from x to b) are linear • With the     norm the inverse transform is linear but the  forward is highly non‐linear
  • 8. Processing of Sparsely‐Generated  Signals minimize kxk0 subject to k y ¡ Ax k2 < ² • Compressed sensing  • Analysis (atomic decomposition) • Compression  • Denoising • Inverse problems (deblurring, SR) • Morphological component analysis (inpainting) • Sparsity‐based recognition • Sparse‐modeling image classification • Computational Photography
  • 9. Dictionaries for Sparse Representation • ON basis vs overcomplete dictionaries • Choice of sparsifying dictionary critical. Based on – Mathematical modeling of data  (e.g., wavelets, wavelet packets and curvelets) – Training data • Given A, find X (sparse coding) • Design dictionary for sparse representation (solve for A  and X simultaneously) • Sparse modeling for image classification (add  discriminative terms to the above formulation) • Learning to sense (solve for A, X and S – sensing matrix)
  • 14. Compressive Data Acquisition • When data is sparse/compressible, can directly acquire a  condensed representation with no/little information loss • Random projection will work Candes-Remberg-Tao, Donoho, 2004
  • 15.
  • 17. Millimeter‐Wave Radiometry Usefulness of millimeter waves: Atmospheric Propagation: Millimeter Wave Radiation is  attenuated millions of times less in clouds, fog, smoke,  snow and sandstorms than visible or IR radiation. Yujiri L. et al. 2006 “Passive Millimeter Wave Imaging” Differences in  emissivity of  * objects: Better  thermal contrast. *Sub‐millimeter Wave λ ~[0.3 ‐ 1]mm 
  • 18. Advantages Provide target information under all weather conditions. Visible and IR require clear atmospheric conditions for reliable operation. Offer better thermal contrast of objects: Emissivity differences of objects at these wavelengths. Reflectivity variations of common objects for millimeter waves:  (metal ~ 1,  water 0.6 and concrete 0.2). Minimally affected by sun or artificial illumination: Day and night application. Atmospheric Attenuation Apparent Temperature (drizzle and fog) (sky at 94 GHz) PMMW 0.07 ~ 3 dB/km 70 K Visible and IR 100 dB/km 220 K Gopalsami et al. 2010 “Passive Millimeter Wave Imaging and Spectroscopy System for Terrestrial Remote Sensing”
  • 19. Passive Millimeter Wave Imagers Main types of Passive Millimeter Wave Imagers: Single Detector or Single Pixel Imager. – Allows for the use of only one detector. – Not practical for real time imaging due to the point‐ by‐point required scanning. Array of Detectors (similar to CCD or CMOS optical  imagers). – Suitable for real time imaging. – Complex and expensive at mm wavelengths
  • 20. Lens Scanning Imaging System  at ANL • Dicke‐switched radiometer • 16 Channel, each 0.5 GHz BW, spanning 146 to 154 GHz • 6 inch imaging lens
  • 22. Compressive Sensing System 6 inch imaging lens Dicke‐switched Radiometer Reconstruction Mask and Super‐Resolution 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz. Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding  cable noise) but a coded aperture mask is scanned at the focal plane of the  lens to produce a set of  coded aperture images
  • 23. Compressive Sensing System Without Mask With Mask Imaging and Spectroscopy  Compressive Sensing Imaging System System Gopalsami et al. 2009 “Passive Millimeter Babacan et al. 2011 “Compressive Passive Millimeter- Wave Imaging and Spectroscopy System for Wave Imaging” Terrestrial Remote Sensing” Gopalsami et al. 2011 “Compressive Sampling in passive millimeter-wave imaging”
  • 25. Compressive Sensing System 6 inch imaging lens Dicke‐switched Radiometer Reconstruction Mask and Super‐Resolution 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz. Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding  cable noise) but a coded aperture mask is scanned at the focal plane of the  lens to produce a set of  coded aperture images
  • 27. A Bayesian Compressive Sensing  Algorithm An empirical Bayesian formulation is used, inference is based on an  approximation of the posterior distribution. We assume Gaussian noise; the forward model is given by: μ ¶ N=2 ¯ p (yjx; ¯) = ¯ exp ¡ ky ¡ ©xk2 2 Due to the ill‐posedness of the inverse problem, it is necessary to use a  priori information about the unknown image x.  In CS, a requirement for successful reconstruction is that the signal is  compressible in some basis, i.e., a basis exists in which the signal can be  well represented using a small number of non‐zero coefficients.
  • 28. A Bayesian Compressive Sensing  Algorithm For images, high spatial frequencies are represented by edges. Hence, it can be assumed that the output of a high pass filter is sparse. This knowledge is modeled using the following image prior: L Ã L ! X 1 X p(xjA) / j DT ADk j¡1=2 exp ¡ k xT DT ADk x k 2 k=1 k=1 Dk: High frequency filter matrices (2 horizontal, 2 vertical, 2 diagonal) A: Diagonal covariance matrix with a variance parameter for each pixel: A = diag (®i ) i = 1; : : : ; N Following a fully Bayesian approach, we assign gamma priors to the  ¯ ;® hyperparameters:            i
  • 29. A Bayesian Compressive Sensing  Algorithm We use the evidence procedure and approximate the posterior by  xxxxx p (x; A; ¯jy) = p (xjy; A; ¯) p (A; ¯jy) The first distribution is found to be Gaussian: p (xjy; A; ¯) = N (xj¹x ; §x ) N X ¹x = §x ¯©T y §¡1 = ¯©T © + x Dk ADk k=1 We can also maximize                                             y) with respect to       and     p (A; ¯jy) / p (A; ¯; A A ¯ ; the maximizer for       is given by: 1+ 2(a0 ¡ 1) Xh L ¡ ¢ i ®i = ® vi = (Dk ¹x )2 + DT Dk §x i k ii vi + 2b0 ® k=1
  • 30. Reconstruction Results – Comparison Comparison with state of the art algorithm that solves the min‐TV problem with  quadratic constraints:  subject to  Original Image Bayesian 10% 30% 50% 70% 90% min-TV 10% 30% 50% 70% 90%
  • 31. Reconstruction Results – Comparison Comparison with state of the art algorithm that solves the min‐TV problem with  quadratic constraints:  subject to 
  • 32. Results – Algorithm Comparison Reconstruction Comparison (Gaussian) Reconstruction Comparison (Binary) 40 40 Proposed Bayesian Method 38 Bayesian TVAL3 PSNR range between experiments TVAL3 35 36 l1MAGIC 34 NESTA 30 32 PSNR 30 25 28 26 20 24 22 15 20 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 #Measurements/#Pixels #Measurements/#Pixels The proposed method outperforms the others. It is more robust to measurement matrix selection. 
  • 33. MSE Comparison PSNR Comparison 40 Bayesian (eq - spaced) Bayesian (random) - mean of 10 experiments TVAL3 (random) - mean of 10 experiments 35 30 PSNR 25 20 15 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 #Measurements/#Pixels
  • 34. Sparse Representation for Video  Indexing and Retrieval
  • 35. Motivation – QBE Case Content Provider Video DB Network Located full size program Query by Example from a 5-sec QCIF video Highlights Mobile TV Set
  • 36. Luminance Field Trace (LUFT) PCA + scale • Scaling to a common spatial scale, 101 201 for example,11x9 for noise reduction 1 and handling frame size variation 301 • PCA to identify the trace residing subspace in R11x9. “foreman” seq in 2D (1st and 2nd component) PCA space L. Gao, Z. Li, and A.K. Katsaggelos, "An Efficient Video Indexing and Retrieval Algorithm using the Luminance Field,"  IEEE Trans. Circuits and Systems for Video Technology, vol. 19, issue 10, 1566‐1570, Oct. 2009. 
  • 37. Video Trace Examples video as trace in PCA space with 1st,2nd and 3rd components •“foreman” : 400 40 frames 30 •“stefan” : 300 frames 20 •“mother-daughter”: 10 300 frames 0 •“mixed”: 40 shots of -10 60 frames each from -20 40 randomly selected 20 200 250 sequences. 0 150 -20 100 50 -40 0 . “foreman” . “stefan” . “mother-daughter” . “mixed”
  • 38. Indexing Scheme • For large video  collections,  exhaustive  search is not  efficient  • Need to have  efficient  Query clip indexing  Example of video traces of scheme  50K frames from TRECVID
  • 39. Top‐down Iterative Data  Partition Scheme • Project data to the axis with the largest variance • Split into Left and Right sets at median value  • Store cutting plane index and median value, as well as Min Bounding  Box (MBB) at each node (x2, v1) R2 (x1, v2) R4 (x1, v2) (x1, v3) (x1, v3) R1 R3 R1 R2 R3 R4 (x2, v1) Kd-Tree: L=2 • At retrieval time, query clip is traversing the tree by MBB intersections and  splits
  • 40. Indexing Scheme • Example: luma space trace partition: L=12, d=2 600 – For 5 hours of video from  500 400 NIST TRECVID 300 – An index tree of 12 levels,  200 and 4096 leaf nodes level  MBBs are plotted. Each  x2 100 0 −100 node has about 132  −200 frames −300 – Indexing space dimension  −400 0 200 400 600 800 x1 1000 1200 1400 1600 shown d=2 – Time to build this index: 530 sec on an 2.4GHz Celeron/256M  RAM Laptop in Matlab (not bad at all). 
  • 41. Query Clip Example • A positive query example – Query clip is localized  with a subset of leaf  nodes – Then the query clip is  matched
  • 42. Sparse Representation • Video Query • Database Ordering • Problem Formulation P. Ruiz et al, “Video Retrieval using Sparse Bayesian Reconstruction”, ICME, July 2011.
  • 43. Bayesian Formulation • Joint distribution • Noise Model • Hierarchical Laplace prior on x S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Bayesian Compressive Sensing using Laplace Prors,"  IEEE Transactions on Image Processing, vol. 19, issue 1, 53‐64, January 2010. 
  • 44. Retrieval Algorithm • Gaussian • Hyperparameter estimation • Also greedy solution approach
  • 47. Recommender Systems • E‐commerce leaders have made recommender systems a salient part of their websites • RS are based on two strategies: content‐filtering and collaborative  filtering • Content‐filtering approaches build product and user profiles which are  associated by programs; they rely on external information that may not be  available or easy to collect • Collaborative filtering relies on past user behavior; it is domain free but  suffers from the cold start problem (inability to address the system’s new  products and users) • Collaborative filtering is classified into neighborhood methods and latent  factor models • Some of the most successful realizations of latent factor models are based  on matrix factorization
  • 50. Matrix Factorization and  Completion • Old problem • Numerous applications – Tracking and geolocation – Inpainting – System Identification – Sensor Networks
  • 51. Estimation of Low‐Rank Matrices • General Problem minimize rank(X) subject to Y = f (X): • Solution Approaches minimize kXk¤ subject to Y = f (X); • or minimize kXk¤ subject to k Y ¡ f (X) k2 < ²; F
  • 52. Low‐Rank Modeling • Parameterization of the unknown X = ABT where A is m £ r B is n £ r rank(X) = r · min(m; n) • Problem formulation minimize k A k2 + k B k2 F F 2 < ²: subject to k Y ¡ f (X) kF
  • 53. Bayesian Formulation • Sum of outer products k X X = ABT = a¢i b¢i T i=1 • Achieve column sparsity in A and B, through prior modeling k Y p(Aj°) = N (a¢i j0; °i I) i=1 k Y p(Bj° ) = N (b¢i j0; °i I)] i=1 D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, Sparse Bayesian Methods for Low-Rank Matrix Estimation, to appear, IEEE Trans. on Signal Processing (also ICASSP 2011).
  • 54. Bayesian Formulation (cont’ed) • Alternatively μ ¶ Ã k ! 1 T 1 X ¡1 2 p(Aj° ) / exp ¡ Tr(A ¡A) = exp ¡ °i ¾A;i ; 2 2 i=1 μ ¶ Ã k ! 1 T 1 X ¡1 2 p(Bj° ) / exp ¡ Tr(B ¡B) = exp ¡ °i ¾B;i ; 2 2 i=1 • Gamma Hyperprior on the variances μ ¶a+1 μ ¶ 1 b p(°i ) / exp ¡ : °i °i
  • 55. Matrix Completion Problem • Observation Model Yij = Xij + Nij ; (i; j) 2 Ð, Y = PÐ (X + N) ; • Noise Model Y ¡ ¢ ¡1 p(YjA; B; ¯) = N Yij jXij ; ¯ ; (i;j)2Ð • Joint Distribution p(Y; A; B; ° ; ¯) = p(YjA; B; ¯) p(Aj° ) p(Bj° )p(° ) p(¯) :
  • 56. Bayesian Inference • Latent variables z = (A; B; °; ¯) • Posterior of each latent variable log q(zk ) = h log p(Y; z)iznzk + const;
  • 57. Estimation of A • Posterior of the i‐th row of A q(ai¢ ) = N (ai¢ jhai¢ i; §a ) ; i T ¡ ¢¡1 hai¢ i = h¯i §a hBi iT i T yi¢ ; §a i = h¯i hBT Bi i i +¡ X X ³ ´ hBT Bi i i = hbj¢ T bj¢ i = hbj¢ T ihbj¢ i + §b ; j j:(i;j)2Ð j:(i;j)2Ð
  • 58. Estimation of B • Posterior of the j‐th row of B ³ ´ q(bj¢ ) = N bj¢ jhbj¢ i; §b j T T ¡ ¢¡1 hbj¢ i = h¯i §b j hAj i y¢j ; §b j = h¯i hAT Aj i j +¡ ;
  • 59. Estimation of hyperparameters μ ¶a+1+ m+n μ T a i + hb T b i ¶ 1 2 2b + ha¢i ¢i ¢i ¢i q(°i ) / exp ¡ °i 2°i 2b + ha¢i T a¢i i + hb¢i T b¢i i h°i i = : 2a + m + n T X¡ ¢ T ha¢i a¢i i = ha¢i i ha¢i i + §a ii ; j j X³ ´ hb¢i T b¢i i = hb¢i iT hb¢i i + §b j : ii j pmn h¯i = T ) k2 i : h k Y ¡ PÐ (AB F
  • 62. Robust PCA • Observation Model Y =X+E+N • Noise Model μ ¶ ¡ T ¡1 ¢ ¯ p(YjA; B; E; ¯) = N YjAB + E; ¯ I / exp k Y ¡ ABT ¡ E k2 F 2 m n YY ³ ´ p(Ej®) = N Eij j0; ®¡1 ; ij i=1 j=1 p(®ij ) = const; 8i; j : • Joint Distribution p(Y; A; B; E; °; ®; ¯) = p(YjA; B; E; ¯) p(Aj°) p(Bj°) p(Ej®) p(°) p(®) p(¯)
  • 63. Estimation of E ¡ E ¢ q(Eij ) = N Eij jhEij i; §ij ; hEij i = h¯i §E (Yij ¡ hai¢ ihbj¢ iT ) ; ij 1 §E = ij : h¯i + h®ij i
  • 68. Final Comments  • Sparsity is a new and powerful concept for a  number of image processing, computer vision,  pattern recognition, machine learning, and  communication problems • In most cases, large amounts of scale/data  problems are encountered and improved  computational approaches are needed • Advances on both theoretical and application  fronts
  • 69. Current Collaborators • University of Granada – Prof. Rafael Molina – Prof. Javier Mateos – Publo Ruiz, PhD student • Northwestern University – Derin Babacan, ex‐PhD student, UIUC – Zhu Li, ex‐PhD student, Huawei – Li Gao, PhD student – Bruno Azimic, PhD student – Martin Luessi, ex‐PhD student, Harvard Medical – Leonidas Spinoulas, PhD student – Michael Iliadis, PhD student