SlideShare a Scribd company logo
1 of 224
Download to read offline
Trigonometry 10th Edition Larson SOLUTIONS MANUAL
Full clear download (no formatting errors) at:
https://testbankreal.com/download/trigonometry-10th-edition-larson-
solutions-manual/
C H A P T E R 2
Analytic Trigonometry
Section 2.1 Using Fundamental Identities ............................................................213
Section 2.2 Verifying Trigonometric Identities....................................................221
Section 2.3 Solving Trigonometric Equations......................................................227
Section 2.4 Sum and Difference Formulas...........................................................242
Section 2.5 Multiple-Angle and Product-to-SumFormulas ................................258
Review Exercises ........................................................................................................270
Problem Solving .........................................................................................................281
Practice Test .............................................................................................................288
2
4
= −
= −

2
5
3
= −
= −
= −


C H A P T E R 2
Analytic Trigonometry
Section 2.1 Using Fundamental Identities
1. tan u
2. csc u
9. sin θ
3
= − , cos θ
4
> 0 θ is in Quadrant IV.
3 9 7
3. cot u
cos θ = 1 − − =

−
3
1 − =
16 4
4. csc u
tan θ =
sin θ
= 4 = −
3 3 7
5. 1
cos θ 7 7 7
4
6. −sin u sec θ
1 1 4
= = = =
4 7
7. sec x
5
, tan x < 0 x is in Quadrant II.
cos θ 7 7 7
4
2 cot θ
1 1 7
= = = −
cos x =
1
=
1
= −
2 tan θ −
3 3
7
sec x
−
5 5
2 csc θ
1 1 4
= = = −
sin x = 1 − −
2
=

1 −
4
=
21
25 5
sin θ −
3 3
4
2
tan x =
sin x
21
= 5 = −
21
10. cos θ = , sin θ
3
< 0 θ is in Quadrant IV.
2
cos x −
2 2 sin θ = − 1 −
2
= − 1 −
4
= −
5
5
csc x =
1
=
5
=
5 21

9 3
−
5
sin x 21 21 tan θ =
sin θ
= 2 = −
5
cot x =
1
= −
2
= −
2 21
cos θ 2 2
3
tan x 21 21 1 1 3
8. csc x
7
, tan x > 0 x is in Quadrant III.
secθ =
cos θ
=
2
=
2
3
6
cot θ =
1
=
1
= −
2 2 5
sin x =
1
=
1
= −
6 tan θ
−
5 5 5
csc x
−
7 7
6
cscθ
2
=
1
=
1
= −
3 3 5

2
7
cos x = − 1 − −
6

−
6
= − 1 −
36
= −
13
49 7
sin θ
−
5 5 5
3
tan x =
sin x
cos x
= 7 =
6
=
−
13 13
6 13
13
7
sec x =
1
=
1
= −
7
= −
7 13
cos x
−
13 13 13
7
cot x =
1
=
1
=
13
tan x 6 6
13

2
2
2
csc x = − 1 +
7
= −

= −
cos x 
2
214 Chapter 2 Analytic Trigonometry
11. tan x =
2
, cos x > 0 x is in Quadrant I. 15. cos x(1 + tan2
x) = cos x(sec2
x)
3 1
cot x =
1
=
1
=
3 = cos x
cos2
x
tan x 2 2
3
2 4 13
=
1
cos x
= sec x
sec x = 1 + =
3
3
1 + =
9 3
9 13
Matches (f).
cos x 1 1
csc x = 1 + = 1 + = 16. cot x sec x = ⋅ = = csc x
2 4 2 sin x cos x sin x
sin x =
1
=
1
=
2
=
2 13 Matches (a).
csc x 13 13 13
sec2
x − 1 tan2
x sin2
x 1
2 17. = = ⋅ = sec2
x
cos x =
1
=
1
=
3
=
3 13 sin2
x sin2
x cos2
x sin2
x
sec x 13 13 13
3
Matches (e).
cos2
(π 2) − x sin2
x sin x
cot x =
1
=
1
=
3 18.
cos x
=
cos x
= sin x = tan x sin x
cos x
tan x 2 2
3 Matches (d).
12. cot x =
7
, sin x < 0 x is in Quadrant III.
4
19.
tan θ cot θ
1 
tan θ 
=
tan θ
tan x =
1
=
1
=
4 secθ 1
cot x 7 7
4
4 16 65
cos θ
=
1
1
sec x = − 1 + = −
7
2

= −
1 + = −
49 7
1 +
49
= −
65
π

cos θ
= cos θ
4 16 4 20. cos − x sec x = sin x sec x
sin x =
1
=
1
= −
4 4 65 2 
1
csc x
−
65 65 65
4
= sin x
cos x
cos x =
1
=
1
= −
7 7 65 = tan x
sec x
−
65 65 65
7
21. tan2
x − tan2
x sin2
x = tan2
x(1 − sin2
x)
= tan2
x cos2
x
2
13. sec x cos x =
1
cos x

=
sin x
⋅ cos2
x
cos2
x
= 1
Matches (c).
22.
=
s
i
n
2
x
sin2
x sec2
x − sin2
x = sin2
x(sec2
x − 1)
14. cot2
x − csc2
x = (csc2
x − 1) − csc2
x
= −1
= sin2
x tan2
x
Matches (b).
23.
sec x − 1
=
(sec x + 1)(sec x − 1)
sec x − 1 sec x − 1
= sec x + 1
24.
cos x − 2
=
cos x − 2
cos2
x − 4 (cos x + 2)(cos x − 2)
=
1
cos x + 2
= −
2
Section 2.1 Using Fundamental Identities 215
25. 1 − 2 cos x + cos x = (1 − cos x) 26. sec4
x − tan4
x = (sec2
x + tan2
x)(sec2
x − tan2
x)
2 4 2
2
( 2 2
)( )
= (sin2
x) = sec x + tan x 1
27.
28.
= sin4
x
cot3
x + cot2
x + cot x + 1 = cot2
x(cot x + 1) + (cot x + 1)
= (cot x + 1)(cot2
x + 1)
= (cot x + 1)csc2
x
sec3
x − sec2
x − sec x + 1 = sec2
x(sec x − 1) − (sec x − 1)
= (sec2
x − 1)(sec x − 1)
= tan2
x(sec x − 1)
= sec2
x + tan2
x
29. 3 sin2
x − 5 sin x − 2 = (3 sin x + 1)(sin x − 2) 38. cot u sin u + tan u cos u =
cos u
(sin u) +
sin u
(cos u)
30. 6 cos2
x + 5 cos x − 6 = (3 cos x − 2)(2 cos x + 3)
sin u
= cos u + sin u
cos u
2 2 2
31. cot2
x + csc x − 1 = (csc2
x − 1) + csc x − 1 39.
1 − sin x
=
cos x
= cos2
x tan2
x = (cos2
x)
sin x
2 2 2
= csc2
x + csc x − 2
= (csc x − 1)(csc x + 2)
csc x − 1 cot x
= sin2
x
cos x
32. sin2
x + 3 cos x + 3 = (1 − cos2
x) + 3 cos x + 3
= −cos2
x + 3 cos x + 4
= −(cos2
x − 3 cos x − 4)
= −(cos x + 1)(cos x − 4)
40.
cos2
y
1 − sin y
1 − sin2
y
=
1 − sin y
=
(1 + sin y)(1 − sin y)
1 − sin y
= 1 + sin y
33. tan θ csc θ =
sin θ
⋅
1
=
1
= secθ
41. (sin x + cos x)
2
= sin2
x + 2 sin x cos x + cos2
x
= (sin2
x + cos2
x) + 2 sin x cos x
cos θ sin θ cos θ = 1 + 2 sin x cos x
34. tan(−x) cos x = −tan x cos x
sin x
⋅ cos x
cos x
= −sin x
42. (2 csc x + 2)(2 csc x − 2) = 4 csc2
x − 4
= 4(csc2
x − 1)
= 4 cot2
x
35. sin φ(csc φ − sin φ) = (sin φ)
1
− sin2
φ 43.
1
+
1
=
1 − cos x + 1 + cos x
sin φ 1 + cos x 1 − cos x (1 + cos x)(1 − cos x)
= 1 − sin2
φ = cos2
φ =
2
1 − cos2
x
36. cos x(sec x − cos x) = cos x
1
− cos x

=
2
cos x

sin2
x

= 1 − cos2
x
= sin2
x
44.
= 2 csc2
x
1
−
1
=
sec x − 1 − (sec x + 1)
37. sin β tan β + cos β = (sin β)
sin β
+ cos β
c
o
s
β
sec x + 1 sec x −
1
(sec x + 1)(sec x −
1)
=
sec x − 1 − sec x − 1
sin2
β
= +
cos β
cos2
β
cos β
sec2
x − 1
=
−2
sin2
β + cos2
β
=
cos β
tan2
x
1 
= −2 2
=
1 tan x
cos β
= sec β
= −2 cot2
x
216 Chapter 2 Analytic Trigonometry
45.
cos x
−
cos x
=
cos x(1 − sin x) − cos x(1 + sin x)
1 + sin x 1 − sin x (1 + sin x)(1 − sin x)
=
cos x − sin x cos x − cos x − sin x cos x
(1 + sin x)(1 − sin x)
=
−2sin x cos x
1 − sin2
x
=
−2sin x cos x
cos2
x
=
−2sin x
cos x
= −2 tan x
46.
sin x
1 + cos x
+
sin x
=
1 − cos x
sin x(1 − cos x) + sin x(1 + cos x)
(1 + cos x)(1 − cos x)
=
sin x − sin x cos x + sin x + sin x cos x
(1 + cos x)(1 − cos x)
=
2sin x
1 − cos2
x
=
2sin x
sin2
x
=
2
sin x
= 2 csc x
47.
sec2
x
tan x − =
tan2
x − sec2
x
50.
5
⋅
tan x − sec x
=
5(tan x − sec x)
tan x tan x
=
−1
= −cot x
tan x
2 2
tan x + sec x tan x − sec x tan2
x − sec2
x
5(tan x − sec x)=
−1
= 5(sec x − tan x)
48.
cos x 1 + sin x cos x + (1 + sin x)+ =
y =
1
sin x cot x + cos x
1 + sin x cos x cos x(1 + sin x)
cos2
x + 1 + 2 sin x + sin2
x
51. 1 ( )
2
= 1

cos x
cos x(1 + sin x) = sin x + cos x
=
2 + 2 sin x
2 sin x 
1
cos x(1 + sin x) = (cos x + cos x)
2
2(1+ sin x)=
cos x(1 + sin x)
= cos x
2
=
2
cos x
= 2 sec x
−2π 2π
49.
sin2
y
1 − cos y
−2
1 − cos2
y
=
1 − cos y
(1 + cos y)(1 − cos y)=
1 − cos y
= 1 + cos y

Section 2.1 Using Fundamental Identities 217
52. y1 = sec x csc x − tan x
1 1 sin x
= −
53. y =
tan x + 1
1
sec x + csc x
cos x sin x cos x sin x
+ 1
1 sin2
x
= − =
cos x
1 1
cos x sin x
1 − sin2
x
cos x sin x
cos x
+
sin x
=
cos x sin x
cos2
x
=
cos x sin x
cos x
=
sin x + cos x
=
cos x
sin x + cos x
sin x cos x
sin x + cos x  sin x cos x
sin x =
= cotx
6

= sin x
cos x sin x + cos x
2
−2π 2π
−2π 2π
−6
54. y1 =
1 1
−2

− cos x = tan x
sin x cos x 5
1 1 1 cos x
− cos x = −
sin x cos x sin x cos x sin x −2π 2π

1 − cos2
x sin2
x sin x
= = = = tan x −5
sin x cos x sin x cos x cos x
55. Let x = 3 cos θ . 57. Let x = 2 sec θ .
9 − x2
=
=
=
9 − (3 cos θ)
2
9 − 9 cos2
θ
9(1 − cos2
θ)
x2
− 4 =
=
=
(2 sec θ)
2
− 4
4(sec2
θ − 1)
4 tan2
θ
= 9 sin2
θ = 3 sin θ = 2 tan θ
56. Let x = 7 sin θ. 58. Let 3x = 5 tan θ.
2 2
49 − x2
= 49 − (7 sin θ)
2 9x + 25 = (3x) + 25
= 49 − 49 sin2
θ
= 49(1 − sin2
θ)
= 49 cos2
θ
= (5 tan θ)
2
+ 25
= 25 tan2
θ + 25
= 25(tan2
θ + 1)
= 7 cos θ = 25 sec2
θ
= 5 sec θ
= ± 1 −
1
218 Chapter 2 Analytic Trigonometry
59. Let x = 2 sin θ .
4 − x2
= 2
4 − (2 sin θ)
2
= 2
4 − 4 sin2
θ = 2
4(1 − sin2
θ) = 2
4 cos2
θ = 2
2 cos θ = 2
cos θ =
2
2
2
sin θ = 1 − cos2
θ =
2 2
1 − = ±
60. Let x = 2 cos θ.
2  2
61. x = 6 sin θ
16 − 4x2
= 2 2 3 = 36 − x2
16 − 4(2 cos θ)
2
= 2 2 = 36 − (6 sin θ)
2
16 − 16 cos2
θ
16(1 − cos2
θ)
= 2 2
= 2 2
=
=
36(1 − sin2
θ)
36 cos2
θ
16 sin2
θ = 2 2 = 6 cos θ
4 sin θ = ±2 2 cos θ =
3
=
1
sin θ = ±
2
2 sin θ
6 2
= ± 1 − cos2
θ
cos θ =
=
1 − sin2
θ
1 −
1
2


2
2
= ±
3
=
1 4
2
= ±
3
2 2
=
2
62. x = 10 cos θ
5 3 =
5 3 =
5 3 =
5 3 =
100 − x2
100 − (10 cos θ)
2
100(1 − cos2
θ)
100 sin2
θ
5 3 = 10 sin θ
sin θ =
5 3
=
3
cos θ = 10 2
1 − sin2
θ =
2
3
1
1 − =
2 2
Section 2.1 Using Fundamental Identities 219
63. sin θ = 1 − cos2
θ 67. μW cos θ
μ
= W sin θ
W sin θ
= = tan θ
Let y1 = sin x and y2 = 1 − cos2
x, 0 ≤ x ≤ 2π. W cos θ
y1 = y2 for 0 ≤ x ≤ π.
sec x tan x − sin x =
1
⋅
sin x
− sin x
So, sin θ = 1 − cos2
θ for 0 ≤ θ ≤ π. 68.
cos x cos x
2
y2
0 2π
y1
sin x
= − sin x
cos2
x
sin x − sin x cos2
x
=
cos2
x
64.
−2
cos θ = − 1 − sin2
θ
sin x(1 − cos2
x)=
cos2
x
2
sin x sin x
= 2
Let y1 = cos x and y2 = − 1 − sin2
x, 0 ≤ x ≤ 2π. cos x
2
y1 =
π
y2 for ≤ x ≤
3π
.
= sin x tan x
So, cos θ
2 2
= − 1 − sin2
θ for
π 3π
≤ θ ≤ .
69. True.
sin u
2 2
2
0 2π
tan u =
cos u
cot u =
cos u
sin u
sec u =
1
cos u
65.
−2
sec θ = 1 + tan2
θ
1
csc u =
1
sin u
Let y1 = and y2 =
cos x
π
1 + tan2
x, 0 ≤ x ≤ 2π.
3π
70. False. A cofunction identity can be used to transform a
tangent function so that it can be represented by a
cotangent function.
y1 = y2 for 0 ≤ x < and
2 2
< x ≤ 2π.
π −
71. As x → , tan x → ∞ and cot x → 0.
So, sec θ = 1 + tan2
θ for 0 ≤ θ <
π
2
and
2
+ 1
3π
< θ
2
< 2π. 4
72. As x → π , sin x → 0 and csc x =
sin x
→ −∞.
y2
0 2π
y1
−4
73. cos(−θ) ≠ −cos θ
cos(−θ) = cos θ
The correct identity is
sin θ
=
cos(−θ)
sin θ
cos θ
66. csc θ = 1 + cot2
θ
1
= tan θ
Let y1 = and y2 = s
i
n x
1 + cot2
x, 0 ≤ x ≤ 2π.
74. Let u = a tan θ,
then
y1 = y2 for 0 < x < π.
a2
+ u2
= a2
+ (a tan θ)
2
So, csc θ = 1 + cot2
θ for 0 < θ < π. 2 2 2
= a + a
2
tan θ
0 2π
= a2
(1 + tan2
θ)
= a2
sec2
θ
= a sec θ.
−2
= 1 +
a
= 1 +
b
2
220 Chapter 2 Analytic Trigonometry
75. Because sin2
θ + cos2
θ = 1, then cos2
θ = 1 − sin2
θ.
cos θ = ± 1 − sin θ
tan θ =
sin θ
=
sin θ
cot θ
cos θ ±
=
cos θ
=
±
sin θ
1 − sin2
θ
1 − sin2
θ
sin θ
sec θ =
1
=
1
csc θ
cos θ
1
=
sin θ
± 1 − sin2
θ
76. To derive sin2
θ + cos2
θ = 1, let sin θ =
a
and cos θ =
b
a2
+ b2
a2
+ b2
.
2 2
a b a b2
So, sin2
θ + cos2
θ =  + = +
a2
+ b2
 a2
+ b2
 a2
+ b2
a2
+ b2
=
a2
+ b2
a2
+ b2
= 1.
To derive 1 + tan2
θ = sec2
θ, let tan θ =
a
and sec θ
b
a2
+ b2
= .
b
So, 1 + tan2
θ
2


b 
a2
= 1 + =
b2
b2
+ a2
b2
2 2
a2
+ b2 a2
+ b2
= =
b2
b


= sec2
θ.
To derive 1 + cot2
θ = csc2
θ, let cot θ =
b
and csc θ
a
a2
+ b2
= .
a
So, 1 + cot2
θ
2


a 
= 1 +
b2
a2
2
a2
+ b2
a2
+ b2
= =
a2 
a2

2
a2
+ b2
=  = csc2
θ.
a


Answers will vary.
1
1 +
sin θ 


 
Section 2.2 Verifying Trigonometric Identities 221
77.
sec θ(1 + tan θ
)
sec θ + csc θ

cos θ cos θ 
=
1
+
1
cos θ sin θ
cos θ + sin θ
= cos2
θ
sin θ + cos θ
sin θ cos θ
=
sin θ + cos θ sin θ cos θ
cos2
θ sin θ + cos θ

=
sin θ
cos θ
Section 2.2 Verifying Trigonometric Identities
1. identity
2. conditional equation
3. tan u
16.
cos(π 2) − x
sin(π 2) − x
π 
sin x
= = tan x
cos x
1
4. cot u
17. sin t csc
2
− t = sin t sec t = sin t
cos t
5. sin u
sin t
=
cos t
= tan t
6. cot2
u
7. −csc u
18. sec2
y − cot2 π
2
− y = sec2
y − tan2
y = 1

8. sec u
19.
1
+
1
=
cot x + tan x
9. tan t cot t =
sin t
cos t
⋅
cos t
= 1
sin t
tan x cot x tan x cot x
=
cot x + tan x
1
10.
tan x cot x
cos x
=
1
= sec x
cos x
20.
= tan x + cot x
1
−
1
=
csc x − sin x
11. (1 + sin α)(1 − sin α) = 1 − sin2
α = cos2
α sin x csc x sin x csc x
csc x − sin x
=
12. cos2
β − sin2
β = cos2
β − (1 − cos2
β)
= 2 cos2
β − 1
1
= csc x − sin x
13.
14.
cos2
β − sin2
β
sin2
α − sin4
α
= (1 − sin2
β) − sin2
β
= 1 − 2 sin2
β
= sin2
α(1 − sin2
α)
= (1 − cos2
α)(cos2
α)
= cos2
α − cos4
α
21.
1 + sin θ
cos θ
+
cos θ
=
1 + sin θ
=
=
(1 + sin θ)
2
+ cos2
θ
cos θ(1 + sin θ)
1 + 2 sin θ + sin2
θ + cos2
θ
cos θ(1 + sin θ)
2 + 2 sin θ
cos θ(1 + sin θ)
2(1+ sin θ)
15. tan
π
2
− θ tan θ = cot θ tan θ =
cos θ(1 + sin θ)

1 
= tan θ
tan θ 
= 1
=
2
cos θ
= 2 sec θ

( )
(
222 Chapter 2 Analytic Trigonometry
cos θ cot θ cos θ cot θ − (1 − sin θ) 1
22.
1 − sin θ
− 1 =
=
1 − sin θ
cos θ 
cos θ
sin θ
−
1 + sin θ
⋅
1 − sin θ
cos2
θ − sin θ + sin2
θ
sin θ
sin θ
25.
26.
27.
sec y cos y = cos y = 1
cos y 
cot2
y(sec2
y − 1) = cot2
y tan2
y = 1
tan
=
( ) = sin θ tan θ
2
θ sin θ cos θ tan θ
=
sin θ(1 − sin θ) sec θ 1 cos θ
=
1 − sin θ
sin θ(1 − sin θ)
=
1
sin θ
= csc θ
28.
cot3
t
csc t
cot t cot2
t
=
csc t
cot t(csc2
t − 1)=
csc t
cos t
csc2
t − 1
sin t
23.
1 1
+ =
cos x + 1 cos x − 1
=
cos x − 1 + cos x + 1
(cos x + 1)(cos x − 1)
2 cos x
cos2
x − 1
2 cos x
=
1
sin t
=
cos t sin t
csc2
sin t
t − 1)
=
−sin2
x = cos t(csc2
t − 1)
= −2 ⋅
1
⋅
cos x
1 1 + tan2
β
sin x sin x 29.
tan β
+ tan β =
tan β
24.
= −2 csc x cot x
cos x −
cos x
=
cos x(1 − tan x) − cos x
sec2
β
=
tan β
1 − tan x 1 − tan x
=
−cos x tan x
1 − tan x
−cos x(sin x cos x) cos x
= ⋅
1 − (sin x cos x)
=
−sin x cos x
cos x − sin x
sin x cos x
cos x
=
sin x − cos x
30.
sec θ − 1
=
sec θ − 1
⋅
sec θ sec θ(sec θ − 1)= = sec θ
1 − cos θ 1 − (1 sec θ) sec θ sec θ − 1
cot2
t cos2
t sin2
t cos2
t 1 − sin2
t 1
31. = = = 33. sec x − cos x = − cos x
csc t 1 sin t sin t sin t cos x
1 − cos2
x
=
32.
sin x 
cos x + sin x tan x = cos x + sin x 
cos x 
cos2
x + sin2
x
cos x
sin2
x
=
cos x
=
cos x
= sin x ⋅
sin x
=
1
cos x
= sec x
cos x
= sin x tan x
 
Section 2.2 Verifying Trigonometric Identities 223
34. cot x − tan x =
cos x
−
sin x
sin x cos x
cos2
x − sin2
x
=
sin x cos x
1 − sin2
x − sin2
x
=
sin x cos x
1 − 2 sin2
x
=
sin x cos x
1 1 − 2 sin2
x 
=
cos x sin x
1 1 2 sin2
x
=
cos x sin x
−
sin x
= sec x(csc x − 2 sin x)
cot x cos x sin x cos2
x 1 − sin2
x 1 sin2
x
35. = = = = − = csc x − sin x
36.
sec x
csc(−x)
sec(−x)
1 cos x
1 sin(−x)=
1 cos(−x)
cos(−x)
sin x sin x sin x sin x
=
sin(−x)
37.
=
cos x
−sin x
= −cot x
sin1 2
x cos x − sin5 2
x cos x = sin1 2
x cos x(1 − sin2
x) = sin1 2
x cos x ⋅ cos2
x = cos3
x sin x
38. sec6
x(sec x tan x) − sec4
x(sec x tan x) = sec4
x(sec x tan x)(sec2
x − 1) = sec4
x(sec x tan x) tan2
x = sec5
x tan3
x
39. (1 + sin y)1 + sin(−y) = (1 + sin y)(1 − sin y)
= 1 − sin2
y
41.
1 + sin θ
=
1 − sin θ
1 + sin θ
1 − sin θ
1 + sin θ
⋅
1 + sin θ
40.
= cos2
y
1
+
1
tan x + tan y
=
cot x cot y
⋅
cot x cot y
(1 + sin θ)
2
=
1 − sin2
θ
(1 + sin θ)
2
=1 − tan x tan y
1 −
1
⋅
1 cot x cot y cos2
θ
cot x cot y
1 + sin θ
==
cot y + cot x
cot x cot y − 1 cos θ
42.
cos x − cos y
+
sin x − sin y
=
(cos x − cos y)(cos x + cos y) + (sin x − sin y)(sin x + sin y)
sin x + sin y cos x + cos y (sin x + sin y)(cos x + cos y)
cos2
x − cos2
y + sin2
x − sin2
y
=
(sin x + sin y)(cos x + cos y)
(cos2
x + sin2
x) − (cos2
y + sin2
y)=
(sin x + sin y)(cos x + cos y)
43. = 0
cot(
− x)
≠
cot
x
44. The first line claims that sec(−θ)
= −sec θ
and
The correct substitution is cot(− x) = −cot x. sin(−θ) = sin θ. The correct substitutions are
1
+ cot(− x) = cot x − cot x = 0
tan x
sec(−θ) = sec θ and sin(−θ) = −sin θ.
( )( )

( 2 2
)

224 Chapter 2 Analytic Trigonometry
45. (a) 3
−2π 2π
−1
Identity
(b)
Identity
(c) 1 + cot2
x cos2
x = csc2
x cos2
x =
1
⋅ cos2
x = cot2
x
sin2
x
3
46. (a) (b)
−2π 2π
−1
Identity
Identity
(c) csc x(csc x − sin x) +
sin x − cos x
+ cot x = csc2
x − csc x sin x + 1 −
cos x
+ cot x
sin x sin x
= csc2
x − 1 + 1 − cot x + cot x
= csc2
x
47. (a)
5
y2
y1
−2π 2π
−1
Not an identity
(b)
Not an identity
(c) 2 + cos2
x − 3 cos4
x = (1 − cos2
x)(2 + 3 cos2
x) = sin2
x(2 + 3 cos2
x) ≠ sin2
x(3 + 2 cos2
x)
48. (a)
−π
5
y1 y2
π
(b)
−5
Not an identity
sin4
x sin2
x
Not an identity
(c) tan4
x + tan2
x − 3 = + − 3
cos4
x
1
cos2
x
sin4
x
=
cos2
x cos2
x
+ sin2
x − 3
1 sin4
x + sin2
x cos2
x
= 
cos2
x cos2
x
− 3

1 sin2
x 
= sin x + cos x − 3
cos2
x cos2
x
1 sin2
x 
=
cos2
x cos2
x
⋅ 1 − 3
= sec2
x tan2
x − 3
≠ sec2
x(4 tan2
x − 3)
.
cos2
x
( )
Section 2.2 Verifying Trigonometric Identities 225
49. (a) 3 50. (a) 3
y1
−2π 2π
−2 2
y2
−3 −5
(b)
Identity
(b)
Not an identity
(c)
Identity
1 + cos x (1 + cos x)(1 − cos x)=
Not an identity
(c)
cot α
is the reciprocal of
csc α + 1
sin x sin x(1 − cos x) csc α + 1 cot α
1 − cos2
x
=
sin x(1 − cos x)
sin2
x
=
sin x(1 − cos x)
sin x
=
51.
They will only be equivalent at isolated points in
their respective domains. So, not an identity.
tan3
x sec2
x − tan3
x = tan3
x(sec2
x − 1)
= tan3
x tan2
x
5
1 − cos x = tan x
2 4
52. (tan2
x + tan4
x) sec2
x =
sin x sin x 1
+ 
cos4
x cos2
x
1 
= sin2
x +
sin4
x 
cos4
x cos2
x
1 sin2
x cos2
x + sin4
x
=
cos4
x cos2
x
1 sin2
x cos2
x + sin2
x 
=
cos4
x cos2
x
1 sin2
x
= 

⋅ 1 = sec4
x ⋅ tan2
x
cos4
x cos2
x 
53. (sin2
x − sin4
x) cos x = sin2
x(1 − sin2
x) cos x
= sin2
x cos2
x cos x
= sin2
x cos3
x
54. sin4
x + cos4
x = sin2
x sin2
x + cos4
x
= (1 − cos2
x)(1 − cos2
x) + cos4
x
= 1 − 2 cos2
x + cos4
x + cos4
x
= 1 − 2 cos2
x + 2 cos4
x
55. sin2
25° + sin2
65° = sin2
25° + cos2
(90° − 65°)
= sin2
25° + cos2
25°
= 1
56. tan2
63° + cot2
16° − sec2
74° − csc2
27° = tan2
63° + cot2
16° − csc2
(90° − 74°) − sec2
(90° − 27°)
= tan2
63° + cot2
16° − csc2
16° − sec2
63°
=
(
t
a
n
2
6
3
°
−
s
e
c
2
6
3
°
)
+
(
c
o
t
2
1
6
°
−
c
s
c
2
1
6
°
)
=
−
1
+
(
−
1
)
=
−
2
θ 15° 30° 45° 60° 75° 90°
s 18.66 8.66 5 2.89 1.34 0
1
226 Chapter 2 Analytic Trigonometry
57. Let θ = sin−1
x sin θ = x =
x
. 60. Let θ = cos−1 x + 1
cos θ =
x + 1
.
1 2 2
1
x 2
4 − (x + 1)2
θ
1 − x2
θ
x + 1
From the diagram, From the diagram,
tan(sin−1
x) = tan θ =
x
. −1 x + 1 4 − (x + 1)2
1 − x2 tancos
2
= tan θ =
x 1
.
58. Let θ = sin−1
x sin θ = x =
x
.
+
1 cos x
1 61. cos x − csc x cot x = cos x −
sin x sin x
1 
= cos x1 −
sin2
x
x
θ
1 − x2
= cos x(1 − csc2
x)
= −cos x(csc2
x − 1)
= −cos x cot2
x
From the diagram,
cos(sin−1
x) = cos θ
1 − x2
= =
1
1 − x2
.
62. (a)
(b)
h sin(90° −θ)
sin θ
=
h cos θ
= h cot θ
sin θ
59. Let θ = sin−1 x − 1
sin θ =
x − 1
.
4 4
4
x − 1
(c) Maximum: 15°
Minimum: 90°
(d) Noon
θ 63. False. tan x2
= tan(x ⋅ x) and
16 − (x − 1)2
From the diagram,
tansin−1 x − 1
= tan θ
x − 1
= .
tan2
x = (tan x)(tan x), tan x2
64. True. Cosine is an even function,
≠ tan2
x.
π  π
4  16 − (x − 1)
2
cosθ − = cos− − θ
2  
= cos
π
2 
− θ
2


= sin θ.
65. False. For the equation to be an identity, it must be true
for all values of θ in the domain.
2
b
2
b
2 2
2
Section 2.3 Solving Trigonometric Equations 227
66. If sin θ =
a
, sec θ =
c
, and 68. tan θ = sec2
θ − 1
c b
True identity: tan θ = ± sec2
θ − 1
a2
+ b2
= c2
a2
c 
= c2
− b2
, then
tan θ = sec2
θ − 1 is not true for π 2 < θ < π
sec2
θ − 1
− 1
=  or 3π 2 < θ < 2π. So, the equation is not true for
sec2
θ c 


c2
θ
69.
= 3π 4.
1 − cos θ = sin θ
b2
− 1
=
c2 (1 − cos θ) = (sin θ)
2 2
b2 1 − 2 cos θ + cos θ = sin θ
c2
− b2
= b2
c2
1 − 2 cos θ + cos2
θ
2 cos2
θ − 2 cos θ
= 1 − cos2
θ
= 0
b2
c2
− b2
b2
= ⋅
b2
c2
c2
− b2
2 cos θ(cos θ − 1) = 0
The equation is not an identity because it is only true
when cos θ = 0 or cos θ = 1. So, one angle for which
the equation is not true is −
π
.
=
c2
a2 70.
=
c2
1 + tan θ
(1 + tan θ)
2
2
= sec θ
= (sec θ)
2
a 2 2
=  1 + 2 tan θ + tan θ = sec θ
c 
= sin2
θ.
1 + 2 tan θ + tan2
θ
2 tan θ
= 1 + tan2
θ
= 0
67. Because sin2
θ = 1 − cos2
θ, then tan θ = 0
sin θ = ± 1 − cos2
θ; sin θ ≠ 1 − cos2
θ if θ This equation is not an identity because it is only true
lies in Quadrant III or IV.
when tan θ = 0. So, one angle for which the equation
One such angle is θ =
7π
.
4
is not true is
π
.
6
Section 2.3 Solving Trigonometric Equations
1. isolate 6. sec x − 2 = 0
2. general
3. quadratic
(a) x =
π
3
sec
π
− 2 =
1
− 2
4. extraneous
5.
ta
n
x −
3 = 0
3
cos(π
3)
=
1
−
2
=
2
−
2
=
0
1
2
(a) x =
π
3
tan
π
− 3 = 3 − 3 = 0
(b) x =
5π
3
sec
5π
− 2 =
1
− 2
(b)
3
x =
4π
3
3 cos(5π 3)
=
1
− 2 = 2 − 2 = 0
1 2
tan
4π
− 3 =
3
3 − 3 = 0

=
2 cos2 2
2
2 cos2 2
2  = −
228 Chapter 2 Analytic Trigonometry
7. 3 tan2
2x − 1 = 0 10. csc4
x − 4 csc2
x = 0
(a) x =
π
12
2
3tan 2
π 
− 1 = 3 tan2 π
− 1
(a) x =
π
6
csc4 π
− 4 csc2 π 1 4
= −
12 6 4 2
 2
1 
3 − 1
6 6 sin (π 6)
1 4= −
sin (π 6)
3  (1 2)
4
(1 2)
2
(b)
= 0
x =
5π
12
2
(b) x =
5π
6
= 16 − 16 = 0
3tan 2
5π

− 1 = 3 tan2 5π
− 1 csc4 5π
4 csc
5π 1 4

12 6
− = 4
− 2

2
1 
= 3− − 1
6 6 sin (5π 6)
1 4
= −
sin (5π 6)
3  (1 2)
4
(1 2)
2
= 0
8. 2 cos2
4x − 1 = 0
11. 3 csc x − 2 = 0
= 16 − 16 = 0
(a) x =
π
16
π π
4 − 1 = 2 cos − 1
3 csc x = 2
csc x =
2
3
16 4
2

x =
π
+ 2nπ
3
= 2 2
− 1
2
(b) x =
3π

1 
= 2 − 1 = 1 − 1 = 0

12. tan x +
or x =
2π
3
3 = 0
+ 2nπ
16
3π 3π
4 − 1 = 2 cos − 1
tan x = − 3
x =
2π
+ nπ
16  4
2
2 
= 2− − 1
3
13. cos x + 1 = −cos x
2

2 cos x + 1 = 0

=
1
− 1 = 0
2
cos x
1
2
x =
2π
+ 2nπ or x =
4π
+ 2nπ
9. 2 sin2
x − sin x − 1 = 0 3 3
2
(a)
x =
π
2
2 sin2 π
− sin
π
− 1 = 2(1)2
− 1 − 1
14. 3 sin x + 1 = sin x
2 sin x + 1 = 0
1
2 2 sin x = −
= 0 7π
(b) x =
7π
6
2 sin2 7π
− sin
7π 1
2
− 1 = 2− 
1
− − − 1
x = + 2nπ or
6
x =
11π
+ 2nπ
6
6 6  2 2
=
1
+
1
− 1
2 2
= 0
Section 2.3 Solving Trigonometric Equations 229
15. 3 sec2
x − 4 = 0 20. (2 sin2
x − 1)(tan2
x − 3) = 0
sec2
x =
4
3
2 sin2
x − 1 = 0 or tan2
x = 3
sec x = ±
2
3
sin2
x =
1
2
tan x = ± 3
x =
π
6
+ nπ
sin x = ±
1
2
x =
π
3
+ nπ
or x =
5π
+ nπ sin x = ±
2
x =
2π
+ nπ
16.
6
3 cot2
x − 1 = 0
cot2
x =
1
x =
π
4
x =
3π
2 3
+ 2nπ
+ 2nπ
3
cot x = ±
1
3
4
x =
5π
4
x =
7π
+ 2nπ
+ 2nπ
x =
π
3
+ nπ 4
or x =
2π
3
+ nπ 21. cos3
x − cos x = 0
cos x(cos2
x − 1) = 0
17. 4 cos2
x − 1 = 0
cos x = 0 or cos2
x − 1 = 0
cos2
x =
1
4
cos x
1
x =
π
+ nπ
2
cos x = ±1
x = nπ
= ±
2 Both of these answers can be represented as x =
nπ
.
x =
π
+ nπ or x =
2π 2
+ nπ
18.
3 3
2 − 4 sin2
x = 0
sin2
x =
1
2
22. sec2
x − 1 = 0
sec2
x = 1
sec x = ±1
x = nπ
sin x = ±
1
2
= ±
2
2 23. 3 tan3
x = tan x
3
x =
π
+ 2nπ
3 tan x − tan x = 0
4
x =
3π
+ 2nπ
tan x(3 tan2
x − 1) = 0
4
x =
5π
4
x =
7π
+ 2nπ
+ 2nπ
tan x = 0
x = nπ
or 3 tan2
x − 1 = 0
tan x = ±
x =
π
3
3
+ nπ,
5π
+ nπ
4
These answers can be represented as x =
π
+
nπ
. 24.
6 6
sec x csc x = 2 csc x
19. sin x(sin x + 1) = 0
4 2
sec x csc x − 2 csc x = 0
csc x(sec x − 2) = 0
sin x = 0 or sin x = −1 csc x = 0 or sec x − 2 = 0
x = nπ x =
3π
2
+ 2nπ No solution sec x = 2
x =
π
+ 2nπ,
5π
+ 2nπ
3 3

= −
230 Chapter 2 Analytic Trigonometry
25. 2 cos2
x + cos x − 1 = 0
(2 cos x − 1)(cos x + 1) = 0
2 cos x − 1 = 0 or cos x + 1 = 0
cos x =
1 cos x = −1
2
x =
π
+ 2nπ,
5π
+ 2nπ
x = π + 2nπ
3 3
26. 2 sin2
x + 3 sin x + 1 = 0
(2 sin x + 1)(sin x + 1) = 0
2 sin x + 1 = 0 or sin x + 1 = 0
sin x
1
2
sin x = −1
x =
3π
+ 2nπ
x =
7π
+ 2nπ,
11π
+ 2nπ 2
6 6
27. sec2
x − sec x = 2
sec2
x − sec x − 2 = 0
(sec x − 2)(sec x + 1) = 0
sec x − 2 = 0
sec x = 2
or sec x + 1 = 0
sec x = −1
x =
π
+ 2nπ,
5π
+ 2nπ
x = π + 2nπ
3 3
28. csc2
x + csc x = 2
csc2
x + csc x − 2 = 0
(csc x + 2)(csc x − 1) = 0
csc x + 2 = 0
csc x = −2
or csc x − 1 = 0
csc x = 1
x =
7π
+ 2nπ,
11π
+ 2nπ x =
π
+ 2nπ
6 6 2
29. sin x − 2 = cos x − 2
sin x = cos x
30. cos x + sin x tan x = 2
cos x + sin x
sin x
= 2
sin x
= 1
cos x
cos x
cos2
x + sin2
x
tan x = 1
x = tan−1
1
x =
π
,
5π
4 4
cos x
= 2
1
= 2
cos x
1
cos x =
2
x =
π
,
5π
3 3

Section 2.3 Solving Trigonometric Equations 231
31. 2 sin2
x = 2 + cos x
2 − 2 cos2
x = 2 + cos x
2 cos2
x + cos x = 0
36. 3 sec x − 4 cos x = 0
3
− 4 cos x = 0
cos x
cos x(2 cos x + 1) = 0
3 − 4 cos2
x
= 0
cos x
cos x = 0 or 2 cos x + 1 = 0
3 − 4 cos2
x = 0
x =
π
,
3π 2 cos x = −1
3
2 2 1
cos x = −
2
cos2
x =
4
3
32. tan2
x = sec x − 1
sec2
x − 1 = sec x − 1
x =
2π
,
4π
3 3
37.
cos x = ±
2
x =
π
,
5π
,
7π
,
11π
6 6 6 6
csc x + cot x = 1
sec2
x − sec x = 0 (csc x + cot x)
2
= 12
33.
sec x(sec x − 1) = 0
sec x = 0 or sec x − 1 = 0
No Solutions sec x = 1
x = 0
sin2
x = 3 cos2
x
csc2
x + 2 csc x cot x + cot2
x = 1
cot2
x + 1 + 2 csc x cot x + cot2
x = 1
2 cot2
x + 2 csc x cot x = 0
2 cot x(cot x + csc x) = 0
2 cot x = 0 or cot x + csc x = 0
x
π
,
3π cos x 1
sin2
x − 3 cos2
x = 0 = = −
2 2 sin x sin x
sin2
x − 3(1 − sin2
x) = 0
4 sin2
x = 3
sin x = ±
3
3π

2
is extraneous.

cos x = −1
x = π
(π is extraneous.)
2
x =
π
,
2π
,
4π
,
5π
3 3 3 3
34. 2 sec2
x + tan2
x − 3 = 0
38.
x = π 2 is the only solution.
sec x + tan x = 1
1 sin x
+ = 1
cos x cos x
2(tan2
x + 1) + tan2
x − 3 = 0
1 + sin x = cos x
3 tan2
x − 1 = 0
(1 + sin x)
2
= cos2
x
tan x = ±
3
3
1 + 2 sin x + sin2
x = cos2
x
1 + 2 sin x + sin2
x = 1 − sin2
x
x =
π
,
5π
,
7π
,
11π
6 6 6 6 2 sin2
x + 2 sin x = 0
35. 2 sin x + csc x = 0
2 sin x +
1
= 0
2 sin x(sin x + 1) = 0
sin x = 0 or sin x + 1 = 0
.
sin x
2 sin2
x + 1 = 0
sin2
x
1
No solution
x = 0, π
(π is extraneous.)
sin x = −1
x =
3π
2
= −
2
x = 0 is the only solution.
3π

2
is extraneous 
2
2
232 Chapter 2 Analytic Trigonometry
39. 2 cos 2x − 1 = 0
45. 3 tan
x
− 3 = 0
cos 2x =
1
2
2
tan
x
=
3
2x =
π
+ 2nπ or 2x =
5π 2 3
+ 2nπ
3 3 x
=
π
+ nπ x =
π
+ 2nπ
x =
π
+ nπ x =
5π
+ nπ
2 6 3
6 6
x
46. tan + 3 = 0
40. 2 sin 2x + 3 = 0
2
x
sin 2x = −
3
2
tan
2
x
= − 3
=
2π
+ nπ x =
4π
+ 2nπ
2x =
4π
+ 2nπ or 2x =
5π
+ 2nπ 2 3 3
3 3
x =
2π
+ nπ x =
5π
+ nπ 47. y = sin
π x
+ 1
3 6 2
πx
+ =41. tan 3x − 1 = 0
tan 3x = 1
sin 1 0

πx
3x =
π
+ nπ
sin = −1
4
x =
π
+
nπ
πx
2
=
3π
2
+ 2nπ
12 3
42. sec 4x − 2 = 0
sec 4x = 2
cos 4x =
1
2
48.
x = 3 + 4n
For −2 < x < 4, the intercepts are −1 and 3.
y = sin πx + cos πx
sin πx + cos πx = 0
sin πx = −cos πx
4x =
π
+ 2nπ or 4x =
5π
+ 2nπ π
3 3 πx = − + nπ
4
x =
π
+
nπ
x =
5π
+
nπ
1
12 2 12 2 x = − + n
4
43. 2 cos
x
= 2 = 0 For 1 x 3, the intercepts are −
1
,
3
,
7
,
11
2
cos
x
=
2
− < < .
4 4 4 4
2 2 49. 5 sin x + 2 = 0
8
x
=
π
+ 2nπ or
x
=
7π
+ 2nπ
2 4 2 4
x =
π
+ 4nπ x =
7π
+ 4nπ 0 2π
2 2
44. 2 sin
x
=
2
3 = 0
−5
x ≈ 3.553 and x ≈ 5.872
sin
x
= −
3 50. 2 tan x + 7 = 0
2 2 15
x
=
4π
+ 2nπ or
x 5π
= + 2nπ
2 3 2 3
x =
8π
+ 4nπ x =
10π
+ 4nπ
0 2π
3 3 −5
x ≈ 1.849 and x ≈ 4.991
Section 2.3 Solving Trigonometric Equations 233
51. sin x − 3 cos x = 0
5
55. sec2
x − 3 = 0
5
0 2π
0 2π
−5
x ≈ 1.249 and x ≈ 4.391
52. sin x + 4 cos x = 0
5
56.
−4
x ≈ 0.955, x ≈ 2.186, x ≈ 4.097 and x ≈ 5.328
csc2
x − 5 = 0
5
0 2π
0 2π
−5
x ≈ 1.816 and x ≈ 4.957
−5
x ≈ 0.464, x ≈ 2.678, x = 3.605 and x ≈ 5.820
53. cos x = x
4 57. 2 tan2
x = 15
6
0 2π
0 2π
−8
x ≈ 0.739
54. tan x = csc x
−18
x ≈ 1.221, x ≈ 1.921, x ≈ 4.362 and x ≈ 5.062
10
58. 6 sin2
x = 5
6
0 2π
0 2π
−10
x ≈ 0.905 and x ≈ 5.379
−18
x ≈ 1.150, x ≈ 1.991, x ≈ 4.292 and x ≈ 5.133
59. tan2
x + tan x − 12 = 0
(tan x + 4)(tan x − 3) = 0
tan x + 4 = 0 or tan x − 3 = 0
tan x = −4 tan x = 3
x = arctan(−4) + nπ x = arctan 3 + nπ
60. tan2
x − tan x − 2 = 0
(tan x + 1)(tan x − 2) = 0
tan x + 1 = 0 or tan x − 2 = 0
tan x = −1 tan x = 2
x =
3π
4
+ nπ x = arctan 2 + nπ
3 3
234 Chapter 2 Analytic Trigonometry
61. sec2
x − 6 tan x = −4
1 + tan2
x − 6 tan x + 4 = 0
tan2
x − 6 tan x + 5 = 0
(tan x − 1)(tan x − 5) = 0
tan x − 1 = 0 tan x − 5 = 0
tan x = 1 tan x = 5
x =
π
4
+ nπ x = arctan 5 + nπ
62. sec2
x + tan x − 3 = 0
1 + tan2
x + tan x − 3 = 0
tan2
x + tan x − 2 = 0
(tan x + 2)(tan x − 1) = 0
tan x + 2 = 0 tan x − 1 = 0
tan x = −2 tan x = 1
x = arctan(−2) + nπ x = arctan(1) + nπ
63.
≈ −1.1071 + nπ
2 sin2
x + 5 cos x = 4
2(1 − cos2
x) + 5 cos x − 4 = 0
−2 cos2
x + 5 cos x − 2 = 0
−(2 cos x − 1)(cos x − 2) = 0
=
π
+ nπ
4
2 cos x − 1 = 0 or cos x − 2 = 0
cos x =
1
2
x =
π
+ 2nπ,
5π
+ 2nπ
cos x = 2
No solution
3 3
64. 2 cos2
x + 7 sin x = 5
2(1 − sin2
x) + 7 sin x − 5 = 0
−2 sin2
x + 7 sin x −3 = 0
−(2 sin x − 1)(sin x − 3) = 0
2 sin x − 1 = 0 or sin x − 3 = 0
sin x =
1
2
sin x = 3
x =
π
+ 2nπ,
5π
+ 2nπ No solution
6 6
65. cot2
x − 9 = 0
cot2
x = 9
1
= tan2
x
9
±
1
= tan x
3
x = arctan 1
+ nπ, arctan(− 1
) + nπ
5 5
=
Section 2.3 Solving Trigonometric Equations 235
66. cot2
x − 6 cot x + 5 = 0
(cot x − 5)(cot x − 1) = 0
cot x − 5 = 0 or cot x − 1 = 0
cot x = 5 cot x = 1
1
= tan x
5
1 = tan x
x = arctan
1
+ nπ x =
π
+ nπ
5 4
67. sec2
x − 4 sec x = 0
sec x(sec x − 4) = 0
sec x = 0 sec x − 4 = 0
No solution sec x = 4
1
= cos x
4
x = arccos
1
+ 2nπ, −arccos
1
+ 2nπ
4 4
68. sec2
x + 2 sec x − 8 = 0
(sec x + 4)(sec x − 2) = 0
sec x + 4 = 0 or sec x − 2 = 0
sec x = −4 sec x = 2
−
1
= cos x
1
= cos x
4 2
x = arccos−
1
+ 2nπ, −arccos−
1
+ 2nπ x =
π
+ 2nπ,
5π
+ 2nπ
4 4 3 3
69. csc2
x + 3 csc x − 4 = 0
(csc x + 4)(csc x − 1) = 0
csc x + 4 = 0 or csc x − 1 = 0
csc x = −4 csc x = 1
−
1
= sin x
4
1 = sin x
x = arcsin
1
+ 2nπ, arcsin−
1
+ 2nπ x =
π
+ 2nπ
4 4 2
70. csc2
x − 5 csc x = 0
csc x(csc x − 5) = 0
csc x = 0 or csc x − 5 = 0
No solution csc x = 5
1 sin x5
x = arcsin(1
) + 2nπ, arcsin(− 1
) + 2nπ
3

236 Chapter 2 Analytic Trigonometry
71. 12 sin2
x − 13 sin x + 3 = 0
−(−13) ± (−13)
2
− 4(12)(3)
30
13 ± 5
sin x = =
2(12) 24
0 2π
sin x =
1
or sin x =
3
−10
3 4
x ≈ 0.3398, 2.8018 x ≈ 0.8481, 2.2935
The x-intercepts occur at x ≈ 0.3398,
x ≈ 0.8481, x ≈ 2.2935, and x ≈ 2.8018.
72. 3 tan2
x + 4 tan x − 4 = 0
−4 ± 42
− 4(3)(−4) −4 ± 64 2
tan x = = = −2,
tan x = −2 tan x =
2(3) 6 3
2
3 50
x = arctan(−2) + nπ
≈ −1.1071 + nπ
x = arctan
2
+ nπ

≈ 0.5880 + nπ 0 2
The values of x in [0, 2π) are 0.5880, 3.7296, 2.0344, 5.1760. −10
73. tan2
x + 3 tan x + 1 = 0
−3 ± 32
− 4(1)(1) −3 ± 5
tan x = = 10
2(1) 2
tan x =
−3 − 5
or tan x =
−3 + 5
0 2π
2 2
x ≈ 1.9357, 5.0773 x ≈ 2.7767, 5.9183 −5
The x-intercepts occur at x ≈ 1.9357, x ≈ 2.7767,
x ≈ 5.0773, and x ≈ 5.9183.
74. 4 cos2
x − 4 cos x − 1 = 0
4 ± (−4)
2
− 4(4)(−1) 4 ± 32 1 ± 2
cos x = = =
cos x =
1 − 2
2(4) 8 2
cos x =
1 + 2
7
2 2
−1 2
x = arccos  No solution
2
 0 2π

≈ 1.7794
1 + 2 −3
> 1
2 
−1 − 2 
Solutions in [0, 2π) are arccos and 2π − arccos
1 2
: 1.7794, 4.5038.
2  2
−

−

−

Section 2.3 Solving Trigonometric Equations 237
75. 3 tan2
x + 5 tan x − 4 = 0, 

3
π
,
π
2 2
77. 4 cos2
x − 2 sin x + 1 = 0, 

6
π
,
π
2 2
−π π
2 2
−p p
2 2
76.
−7
x ≈ −1.154, 0.534
cos2
x − 2 cos x − 1 = 0, [0, π]
3
78.
−2
x ≈ 1.110
2 sec2
x + tan x − 6 = 0, 

π
,
π
2 2
4
0 π
−3
x ≈ 1.998
−π π
2 2
−6
x ≈ −1.035, 0.870
79. (a) f (x) = sin2
x + cos x
2
(b) 2 sin x cos x − sin x = 0
sin x(2 cos x − 1) = 0
0 2π
sin x = 0 or 2 cos x − 1 = 0
x = 0, π
−2 ≈ 0, 3.1416
cos x =
1
2
Maximum: (1.0472, 1.25)
Maximum: (5.2360, 1.25)
Minimum: (0, 1)
Minimum: (3.1416, −1)
x =
π
,
5π
3 3
≈ 1.0472, 5.2360
80. (a) f (x) = cos2
x − sin x
2
(b) −2 sin x cos x − cos x = 0
−cos x(2 sin x + 1) = 0
−cos x = 0 2 sin x + 1 = 0
0 2π
−2
cos x = 0 sin x = −
1
2
x =
π
,
3π
x =
7π
,
11π
Maximum: (3.6652, 1.25) 2 2 6 6
81. (a)
Maximum: (5.7596, 1.25)
Minimum: (1.5708, −1)
Minimum: (4.7124, 1)
f (x) = sin x + cos x
3
≈ 1.5708, 4.7124
(b) cos x − sin x = 0
cos x = sin x
≈ 3.6652, 5.7596
0 2π
1 =
sin x
cos x
−3
Maximum: (0.7854, 1.4142)
Minimum: (3.9270, −1.4142)
tan x = 1
x =
π
,
5π
4 4
≈ 0.7854, 3.9270
2
+=
238 Chapter 2 Analytic Trigonometry
82. (a) f (x) = 2 sin x + cos 2x
3
(b) 2 cos x − 4 sin x cos x = 0
2 cos x(1 − 2 sin x) = 0
2 cos x = 0 1 − 2 sin x = 0
0 2π
x =
π
,
3π
sin x =
1
2 2 2
−3
Maximum: (0.5236, 1.5)
Maximum: (2.6180, 1.5)
Minimum: (1.5708, 1.0)
Minimum: (4.7124, −3.0)
≈ 1.5708, 4.7124 x =
π
,
5π
6 6
≈ 0.5236, 2.6180
83. (a) f (x) = sin x cos x
2
84. (a) f (x) = sec x + tan x − x
6
0 2π 0 2π
−2
Maximum: (0.7854, 0.5)
Maximum: (3.9270, 0.5)
Minimum: (2.3562, −0.5) (b)
−8
Maximum: (3.1416, −4.1416)
Minimum: (0, 1)
sec x tan x + sec2
x − 1 = 0
Minimum: (5.4978, −0.5) 1
⋅
sin x
+
1
− 1 = 0
(b) −sin2
x + cos2
x = 0 cos x cos x cos x
−sin2
x + 1 − sin2
x = 0
−2 sin2
x + 1 = 0
sin x + 1
− 1 = 0
cos2
x
sin x + 1 cos2
x
− = 0
sin2
x =
1 cos2
x cos2
x
2 sin x + 1 − cos2
x
2
= 0
sin x = ±
1
= ±
2 cos x
2 2 sin x + sin2
x
= 0
x =
π
,
3π
,
5π
,
7π
4 4 4 4
≈ 0.7854, 2.3562, 3.9270, 5.4978
cos2
x
sin x + sin2
x = 0
sin x(1 + sin x) = 0
sin x = 0 or 1 + sin x = 0
x = 0, π
≈ 0, 3.1416
sin x = −1
x =
3π
2
3π
is undefined in original function. So, it is not
2
a solution.
85. The graphs of y1 = 2 sin x and y2
equation 2 sin x = 3x + 1.
= 3x + 1 appear to have one point of intersection. This implies there is one solution to the
86. The graphs of y1 = 2 sin x and y2
1
x 1 appear to have three points of intersection. This implies there are three solutions2
+to the equation 2 sin x =
1 x 1.2
x
32
32
Monthlysales
(inthousandsofdollars)
Section 2.3 Solving Trigonometric Equations 239
87. f (x) =
sin x 90. Graph the following equations. 4
x y1 = 1.56t −1 2
cos1.9t
0 10
(a) Domain: all real numbers except x = 0. y2 = 1
(b) The graph has y-axis symmetry.
(c) As x → 0, f (x) → 1.
y3 = −1
−4
(d)
sin x
x
= 0 has four solutions in the interval [−8, 8].
The rightmost point of intersection is at approximately
(1.91, −1).
The displacement does not exceed one foot from
sin x
1
= 0

equilibrium after t ≈ 1.91 seconds.
πt
sin x = 0
x = −2π, −π, π, 2π
91. Graph y1 = 58.3 + 32 cos 
6
y2 = 75.
88. f (x) = cos
1
x
(a) Domain: all real numbers x except x = 0.
(b) The graph has y-axis symmetry and a horizontal
asymptote at y = 1.
(c) As x → 0, f (x) oscillates between −1 and 1.
Left point of intersection: (1.95, 75)
Right point of intersection: (10.05, 75)
So, sales exceed 7500 in January, November,
and December.
S
(d) There are infinitely many solutions in the interval
2
100
75
[−1, 1]. They occur at x =
(2n + 1)π
any integer.
where n is 50
25
x
89.
(e) The greatest solution appears to occur at
x ≈ 0.6366.
y =
1
(cos 8t − 3 sin 8t) 92.
2 4 6 8 10 12
Month (1 ↔ January)
Range = 300 feet
12
v0 = 100 feet per second
1
(cos 8t − 3 sin 8t) = 0
12 r = 1
v0
2
sin 2θ
cos 8t = 3 sin 8t
1
= tan 8t
3
8t ≈ 0.32175 + nπ
t ≈ 0.04 +
nπ
8
1
(100)
2
sin 2θ
sin 2θ
2θ
θ
or
= 300
= 0.96
= arcsin(0.96) ≈ 73.74°
≈ 36.9°
In the interval 0 ≤ t ≤ 1, t ≈ 0.04, 0.43, and 0.83. 2θ = 180° − arcsin(0.96) ≈ 106.26°
θ ≈ 53.1°
0
16 2 
16 2 
16 2 
6
1 1
6 6 
240 Chapter 2 Analytic Trigonometry
93. (a) and (c)
100
94. h(t) = 53 + 50 sin
π
t −
π 
(a) h(t) = 53 when 50 sin
π
t −
π
= 0.
1 12
0
π
t −
π
= 0 or
π
t −
π
= π
The model fits the data well.
16 2 16 2
π π π 3π
(b) C = a cos(bt − c) + d t = t =
16 2 16 2
a =
1
[high − low] =
1
[84.1 − 31.0] = 26.55
t = 8 t = 24
2 2
p = 2[high time − low time] = 2[7 − 1] = 12
A person on the Ferris wheel will be 53 feet
above ground at 8 seconds and at 24 seconds
b =
2π
p
=
2π
=
π
12 6
(b) The person will be at the top of the Ferris wheel
when
The maximum occurs at 7, so the left end point is sin
π
t −
π
= 1
c
= 7 c = 7
π
=
7π

b 6 π
t −
π
=
π
16 2 2
d = [high + low] = [93.6 + 62.3] = 57.55
2 2
π
16
t = π
C = 26.55 cos
π
t −
7π
+ 57.55

(d) The constant term, d, gives the average maximum
t = 16.
The first time this occurs is after 16 seconds.
2π
temperature. The period of this function is
π 16
= 32.
95.
The average maximum temperature in Chicago is
57.55°F.
(e) The average maximum temperature is above 72°F
from June through September. The average
maximum temperature is below 70°F from October
through May.
A = 2x cos x, 0 < x <
π
2
During 160 seconds, 5 cycles will take place and
the person will be at the top of the ride 5 times,
spaced 32 seconds apart. The times are: 16 seconds,
48 seconds, 80 seconds, 112 seconds, and
144 seconds.
(a) 2
π
2
−2
(b)
The maximum area of A ≈ 1.12 occurs when x ≈ 0.86.
A ≥ 1 for 0.6 < x < 1.1
96. f (x) = 3 sin(0.6x − 2)
(a) Zero: sin(0.6x − 2) = 0 (b) g(x) =
0.6x − 2 = 0
0.6x = 2
x =
2
=
10
4
0
−0.45x2
+ 5.52x − 13.70
6
0.6 3 f
g
−4
For 3.5 ≤ x ≤ 6 the approximation appears to be good.
=
= −

=
Section 2.3 Solving Trigonometric Equations 241
(c) −0.45x2
+ 5.52x − 13.70 = 0
−5.52 ± (5.52)
2
− 4(−0.45)(−13.70)
x =
x ≈ 3.46, 8.81
2(−0.45)
The zero of g on [0, 6] is 3.46. The zero is close to the zero
10
3
≈ 3.33 of f.
97. f (x) = tan
π x
4
Because tan π 4 = 1, x = 1 is the smallest nonnegative
fixed point.
100. False.
sin x = 3.4 has no solution because 3.4 is outside the
range of sine.
98. Graph y = cos x and y = x on the same set of axes.
101. cot x cos2
x = 2 cot x
cos2
x = 2
Their point of intersection gives the value of c such that
f (c) = c cos c = c.
2 (0.739, 0.739)
−3 3
−2
c ≈ 0.739
cos x = ± 2
No solution
Because you solved this problem by first dividing by
cot x, you do not get the same solution as Example 3.
When solving equations, you do not want to divide each
side by a variable expression that will cancel out because
you may accidentally remove one of the solutions.
102. The equation 2 cos x − 1 = 0 is equivalent to
99. True. The period of 2 sin 4t − 1 is
π
and the period of
cos x = 1
. So, the points of intersection of y cos x2
2 and y 1
2
represent the solutions of the equation
2 sin t − 1 is 2π. 2 cos x − 1 = 0. In the interval (−2π, 2π) the solutions
In the interval [0, 2π) the first equation has four cycles
whereas the second equation has only one cycle, so the
first equation has four times the x-intercepts (solutions)
as the second equation.
of the equation are x
5π
, −
π
,
π
, and
3 3 3
5π
.
3
103. (a) 3
0 2π
−2
The graphs intersect when x =
π
2
and x = π.
(b) 3
0 2π
−2
The x-intercepts are
π
, 0 and (π, 0).
2


(c) Both methods produce the same x-values. Answers will vary on which method is preferred.
4 6 4 6
242 Chapter 2 Analytic Trigonometry
Section 2.4 Sum and Difference Formulas
1. sin u cos v − cos u sin v π π  π π π π
7. (a) cos + = cos cos − sin sin
2. cos u cos v − sin u sin v
3.
tan u + tan v
1 − tan u tan v
4 3  4 3 4 3
2 1 2 3
= ⋅ − ⋅
2 2 2 2
2 − 6
=
4
4. sin u cos v + cos u sin v
(b) cos
π
+ cos
π
=
2
+
1
=
2 + 1
5. cos u cos v + sin u sin v 4 3 2 2 2
7π π  5π π 1
6.
tan u − tan v 8. (a) sin
6
−
3
= sin
6
= sin =
6 2
1 + tan u tan v
(b) sin
7π
− sin
π
= −
1
−
3
=
−1 − 3
9. (a) sin(135° − 30°) = sin 135° cos 30° − cos 135° sin 30°
6 3 2 2 2
2  3  2 1 6 + 2
= − − =
2 2  2 2 4
(b) sin 135° − cos 30° =
2
−
3
=
2 − 3
10. (a)
2 2 2
cos(120° + 45°) = cos 120° cos 45° − sin 120° sin 45°
1 2  3  2 − 2 − 6
= − − =
2 2  2 2 4
(b) cos 120° + cos 45° = −
1
+
2
=
−1 + 2
11. sin
11π = sin
3π
+
π 
2 2 2
tan
11π = tan
3π
+
π

12 

4
= sin
3π
cos
π
+ cos
3π
sin
π
tan
3π
+ tan
π
4 6 4 6 = 4 6
2 3  2 1 1 − tan
3π
tan
π
= ⋅ + − 4 6
2 2  2 2
−1 +
3
co
s
11π
(
4 6
(
2
=
4
= cos
3π
3 − 1)
+
π 
=
3
1
−
(
−
1
)
3
3

12  =
−3 + 3
⋅
3 − 3
= cos
3π
cos
π
− sin
3π
sin
π 3 + 3 3 − 3
4 6 4 6
=
−12 + 6 3
= −2 + 3
2 3 2 1 2
= − ⋅ − ⋅ = − 3 + 1)
6
2 2 2 2 4
4 6
3 4
(
( 
3 4
(
4 6
3 4
)
)
)
Section 2.4 Sum and Difference Formulas 243
12.
7π
=
π
+
π
13. sin
17π
= sin
9π 5π 
−
12 3 4

12
sin
7π
= sin
π
+
π 
= sin
9π
cos
5π
− cos
9π
sin
5π

12 
= sin
π
cos
π
+ sin
π
cos
π
4 6 4 6
2 3 2 1
= − −
3 4 4 3
3 2 2 1
2 2  2 2
= ⋅ + ⋅
2 2 2 2 = −
2
3 + 1
4
=
2
3 + 1
4 cos
17π
12
= cos
9π
4
5π 
−
6
cos
7π
= cos
π
+
π 

= cos
9π
cos
5π
+ sin
9π
sin
5π

12  4 6 4 6
= cos
π
cos
π
− sin
π
sin
π 2 3  2 1
3 4 3 4 =
2
−
2
+
2 2
=
1
⋅
2
−
3
⋅
2

2
2 2 2 2 =
4
(1 − 3)
2
=
4
1 − 3
tan
17π
= tan
9π
−
5π
tan
7π
= tan
π
+
π 

12

12 
tan(9π 4) − tan(5π 6)=
1 + tan(9π 4) tan(5π 6)
tan
π
+ tan
π
= 3 4 1 − (− 3 3)
1 − tan
π
tan
π
3 4
=
1 + (− 3 3)
3 + 1
= =
3 + 3
⋅
3 + 3
1 − 3 3 − 3 3 + 3
= −2 − 3
=
12 + 6 3
6
= 2 + 3
14. −
π
=
π
−
π
12 6 4
sin−
π
= sin
π
−
π 
cos−
π
= cos
π
−
π 
tan−
π
= tan
π
−
π
12 6 4

12 6 4

12 6 4
 
( () )
= sin
π
cos
π − sin
π
cos
π
= cos
π
cos
π
+ sin
π
sin
π
tan
π
− tan
π
6 4 4 6
1 2 2 3
= ⋅ − ⋅
2 2 2 2
2
= 1 − 3
4
6 4 6 4
3 2 1 2
= ⋅ + ⋅
2 2 2 2
=
2
3 + 1
4
= 6 4
1 + tan
π
tan
π
6 4
3
− 1
= 3
1 +
3
3
= −2 + 3
(
(
(
(
(
(
(
)
)
)
)
)
244 Chapter 2 Analytic Trigonometry
15. sin 105° = sin(60° + 45°)
= sin 60° cos 45° + cos 60° sin 45°
3 2 1 2
= ⋅ + ⋅
2 2 2 2
17. sin(−195°) = sin(30° − 225°)
= sin 30° cos 225° − cos 30° sin 225°
= sin 30°(−cos 45°) − cos 30°(−sin 45°)
=
1
−
2
−
3
−
2 
2 2 2 2
=
2
3 + 1)
4
cos 105° = cos(60° + 45°)
= −
2
1 − 3
4
= cos 60° cos 45° − sin 60° sin 45°
1 2 3 2
=
2
4
3 − 1)
= ⋅ − ⋅
2 2 2 2
2
= 1 − 3
4
cos(−195°) = cos(30° − 225°)
= cos 30° cos 225° + sin 30° sin 225°
= cos 30°(−cos 45°) + sin 30°(−45°)
tan 105° = tan(60° + 45°) 3 2 1 2 
= − + −
tan 60° +tan 45°
=
2 2  2 2
1 − tan 60° tan 45°
= −
2
3 + 1
4
3 + 1 3 + 1 1 + 3
= = ⋅ tan(−195°) = tan(30° − 225°)
1 − 3 1 − 3 1 + 3
=
tan 30° −tan 225°
=
4 + 2 3
−2
= −2 − 3 1 + tan 30° tan 225°
=
tan 30° −tan 45°
16. 165° = 135° + 30°
sin 165° = sin (135° + 30°)
= sin 135° cos 30° + sin 30° cos 135°
1 + tan 30° tan 45°
3 
3
− 1
3 − 3 3 − 3
= = ⋅
= sin 45° cos 30° − sin 30° cos 45°
3 
1 +
3 + 3 3 − 3
3
2 3 1 2
= ⋅ − ⋅
2 2 2 2

=
−12 + 6 3
= −2 + 3
6
=
2
3 − 1
4 18. 225° = 300° − 45°
cos 165° = cos (135° + 30°)
= cos 135° cos 30° − sin 135° sin 30°
= −cos 45° cos 30° − sin 45° cos 30°
sin 255° = sin(300° − 45°)
= sin 300° cos 45° − sin 45° cos 300°
= −sin 60° cos 45° − sin 45° cos 60°
2 3 2 1
= − ⋅ − ⋅ = −
3
⋅
2
−
2
⋅
1
= −
2
( 3 + 1)
2 2 2 2 2 2 2 2 4
= −
2
3 + 1
4
tan 165° = tan (135° + 30°)
cos 255° = cos(300° − 45°)
= cos 300° cos 45° + sin 300° sin 45°
= cos 60° cos 45° − sin 60° sin 45°
( )tan 135° +tan 30°
=
1 2 3 2
= ⋅ − ⋅
2
= 1 − 3
1 − tan 135° tan 30°
=
−tan 45° + tan 30°
1 + tan 45° tan 30°
−1 +
3
= 3
1 +
3
2 2 2 2 4
tan 255° = tan(300° − 45°)
tan 300° −tan 45°
=
1 + tan 300° tan 45°
=
−tan 60° − tan 45°
1 − tan 60° tan 45°
3 − 3 − 1
= −2 + 3
=
1 − 3
= 2 + 3
4 3 4 3
4 3
(
3 4
(
3 4
(
3 4
)
)
)
Section 2.4 Sum and Difference Formulas 245
19.
13π
=
3π
+
π
12 4 3
sin
13π
= sin
3π
+
π 
tan
13π
= tan
3π
+
π

12 
= sin
3π
cos
π
+ cos
3π
sin
π

12 
tan
3π
+ tan
π
4 3 4 3

=
2 1 2 3 
1 − tan
3π
tan
π
= ⋅ + − 
4 3
2 2
=
2
(1 −
2 2 
3)

=
−1 + 3
( )4 1 − −1 ( 3)
cos
13π
= cos
3π
+
π  1 − 3 1 − 3
12 4 3
 = − ⋅
1 + 3 1 − 3
= cos
3π
cos
π
− sin
3π
sin
π 4 − 2 3
4 3 4 3
= −
−2
2 1 2 3
= − ⋅ − ⋅
2
= − 1 + 3 = 2 − 3
20.
19π
2 2 2 2 4
π 5π
= +
12 3 4
sin
19π
= sin
π 5π 
+

12 
= sin
π
cos
5π
+ sin
5π
cos
π
3 4 4 3
3
= −
2 
+ −
2 1
⋅
2 2  2 2
= −
2
3 + 1
4
cos
19π
= cos
π 5π 
+

12 
= cos
π
cos
5π
− sin
π
sin
5π
3 4 3 4
1 2 
= − −
3 2 
−
2 2  2 2
2
=
4
−1 + 3
tan
19π
= tan
π
+
5π

12
tan
π
+ tan
5π
= 3 4
1 − tan
π
tan
5π
3 4
tan
π
+ tan
π
= 3 4
1 − tan
π
tan
π
3 4
3 + 1 1 + 3
= ⋅
1 − 3 1 + 3
=
4 + 2 3
−2
= −2 − 3
(
(
− =

(
= + − = (1 − )
246 Chapter 2 Analytic Trigonometry
21. −
5π
= −
π
−
π
12 4 6
sin −
π
−
π
= sin −
π
cos
π
− cos −
π
sin
π
4 6 4 6 4 6

2 3 2 1 2
= − − = − 3 + 1)
2 2  2 2 4
cos−
π
−
π
= cos −
π
cos
π
+ sin −
π
sin
π
4 6 4 6 4 6

2 3 2 1 2
= + − = 3 − 1)
2 2  2 2 4
tan −
π
tan−
π
− tan
π
π 4 6
4 6  1 + tan −
π
tan
π
4 6
−1 −
3
= 3 =
−3 − 3
−
1 + (−1)
3 3 3
3


=
−3 − 3
⋅
3 + 3
3 − 3 3 + 3
22. −
7π
= −
π
=
−12 − 6 3
6
−
π
= −2 − 3
12 3 4
sin−
7π
= sin−
π
−
π
= sin−
π
cos
π
− cos −
π
sin
π
12

3 4

3 4

3 4
3 2 1 2 2
= − − = −
3 + 1)

2 2  2 2 4
cos−
7π
= cos−
π
−
π
= cos−
π
cos
π
+ sin−
π
sin
π
12

3 4

3 4

3 4

1 2 3 2 2
3
2 2  2 2 4
tan−
7π
= tan−
π
π 3 4
tan−
π
− tan
π 
− =

=
− 3 − 1
= 2 + 3
12  3 4 
1 + tan−
π
tan
π  1 + (− 3)(1)
3 4
− = − (
− − = (
(
(
(

)
Section 2.4 Sum and Difference Formulas 247
23. 285° = 225° + 60°
sin 285° = sin(225° + 60°) = sin 225° cos 60° + cos 225° sin 60°
2 1 2 3 2
= −  3 + 1)
2 2 2 2 4
cos 285° = cos(225° + 60°) = cos 225° cos 60° − sin 225° sin 60°
2 1 2 3 2
= −  3 − 1)
2 2  2 2 4
tan 285° = tan(225° + 60°) =
tan 225° +tan 60°
1 − tan 225° tan 60°
1 + 3 1 + 3
= ⋅ =
4 + 2 3
= −2 − 3 = −(2 + 3)
1 − 3 1 + 3 −2
24. 15° = 45° − 30°
sin 15° = sin(45° − 30°) = sin 45° cos 30° − cos 45° sin 30°
2 3 2 1 2( 3 − 1) 2
= − = = 3 − 1)
2 2  2 2 4 4
cos 15° = cos(45° − 30°) = cos 45° cos 30° + sin 45° sin 30°
2 3 2 1 2( 3 + 1) 2
= + = = 3 + 1)
2 2  2 2 4 4
tan 15° = tan(45° − 30°) =
tan 45° −tan 30°
1 + tan 45° tan 30°
1 −
3 3 − 3
= 3 = 3 =
3 − 3
⋅
3 − 3 12 − 6 3
= = 2 − 3
3  3 + 3 3 + 3 3 − 3 6
1 + (1)
3 3
25.

−165° = −(120° + 45°)
sin(−165°) = sin−(120° + 45°) = −sin(120° + 45°) = −[sin 120° cos 45° + cos 120° sin 45°]
3 2 1 2 2
( 3 1)= −

⋅ − ⋅
2 2 2 2
= − −
4
cos(−165°) = cos−(120° + 45°) = cos(120° + 45°) = cos 120° cos 45° − sin 120° sin 45°
1 2 3 2
= − ⋅ − ⋅
2
= − 1 + 3
2 2 2 2 4
tan(−165°) = tan−(120° + 45°) = −tan(120° + tan 45°) = −
tan 120° +tan 45°
1 − tan 120° tan 45°
= −
− 3 + 1
= −
1 − 3
⋅
1 − 3
= −
4 − 2 3
= 2 − 3
1 − (− 3)(1) 1 + 3 1 − 3 −2
= − − = − (1 +
(

7 5
8 8

)
)
248 Chapter 2 Analytic Trigonometry
26. −105 = 30° − 135°
sin(30° − 135°) = sin 30° cos 135° − cos 30° sin 135° = sin 30°(−cos 45°) − cos 30° sin 45°
1 2 3 2 2
3
2 2  2 2 4
cos(30° − 135°) = cos 30° cos 135° + sin 30° sin 135° = cos 30°(−cos 45°) + sin 30° sin 45°
3 2 1 2 2
= − + = 1 − 3

2 2  2 2 4
tan(30° − 135°) =
tan 30° −tan 135°
=
tan 30° −(−tan 45°)
1 + tan 30° tan 135°
3
− (−1)
= 3 = 2 +
3 
1 + (−1)
1 + tan 30°(−tan 45°)
3
3
27.

sin 3 cos 1.2 − cos 3 sin 1.2 = sin(3 − 1.2) = sin 1.8
36. cos
π
cos
3π
− sin
π
sin
3π
= cos
π
+
3π
16 16 16 16 16 16
28. cos
π
cos
π
− sin
π
sin
π
= cos
π
+
π 
π 2
7 5 7 5


= cos
12π
= cos =
4 2
29.
30.
35
sin 60° cos 15° + cos 60° sin 15° = sin(60° + 15°)
= sin 75°
cos 130° cos 40° − sin 130° sin 40° = cos(130° + 40°)
= cos 170°
37.
38.
cos 130° cos 10° + sin 130° sin 10° = cos(130° − 10°)
= cos 120°
1
= −
2
sin 100° cos 40° − cos 100° sin 40° = sin(100° − 40°)
= sin 60°
3
31.
tan (π 15) + tan(2π 5) =
= tan(π 15 + 2π 5) 2
1 − tan(π 15) tan(2π 5)
= tan(7π 15) 39.
tan(9π 8) − tan(π 8) 9π
= tan
−
π
32.
tan 1.1 − tan 4.6
= tan(1.1 − 4.6) = tan(−3.5)
1 + tan 1.1 tan 4.6
1 + tan(9π 8) tan(π 8)


= tan π
= 0
33.
34.
cos 3x cos 2y + sin 3x sin 2y = cos(3x − 2y)
sin x cos 2x + cos x sin 2x = sin(x + 2x) = sin(3x)
40.
tan 25° +tan 110°
= tan(25° + 110°)
1 − tan 25° tan 110°
= tan 135°
= −1
35. sin
π
cos
π
+ cos
π
sin
π
= sin
π
+
π
12 4 12 4 12 4 
= sin
π
3
3
=
2
(15, 8
17
v
17 17 15
− −
− +
5 85

4 15

−
25 25 24
Section 2.4 Sum and Difference Formulas 249
For Exercises 41–46, you have:
sin u = – 3, u in Quadrant IV cos u = 4, tan u = – 4
5 5 3
cos v = 15, v in Quadrant I sin v = 8 , tan v = 8
y y
)
u
x x
5
(4, −3)
41.
Figures for Exercises 41–46
sin(u + v) = sin u cos v + cos u sin v
= −
3 15
+
4 8 
44. csc(u − v) =
1
=
1
( )
517 517

sin u − v
1
sin u cos v − cos u sin v

13 =
3 15 4 8 
= − 
85
517 517
1 85
42. cos(u − v) = cos u cos v + sin u sin v
=
4 15
+ −
3 8 
= = −
−
77 77
85
517

517
 1 1
 45. sec(v − u) =
cos(v − u)
=
cos v cos u + sin v sin u
60 −24 36
= + = 1 1
85 85 85 =
15 4 8  =
3 60  24
3 8  
+ −
17 5 17
1 85
+ −

85
43. tan(u + v) =
tan u + tan v
=
4 15 =
36
=
36
1 − tan u tan v
1 − −
3 8
85
415
−
13
60 13 5

13 tan u + tan v
−
3
+
8 
= = − = − 46. tan(u + v) = =
3 8
1 +
32
60
60 7 84 1 − tan u tan v 1 − −

415
13
= 60
7
5
= −
13
84
1 1 84
For Exercises 47– 52, you have:
sin u = – 7 , u in Quadrant III cos u = – 24, tan u = 7
cot(u + v) = =
tan(u + v)
= −
−
13 13
84
u
25
(−24, −7)
cos v = – 4, v in Quadrant III sin v = – 3, tan v = 3
5 5 4
y y
v
x x
5
(−4, −3)
Figures for Exercises 47–52
25 5 25 5
25 5 25 5
25 5 25 5
24 4
− 5 25 5 
4 24
(
=
=
250 Chapter 2 Analytic Trigonometry
47. cos(u + v) = cos u cos v − sin u sin v
51. csc(u − v) =
1
=
1
= (− 24
)(− 4
) − (− 7
)(− 3
) sin(u − v) sin u cos v − cos u sin v
1
3 =
5 7 
− −

4 
− −

24 3
− 
48. sin(u + v) = sin u cos v + cos u sin v
= (− 7
)(− 4
) + (− 24
)(− 3
)
1
=
44
−
125
= 28
+ 72
= 100
= 4
49.
125 125 125 5
tan(u − v) =
tan u − tan v
1 + tan u tan v
7 3 11
52.
125
= −
44
sec(v − u) =
1
cos(v − u)
− −
24 4 24 44 1
= = = −
1 +
7 3 39
32
117 =
cos v cos u + sin v sin u
1
=
50. tan(v − u) =
tan v − tan u
=
3 7 

4 24
4
− −

24 
+ −

3
−

7 
25
1 + tan v tan u
11
1 +
3 7 

1
=
117
125
125
= 24 44
=
39 117
32
117
1 1 117
cot(v − u) =
tan(v − u)
=
44
=
44
117
53. sin(arcsin x + arccos x) = sin(arcsin x) cos(arccos x) + sin(arccos x) cos(arcsin x)
= x ⋅ x + 1 − x2
⋅ 1 − x2
= x2
+ 1 − x2
= 1 1
x
1
1 − x2
θ θ
1 − x2 x
54. sin(arctan 2x − arccos x) = sin(arctan 2x − arccos x)
θ = arcsin x θ = arccos x
= sin(arctan 2x) cos(arccos x) − cos(arctan 2x) sin(arccos x)
=
2x
(x) −
1
4x2
+ 1 4x2
+ 1
1 − x2
)
2x2
−
=
1 − x2
4x2
+ 1
4x2 + 1
2x 1
1 − x2
θ
1
θ = arctan 2x
θ
x
θ = arccos x
(
Section 2.4 Sum and Difference Formulas 251
55. cos(arccos x + arcsin x) = cos(arccos x) cos(arcsin x) − sin(arccos x) sin(arcsin x)
= x ⋅
= 0
(Use the triangles in Exercise 53.)
1 − x2
− 1 − x2
⋅ x
56. cos(arccos x − arctan x) = cos(arccos x − arctan x)
= cos(arccos x) cos(arctan x) + sin(arccos x) sin(arctan x)
= (x)
1
+ ( 1 − x2
) x

=
x + x
1 + x2

1 − x2
1 + x2

1
1 − x2
1 + x2
x
1 + x2
θ
x
θ = arccos x
θ
1
θ = arctan x
57. sin
π
− x = sin
π
cos x − cos
π
sin x 59. sin
π
+ x = sin
π
cos x + cos
π
sin x
2 2 2 6 6 6

= (1)(cos x) − (0)(sin x)
= cos x

=
5π 
1
cos x +
2
5π
3 sin x)
5π
58. sin
π
+ x = sin
π
cos x + sin x cos
π 60. cos
4
− x = cos cos x + sin
4
sin x
4
2 2 2
θ + π
= (1)(cos x) + (sin x)(0)
= cos x
tan θ + tan π tan θ + 0
= = =
tan θ
= θ
= −
2
(cos x + sin x)
2
61.
tan( )
1 − tan θ tan π 1 − (tan θ)(0) tan
1
π  tan
π
− tan θ
4 1 − tan θ
62. tan
4
− θ =
 1 + tan
π
tan θ
4
=
1 + tan θ
63. cos(π − θ) + sin
π
+ θ = cos π cos θ + sin π sin θ + sin
π
cos θ + cos
π
sin θ
2 2 2
= (−1)(cos θ) + (0)(sin θ) + (1)(cos θ) + (sin θ)(0)
= −cos θ + cos θ
= 0
64. cos(x + y) cos(x − y) = (cos x cos y − sin x sin y)(cos x cos y + sin x sin y)
= cos2
x cos2
y − sin2
x sin2
y
= cos2
x(1 − sin2
y) − sin2
x sin2
y
=
c
o
s
2
x
−
c
o
s
2
x
s
i
n
2
y
−
s
i
n
2
x
s
i
n
2
y
=
c
o
s
2
x
−
s
i
n
2
y
(
c
o
s
2
x
+
s
i
n
2
x
)
=
c
o
s
2
x
−
s
i
n
2
y


252 Chapter 2 Analytic Trigonometry
65. cos
3π
− θ = cos
3π
cos θ + sin
3π
sin θ 68. tan(π + θ) =
tan π + tan θ
2 2 2 1 − tan π tan θ

= (0)(cos θ) + (−1)(sin θ)
= −sin θ
2
0 + tan θ
=
1 − (0) tan θ
= tan θ
1 1
−2π 2π
cot(π + θ) = =
tan(π + θ) tan θ
= cot θ
5
−2
The graphs appear to coincide, so −2π 2π
cos
3π
2
− θ = −sin θ.
66.

sin(π + θ) = sin π cos θ + cos π sin θ
= (0) cos θ + (−1) sin θ
= −sin θ
69.
−5
The graphs appear to coincide, so cot(π + θ) = cot θ
sin(x + π) − sin x + 1 = 0
sin x cos π + cos x sin π − sin x + 1 = 0
2
−2π 2π
(sin x)(−1) + (cos x)(0) − sin x + 1 = 0
−2 sin x + 1 = 0
sin x =
1
2
−2
The graphs appear to coincide, so
sin(π + θ) = −sin(θ).
70.
x =
π
,
5π
6 6
cos(x + π) − cos x − 1 = 0
67. sin
3π
+ θ = sin
3π
cosθ + cos
3π
sin θ cos x cos π − sin x sin π − cos x − 1 = 0
2 2 2
= (−1)(cos θ) + (0)(sin θ)
= −cosθ
(cos x)(−1) − (sin x)(0) − cos x − 1 = 0
−2 cos x − 1 = 0
cos x
1
csc
3π
= −
+ θ =
1
=
1
= −sec θ 2
2

sin(3π
+ θ) −cos θ 2π 4π
2
5
x = ,
3 3
−2π 2π
−5
The graphs appear to coincide, so
csc
3π
2
+ θ = −sec θ.
Section 2.4 Sum and Difference Formulas 253
71. cosx +
π
− cosx −
π
= 1
4 4

cos x cos
π
− sin x sin
π
− cos x cos
π
+ sin x sin
π
= 1
4 4

4 4

2 
−2 sin x = 1
2 
− 2 sin x = 1
sin x = −
1
2
sin x = −
2
2
x =
5π
,
7π
4 4
72. sin x +
π
− sinx −
7π
=
3
6

6 2
sin x cos
π
+ cos x sin
π
− sin x cos
7π
− cos x sin
7π
=
3
6 6

6 6 2


(sin x)
3
+ (cos x)
1
− (sin x)−
3
+ (cos x)−
1
=
3
2

2

2

2 2
73.

tan(x + π) + 2 sin(x + π) = 0
tan x + tan π
+ 2(sin x cos π + cos x sin π) = 0
1 − tan x tan π
3 sin x =
3
2
sin x =
1
2
x =
π
,
5π
6 6
tan x + 0
+ − + =
1 − tan x(0)
2 sin x( 1) cos x(0) 0
tan x
− 2 sin x = 0
1
sin x
cos x
= 2 sin x
sin x = 2 sin x cos x
sin x(1 − 2 cos x) = 0
sin x = 0 or cos x =
1
2
x = 0, π x =
π
,
5π
3 3
1  4 4
1
3 4
3
254 Chapter 2 Analytic Trigonometry
74. sin x +
π
− cos2
x = 0 76. tan(x + π) − cosx +
π
= 0
2

2
sin x cos
π

+ cos x sin
π
− cos2
x = 0

x = 0, π
2 2
(sin x)(0) + (cos x)(1) − cos2
x = 0
cos x − cos2
x = 0
cos x(1 − cos x) = 0
cos x = 0 or 1 − cos x = 0
4
0 2π
−4
x =
π
,
3π
2 2
cos x = 1
77. sin x +
π
+ cos2
x = 0
x = 0 2

75. cosx +
π
+ cosx −
π
= 1
4 4

Graph y = cosx +

π 
+ cosx −

π 
and y2

= 1. 0 2π
x =
π
,
7π
4 4
2
−1
x =
π
, π,
3π
2 2
0 2π
78. cosx −
π
− sin2
x = 0
2


−2
1
0 2
79. y =
1
sin 2t +
1
cos 2t
3 4
−3
x = 0,
π
, π
2
(a) a =
1
, b =
1
, B = 2
3 4
C = arctan
b
a
= arctan
3
≈ 0.6435
4
y ≈
1 2 2
+

sin(2t + 0.6435) =
5
sin(2t + 0.6435)

12
(b) Amplitude:
5
12
feet
(c) Frequency:
1
=
B
=
2
=
1
cycle per second
period 2π 2π π
λ
λ
λ T λ
λ λT T 
Section 2.4 Sum and Difference Formulas 255
t x
80. y1 = A cos 2π − 
T
t x 
y2 = A cos 2π + 
T 
t x t x
y1 + y2 = A cos 2π
T
− + A cos 2π + 
t x t x  t x t x t x
y1 + y2 = Acos 2π

cos 2π
λ
+ sin 2π
T
sin 2π + Acos 2π

cos 2π
λ
− sin 2π
T
sin 2π = 2A cos 2π
T
cos 2π
λ
81. True.
sin(u + v) = sin u cos v + cos u sin v
sin(u − v) = sin u cos v − cos u sin v
So, sin(u ± v) = sin u cos v ± cos u sin v.
82. False.
cos(u + v) = cos u cos v − sin u sin v
cos(u − v) = cos u cos v + sin u sin v
So, cos(u ± v) = cos u cos v sin u sin v.
83. sin(α + β) = sin α cos β + sin β cos α = 0
sin α cos β + sin β cos α
sin α cos β
= 0
= −sin β cos α
False. When α and β are supplementary, sin α cos β = −cos α sin β.
84. cos(A + B) = cos(180° − C)
= cos(180°) cos(C) + sin(180°) sin(C)
= (−1) cos(C) + (0) sin(C)
= −cos(C)
True. cos(A + B) = −cos C. When A, B and C form Δ ABC, A + B + C = 180°, so A + B = 180° − C.
85. The denominator should be 1 + tan x tan(π 4).
tan x −
π
=
tan x − tan(π 4)
87. cos(nπ + θ) = cos nπ cos θ − sin nπ sin θ
= (−1)n
(cos θ) − (0)(sin θ)
4

1 + tan x tan(π 4)
=
tan x − 1
1 + tan x 88. sin(nπ
= (−1)
n
(cos θ), where n is an integer.
+ θ) = sin nπ cos θ + sin θ cos nπ
n
86. (a) Using the graph, sin(u + v) ≈ 0 and
sin u + sin v ≈ 0.7 + 0.7 = 1.4. Because
= (0)(cos θ) + (sin θ)(−1)
= (−1)
n
(sin θ), where n is an integer.
0 ≠ 1.4, sin(u + v) ≠ sin u + sin v.
(b) Using the graph, sin(u − v) ≈ −1and
sin u − sin v ≈ 0.7 − 0.7 = 0. Because
89.
−1 ≠ 0,
C = arctan
b
sin(u − v) ≠ sin u − sin v.
sin C =
b
, cos C =
a
a a2
+ b2
a2
+ b2
a2
+ b2
sin(Bθ + C) =
a b 
a2
+ b2
sin Bθ ⋅ + ⋅ cos Bθ = a sin Bθ + b cos Bθ
a2
+ b2
a2
+ b2
90. C = arctan
a
sin C =
a
, cos C =
b
b a2
+ b2
a2
+ b2
a2
+ b2
cos(Bθ − C) =
b a 
a2
+ b2
cos Bθ ⋅ + sin Bθ ⋅

= b cos Bθ + a sin Bθ
a2
+ b2
= a sin Bθ + b cos Bθ
a2
+ b2

θ


256 Chapter 2 Analytic Trigonometry
91. sin θ + cos θ
a = 1, b = 1, B = 1
94. sin 2θ + cos 2θ
a = 1, b = 1, B = 2
(a) C = arctan
b
a
= arctan 1 =
π
4 (a) C = arctan
b
a
= arctan(1) =
π
4
sin θ + cos θ = a2
+ b2
sin(Bθ + C) sin 2θ + cos 2θ = a2
+ b2
sin(Bθ + C)
π 
= 2 sinθ + 
= 2 sin2θ +
π
(b) C = arctan
a
b
4 
= arctan 1 =
π
4 (b) C = arctan
a
4 
= arctan(1) =
π
sin θ + cos θ =
=
a2
+ b2
cos(Bθ − C)
b 4
π ( )
2 cosθ −

4 
sin 2θ + cos 2θ =
=
a2
+ b2
cos Bθ − C
2 cos2θ −
π
4

92. 3 sin 2θ + 4 cos 2θ 
a = 3, b = 4, B = 2 b π
(a) C = arctan
b
= arctan
4
≈ 0.9273
95. C = arctan
a
= a = b, a > 0, b > 0
4
a
3 sin 2θ + 4 cos 2θ =
3
a2
+ b2
sin(Bθ + C)
a2
+ b2
B = 1
= 2 a = b = 2
≈ 5 sin(2θ + 0.9273)
2 sin +
π
= 2 sin θ + 2 cos θ
(b) C = arctan
a
b
= arctan
3
4
≈ 0.6435
4
3 sin 2θ + 4 cos 2θ = a2
+ b2
cos(Bθ − C) 96. C = arctan
b
=
π
a 4
a = b, a > 0, b > 0
93. 12 sin 3θ + 5 cos 3θ
a = 12, b = 5, B = 3
≈ 5 cos(2θ − 0.6435)
a2
+ b2
B = 1
= 5 a = b =
5 2
2
(a) C = arctan
b
= arctan
5
≈ 0.3948
π 5 2 5 2
5 cosθ − = sin θ + cos θ
a
12 sin 3θ + 5 cos 3θ
12
= a2
+ b2
sin(Bθ + C) 97.
4 2 2
y
(b) C = arctan
a
b
≈ 13 sin(3θ + 0.3948)
= arctan
12
≈ 1.1760
5
≈ 13 cos(3θ − 1.1760)
y1 = m1x + b1
θ
δ
α β
x
y2 = m2x + b2
m1 = tan α and m2 = tan β
β + δ = 90° δ = 90° − β
α + θ + δ = 90° α + θ + (90° − β)
= 90° θ = β − α
So, θ = arctan m2 − arctan m1. For y = x and
y = 3x you have m1 = 1 and m2 = 3.
θ = arctan 3 − arctan 1 = 60° − 45° = 15°
  
2 2
B
Section 2.4 Sum and Difference Formulas 257
98. For m2 > m1 > 0, the angle θ between the lines is: 99. y1 = cos(x + 2), y2
2
= cos x + cos 2
m2 − m1 
θ = arctan 
1 + m1m2 
m2 = 1
1
y2
0 2π
y1
m1 =
3
1 −
1 
−2
No, y1 ≠ y2 because their graphs are different.

θ = arctan 3 = arctan(2 −
1 +
1 
3) = 15°
100. y1 = sin(x + 4), y2
2
= sin x + sin 4
3

y1
0 2π
y2
−2
No, y1 ≠ y2 because their graphs are different.
101. (a) To prove the identity for sin(u + v) you first need to prove the identity for cos(u − v).
y
C 1 u − v
Assume 0 < v < u < 2π and locate u, v, and u − v on the unit circle. B
The coordinates of the points on the circle are: D
A = (1, 0), B = (cos v, sin v), C = (cos(u − v), sin(u − v)), and D = (cos u, sin u).
Because ∠DOB = ∠COA, chords AC and BD are equal. By the Distance Formula:
−1
u
v A x
O 1
2 2 2 2
cos(u − v) − 1 + sin(u − v) − 0 = (cos u − cos v) + (sin u − sin v) −1
cos2
(u − v) − 2 cos(u − v) + 1 + sin2
(u − v) = cos2
u − 2 cos u cos v + cos2
v + sin2
u − 2 sin u sin v + sin2
v
cos2
(u − v) + sin2
(u − v) + 1 − 2 cos(u − v) = (cos2
u + sin2
u) + (cos2
v + sin2
v) − 2 cos u cos v − 2 sin u sin v
2 − 2 cos(u − v) = 2 − 2 cos u cos v − 2 sin u sin v
−2 cos(u − v) = −2(cos u cos v + sin u sin v)
cos(u − v) = cos u cos v + sin u sin v
Now, to prove the identity for sin(u + v), use cofunction identities.
sin(u + v) = cos
π
− (u + v) = cos
π
− u − v
2

2
= cos
π
2
− u cos v + sin
π
2
− u sin v

= sin u cos v + cos u sin v
(b) First, prove cos(u − v) = cos u cos v + sin u sin v using the figure containing points
A(1, 0)
B(cos(u − v), sin(u − v))
C(cos v, sin v)
y
1 D
u − v
C
u
v
A x
D(cos u, sin u)
on the unit circle.
−1 u − v 1
Because chords AB and CD are each subtended by angle u − v, their lengths are equal. Equating −1
2 2

 
2
d(A, B) = d(C, D) you have (cos(u − v) − 1) + sin2
(u − v) = (cos u − cos v) + (sin u − sin v) .
Simplifying and solving for cos(u − v), you have cos(u − v) = cos u cos v + sin u sin v.
Using sin θ = cos
π
2

− θ,


sin(u − v) = cos
π
2
− (u − v) = cos
π
2
− u − (−v) = cos
π
2
− u cos(−v) + sin
π
2
− u sin(−v)

= sin u cos v − cos u sin v

h 0.5 0.2 0.1 0.05 0.02 0.01
f (h) 0.267 0.410 0.456 0.478 0.491 0.496
g(h) 0.267 0.410 0.456 0.478 0.491 0.496
= −
= −
258 Chapter 2 Analytic Trigonometry
102. (a) The domains of f and g are the same, all real numbers h, except h = 0.
(b) (c) 2
(d) As h → 0*,
f → 0.5 and
−3 3
−2
Section 2.5 Multiple-Angle and Product-to-Sum Formulas
g → 0.5.
1. 2 sin u cos u
2. cos2
u − sin2
u = 2 cos2
u − 1 = 1 − 2 sin2
u
8. sin 2x sin x = cos x
2 sin x cos x sin x − cos x = 0
cos x(2 sin2
x − 1) = 0
1
3.
2
sin(u + v) + sin(u − v)
cos x = 0 or 2 sin2
x =
π
+ 2nπ
x − 1 = 0
sin2
x =
1
4. tan2
u
2 2
sin x = ±
2
2
5. ±
1 − cos u
2 x =
π
+
nπ
6. −2 sin
u + v
sin
u − v
4 2
9. cos 2x − cos x = 0
2 2 
7. sin 2x − sin x = 0
2 sin x cos x − sin x = 0
sin x(2 cos x − 1) = 0
sin x = 0 or 2 cos x − 1 = 0
cos 2x = cos x
cos2
x − sin2
x = cos x
cos2
x − (1 − cos2
x) − cos x = 0
2 cos2
x − cos x − 1 = 0
(2 cos x + 1)(cos x − 1) = 0
x = nπ cos x =
1
2
2 cos x + 1 = 0 or cos x − 1 = 0
x =
π
+ 2nπ,
5π
+ 2nπ cos x
1
cos x = 1
10.
3 3
cos 2x + sin x = 0
1 − 2 sin2
x + sin x = 0
2 sin2
x − sin x − 1 = 0
(2 sin x + 1)(sin x − 1) = 0
2
x =
2nπ
3
x = 0
2 sin x + 1 = 0 or sin x − 1 = 0
sin x
1
2
sin x = 1
x =
7π
+ 2nπ,
11π
+ 2nπ x =
π
+ 2nπ
6 6 2
( )
Section 2.5 Multiple Angle and Product-to-Sum Formulas 259
11. sin 4x = −2 sin 2x
sin 4x + 2 sin 2x = 0
2 sin 2x cos 2x + 2 sin 2x = 0
2 sin 2x(cos 2x + 1) = 0
2 sin 2x = 0 or cos 2x + 1 = 0
sin 2x = 0 cos 2x = −1
2x = nπ 2x = π + 2nπ
x =
n
π x =
π
+ nπ
2 2
12. (sin 2x + cos 2x)
2
= 1
sin2
2x + 2 sin 2x cos 2x + cos2
2x = 1
2 sin 2x cos 2x = 0
sin 4x = 0
4x = nπ
x =
nπ
4
13. tan 2x − cot x = 0
2tan x
= cot x
1 − tan2
x
2 tan x = cot x(1 − tan2
x)
2 tan x = cot x − cot x tan2
x
2 tan x = cot x − tan x
3 tan x = cot x
3 tan x − cot x = 0
3 tan x −
1
= 0
tan x
3 tan2
x − 1
= 0
tan x
1
3 tan2
x − 1 = 0
tan x
cot x(3 tan2
x − 1) = 0
cot x = 0 or 3 tan2
x − 1 = 0
x =
π
+ nπ tan2
x =
1
2 3
tan x = ±
x =
π
3
3
+ nπ,
5π
+ nπ
6 6
tan 2x − 2 cos x 0
2tan x
1 − tan2
x
2 cos x
2 tan x
2 tan x
2 cos x(1 − tan2
x)
2 cos x − 2 cos x tan2
x
cos x 
2
2
=
260 Chapter 2 Analytic Trigonometry
14. =
=
=
=
2 tan x = 2 cos x − 2 cos x
sin2
x
cos2
x
2 tan x = 2 cos x − 2
sin2
x
cos x
sin x sin2
x
tan x = cos x −
sin x
= cos x −
cos x
sin2
x
cos x
sin2
x
cos x
cos x
+ − cos x = 0
cos x
sin x + sin2
x − cos2
x
= 0
cos x
1
sin x + sin2
x − (1 − sin2
x) = 0
sec x2 sin2
x + sin x − 1 = 0
sec x(2 sin x − 1)(sin x + 1) = 0
sec x = 0 or 2 sin x − 1 = 0 or sin x + 1 = 0
No solution
sin x =
1 sin x = −1
2 3π
x =
x =
π
,
5π 2
6 6
Also, values for which cos x = 0 need to be checked.
π
,
3π
are solutions.
2 2
x =
π
+ 2nπ,
π
+ nπ,
5π
+ 2nπ
15.
6 2 6
6 sin x cos x = 3(2 sin x cos x)
= 3 sin 2x
19. 4 − 8 sin2
x = 4(1 − 2 sin2
x)
= 4 cos 2x
16. sin x cos x =
=
1
(2 sin x cos x)
1 sin 2x
20. 10 sin2
x − 5 = 5(2 sin2
x − 1)
2
17.
2
6 cos2
x − 3 = 3(2 cos2
x − 1)
= 3 cos 2x
= −5(1 − 2 sin x)
= −5 cos 2x
18. cos2
x − 1
= 1 2(cos2
x − 1
)
2 2 2 
= 1
(2 cos2
x − 1)
1 cos 2x
2
5
3
u
−4
u
4
5
−
34
3
5
, ,
2  2 
3
tan 2u = = 

2 
2
= −
Section 2.5 Multiple Angle and Product-to-Sum Formulas 261
21. sin u
3 3π
= −
5 2
y
< u < 2π 22. cos u
4 π
5 2
y
< u < π
x x
3
sin 2u = 2 sin u cos u = −
3 4
= −
24
sin 2u = 2 sin u cos u =
3
−
4 24
= −
5 5 25 5 5 25
cos 2u = cos2
u − sin2
u =
16
−
9
=
7
25 25 25
3
2− 
cos 2u = cos2
u − sin2
u =
16
−
9
=
7
25 25 25

2−
tan 2u =
2tan u
=
4 316 24 2tan u 4 316 24
= − = − tan 2u = =
9
= − = −
23.
1 − tan2
u
tan u =
3
, 0 < u <
π
5 2
1 −
9
16
2 7 7 1 − tan2
u
1 −
16
2 7 7
y 3 5 15 sin
2u = 2 sin u cos u = 2 =
34 34 17
cos 2u = cos2
u − sin2
u =
25
−
9
=
8
34 34 17
3
2u x 2tan u 5
=
6 25
=
15
24. sec u = −2, π < u <
3π
2
1 − tan2
u 1 −
9
25
5 16 8
y
sin 2u = 2 sin u cos u = −
3
−
1
=
3
2 2 2
cos 2u = cos2
u − sin2
u = −
1
2
3 
− − =
1
−
3
= −
1
u
2 2  4 4 2
−1 x 3 
2
2 tan u 1 2 3
− 3 2 tan 2u =
1 − tan2
u
= 2
= = − 3
3 −2
1 −
1
25. cos 4x = cos(2x + 2x)
= cos 2x cos 2x − sin 2x sin 2x
= cos2
2x − sin2
2x
= cos2
2x − (1 − cos2
2x)
= 2 cos2
2x − 1
=
2
(
c
o
s
2
x)
2
− 1
1 − tan2
x
=
2
=

2
6.
tan 3x = tan(2x + x)
=
tan
2x +
tan x
1 − tan 2x tan x
2
t
a
n
x
1 − tan2
x
+ tan x
1 −
2 tan x
(tan x)

2 tan x + tan x − tan3
x
= 2(2 cos2
x − 1) − 1 1 − tan2
x
2 2
= 2(4 cos4
x − 4 cos x + 1) − 1 1 − tan x − 2 tan x
1 − tan2
x
= 8 cos4
x − 8 cos x + 1
3 tan x tan3
x
=
−
1 − 3 tan2
x
2
=
1 cos 2x 1 cos 2x
3

2
262 Chapter 2 Analytic Trigonometry
27. cos4
x = (cos2
x)(cos2
x) =
1 + cos 2x1 + cos 2x
=
1 + 2 cos 2x + cos 2x
2 2 4
1 + 2 cos 2x +
1 + cos 4x
= 2
4
=
2 + 4 cos 2x + 1 + cos 4x
8
=
3 + 4 cos 2x + cos 4x
8
=
1
(3 + 4 cos 2x + cos 4x)
8
8 4 4 2
2
2
2
28. sin x = (sin x)(sin x) = (sin x) (sin x)
2 2
− − 
2 2 
1 − 2 cos 2x + cos2
2x1 − 2 cos 2x + cos2
2x
= 
4 4 
1 − 2 cos 2x + cos2
2x − 2 cos 2x + 4 cos2
2x − 2 cos3
2x + cos2
2x − 2 cos3
2x + cos4
2x
=
16
1 − 4 cos 2x + 6 cos2
2x − 4 cos3
2x + cos4
2x
=
16
2 3 2
2
1 − 4 cos 2x + 6 cos 2x − 4 cos 2x + (cos 2x)=
16
1 + cos 4x 1 + cos 4x
1 − 4 cos 2x + 6 − 4 cos 2x + 
=
2 2 
16
1 + 2 cos 4x + cos2
4x
1 − 4 cos 2x + 3 + 3 cos 4x − 4 cos3
2x + 
=
4

16
4 − 16 cos 2x + 12 + 12 cos 4x − 16 cos3
2x + 1 + 2 cos 4x + cos2
4x
=
64
17 − 16 cos 2x + 14 cos 4x − 16 cos3
2x +
1 + cos 8x
=
2 
64
34 − 32 cos 2x + 28 cos 4x − 32 cos3
2x + 1 + cos 8x
=
128
35 − 32 cos 2x + 28 cos 4x − 32 cos3
2x + cos 8x
=
128
35 − 32 cos 2x + 28 cos 4x − 32 cos2
2x cos 2x + cos 8x
=
128
1 + cos 4x
35 − 32 cos 2x + 28 cos 4x − 32
2
cos 2x + cos 8x
=
128
=
35 − 32 cos 2x + 28 cos 4x − 16 cos 2x − 16 cos 4x cos 2x + cos 8x
128
=
35 − 48 cos 2x + 28 cos 4x − 16 cos 4x cos 2x + cos 8x
128
=
1
(35 − 48 cos 2x + 28 cos 4x + cos 8x − 16 cos 2x cos 4x)
128
=
1 cos 4x
( 2
)

=
1 cos 4x

( 2
)
( 2
)
2 2

2


Section 2.5 Multiple Angle and Product-to-Sum Formulas 263
29. sin4
2x = (sin2
2x) 31. tan4
2x = (tan2
2x)
2
−  
2
1 − cos 4x
=
2  1 + cos 4x
1
= 1 − 2 cos 4x + cos 4x
4
=
1
1 − 2 cos 4x +
1 + cos 8x
1 − 2 cos 4x + cos2
4x
=
1 + 2 cos 4x + cos2
4x
1 + cos 8x
4 2 
1 1 1 1
= − cos 4x + + cos 8x
4 2 8 8
3 1 1
= − cos 4x + cos 8x
8 2 8
1
= (3 − 4 cos 4x + cos 8x)
8
1 − 2 cos 4x +
= 2
1 + 2 cos 4x +
1 + cos 8x
2
1
(2 − 4 cos 4x + 1 + cos 8x)
= 2
1
(2 + 4 cos 4x + 1 + cos 8x)
2
=
3 − 4 cos 4x + cos 8x
30. cos4
2x = (cos2
2x) 3 + 4 cos 4x + cos 8x
2
+   32. tan2
2x cos4
2x =
1 − cos 4x
(cos2
2x)
2
2 
=
1
(1 + 2 cos 4x + cos2
4x)
1 + cos 4x
1 − cos 4x 1 + cos 4x
2
4 =
1 + cos 4x 2
1 1 + cos 8x 
= 1 + 2 cos 4x +

(1 − cos 4x)(1 + cos 4x)(1 + cos 4x)
4 2 
1 1 1 1
= + cos 4x + + cos 8x
4 2 8 8
3 1 1
= + cos 4x + cos 8x
8 2 8
1
= (3 + 4 cos 4x + cos 8x)8
=
4(1 + cos 4x)
(1 − cos 4x)(1 + cos 4x)=
4
1
= 1 − cos 4x
4
=
1
−
1 + cos 8x
1
4 2
33. sin2
2x cos2
2x =
1 − cos 4x1 + cos 4x
1 1 1
= − − cos 8x
4 8 8
1 1
= − cos 8x
8 8
1
= (1 − cos 8x)
8
2 2


1
= 1 − cos 4x
4
1 1 + cos 8x
= 1 −
4 2


=
1
−
1
−
1
cos 8x
4 8 8
=
1
−
1
cos 8x
8 8
=
1
(1 − cos 8x)
8
( 2
)
( 2 3
)
[ ]
[ ]
2 +
3
264 Chapter 2 Analytic Trigonometry
34. sin4
x cos2
x = sin2
x sin2
x cos2
x
=
1 − cos 2x1 − cos 2x1 + cos 2x
2

2 2

1
= (1 − cos 2x) 1 − cos 2x
8
1
= 1 − cos 2x − cos 2x + cos 2x
8
+ +1 1 cos 4x 1 cos 4x
= 1 − cos 2x − + cos 2x
8  2  2
1
= 2 − 2 cos 2x − 1 − cos 4x + cos 2x + cos 2x cos 4x
16
1
= 1 − cos 2x − cos 4x + cos 2x cos 4x
16
1 1 − cos 150° 1 + ( 3 2)
35. sin 75° = sin ⋅ 150° = =
2 2 2
=
1
2 + 3
2
1 1 + cos 150° 1 − ( 3 2)
cos 75° = cos ⋅ 150° = =
2 2 2
=
1
2 − 3
2
tan 75° = tan
1
⋅ 150° =
sin 150°
=
1 2
2

1 + cos 150° 1 ( 3 2)−
1 2 + 3
= ⋅ =
2 + 3
= 2 + 3
2 − 3 2 +
1 
3 4 − 3
1 − cos 330° 1 − ( 3 2)
36. sin 165° = sin ⋅ 330° = =
2 2 2
=
1
2 − 3
2
1 1 + cos 330° 1 + ( 3 2)
cos 165° = cos ⋅ 330° = − = −
2 2 2
1
= −
2
tan 165° = tan
1
⋅ 330° =
sin 330°
=
−1 2
2

1 + cos 330° 1 ( 3 2)+
−1 2 − 3 −2 + 3
= ⋅ = = −2 + 3
2 + 3 2 − 3 4 − 3
1
Section 2.5 Multiple Angle and Product-to-Sum Formulas 265
1 1 − cos 225° 1 − (− 2 2) 1
37. sin 112° 30′ = sin ⋅ 225° = = = 2 + 2
2  2 2 2
1 1 + cos 225° 1 + (− 2 2) 1
cos 112° 30′ = cos ⋅ 225° = − = − = − 2 − 2
2  2 2 2
tan 112° 30′ = tan
1
⋅ 225° =
sin 225°
=
− 2 2
=
− 2
⋅
2 + 2
=
−2 2 − 2
= −1 − 2
2

1 + cos 225° 1 ( 2 2) 2 − 2 2 + 2 2
+ −
1 1 − cos 135° 1 + ( 2 2) 1
38. sin 67° 30′ = sin ⋅ 135° = = = 2 + 2
2  2 2 2
1 1 + cos 135° 1 − ( 2 2) 1
cos 67° 30′ = cos ⋅ 135° = = = 2 − 2
2  2 2 2
tan 67° 30′ = tan
1
⋅ 135° =
sin 135°
=
2 2
= 1 + 2
2

1 + cos 135° 1 ( 2 2)−
π 1π  1 − cos
π
4 1
39. sin = sin = = 2 − 2
8 2 4 2 2
π
π 1π  1 + cos
4
cos = cos = = 2 + 2
8 2 4 2 2
sin
π 2
tan
π
= tan
1π
= 4 = 2 = 2 − 1
8 2 4  1 + cos
π
1 +
2
4 2
40. sin
7π
= sin
1 7π
=
1 − cos
7π
6 =
1 +
3
2 =
1
2 + 3
12 2 6

2 2 2
1 + cos
7π
1 −
3
cos
7π
= cos
1 7π
= − 6 = − 2 = −
1
2 − 3
12 2 6

2 2 2
sin
7π
−
1
tan
7π
= tan
1 7π
= 6 = 2 = −2 − 3
12 2 6  1 + cos
7π
1 −
3
6 2
2
2
,
2
2
= −




266 Chapter 2 Analytic Trigonometry
41. cos u =
7
, 0 < u <
π
42. sin u =
5
,
π
< u < π cos u
12
25 2
(a) Because u is in Quadrant I,
u
is also in Quadrant I.
2
1 −
7
13 2 13
(a) Because u is in Quadrant II,
u
is in Quadrant I.
2
1 +
12
(b) sin
u
=
1 − cos u
= 25 =
9 3
= (b) sin
u
=
1 − cos u
= 13 5 26
=
2 2 2 25 5
1 +
7
2 2 26
1 −
12
cos
u
=
1 + cos u
= 25 =
16 4
= cos
u
=
1 + cos u
= 13 26
=
2 2 2 25 5
1 −
7
2 2 26
5
tan
u
=
1 − cos u
= 25 =
3
tan
u
=
sin u
= 13 = 5
2 sin u 24 4 2

1 + cos u 1
12
43. tan u
5 3π
= −
12 2
25
< u < 2π
−
13
(a) Because u is in Quadrant IV,
u
is in Quadrant II.
2
1 −
12
(b) sin
u
=
1 − cos u
= 13 =
1 26
=
2 2 2 26 26
1 +
12
cos
u 1 + cos u
= − = − 13 25 5 26
= − = −
2 2 2 26 26
1 −
12
tan
u
=
1 − cos u
= 13 = −
1
2 sin u
−
5 5
13
44. cot u = 3, π

< u <
3π
2
(a) Because u is in Quadrant III,
u
is in Quadrant II.
2
1 +
3
(b) sin
u
=
1 − cos u
=
10 =
10 + 3 10
=
1 10 + 3 10
2 2 20 2 5
1 −
3
cos
u
= −
1 + cos u
= − 10 10 − 3 10
= −
1 10 − 3 10
= −
2 2 20 2 5
1 +
3
tan
u
=
1 − cos u
= 10 = − 10 − 3
2

sin u 1
−
10
Section 2.5 Multiple Angle and Product-to-Sum Formulas 267
45. sin
x
+ cos x = 0
2
47. cos
x
− sin x = 0
2
±
1 − cos x
2
1 − cos x
2
= −cos x
= cos2
x
±
1 + cos x
2
1 + cos x
2
= sin x
= sin2
x
cos x =
1
2
0 = 2 cos2
x + cos x − 1
= (2 cos x − 1)(cos x + 1)
or cos x = −1
1 + cos x = 2 sin2
x
1 + cos x = 2 − 2 cos2
x
2 cos2
x + cos x − 1 = 0
(2 cos x − 1)(cos x + 1) = 0
x =
π
,
5π
3 3
x = π
2 cos x − 1 = 0 or cos x + 1 = 0
2
1cos x =
2 cos x = −1
0 2π
x =
π
,
5π
3 3
x = π
−2
By checking these values in the original equation,
x = π 3 and x = 5π 3 are extraneous, and x = π
is the only solution.
x =
π
, π,
5π
3 3
π 3, π, and 5π 3 are all solutions to the equation.
2
46. h(x) = sin
x
+ cos x − 1
2
sin
x
+ cos x − 1 = 0
2
0 2π
−2
±
1 − cos x
2
1 − cos x
= 1 − cos x
= 1 − 2 cos x + cos2
x
48. g(x) = tan
x
− sin x
2
x
2
1 − cos x = 2 − 4 cos x + 2 cos2
x
tan − sin x = 0
2
1 − cos x
2 cos2
x − 3 cos x + 1 = 0 sin x
= sin x
(2 cos x − 1)(cos x − 1) = 0
2 cos x − 1 = 0 or cos x − 1 = 0
1 − cos x = sin2
x
1 − cos x = 1 − cos2
x
2
cos x =
1
cos x = 1
cos x − cos x = 0
2
x =
π
,
5π
3 3
x = 0
cos x(cos x − 1) = 0
cos x = 0 or cos x − 1 = 0
0,
π
, and
5π
are all solutions to the equation.
x =
π
,
3π
2 2
cos x = 1
3 3
x = 0
1
0,
π
, and
3π
are all solutions to the equation.
0 2π 2 2
3
−2
0 2π
−3
2

π π
π
268 Chapter 2 Analytic Trigonometry
49. sin 5θ sin 3θ = 1
cos(5θ − 3θ) − cos(5θ + 3θ) = 1
(cos 2θ − cos 8θ)
2 2
50. 7 cos(−5β) sin 3β = 7 ⋅ 1
sin(−5β + 3β) − sin(−5β − 3β) = 7
(sin(−2β) − sin(−8β))
2 2
51. cos 2θ cos 4θ = 1
cos(2θ − 4θ) + cos(2θ + 4θ) = 1
cos(−2θ) + cos 6θ
2 2
52. sin(x + y) cos(x − y) = 1
(sin 2x + sin 2y) 54. sin 3θ + sin θ = 2 sin
3θ + θ
cos
3θ − θ
2 2
53. sin 5θ − sin 3θ = 2 cos
5θ + 3θ
sin
5θ − 3θ  = 2 sin 2θ cos θ
2 2 
= 2 cos 4θ sin θ 55. cos 6x + cos 2x = 2 cos
6x + 2x
cos
6x − 2x
2 2
56. cos x + cos 4x = 2 cos
x + 4x
cos
x − 4x 

= 2 cos 4x cos 2x
2 2


= 2 cos
5x
cos
−3x 
2 2


° + °

° − °

57.
75 15 75 15 2 3 6
sin 75° + sin 15° = 2 sin cos = 2 sin 45° cos 30° = 2 =
2 2

2 2 2

° + °

° − °
58.
120 60 120 60 3
cos 120° + cos 60° = 2 cos cos = 2 cos 90° cos 30° = 2(0) = 0
2 2

2
3π
+
π 3π

−
π
59. cos
3π
− cos
π
= −2 sin 4 4 sin 4 4 = −2 sin sin
4 4  2 2 2 4
cos
3π
− cos
π 2 2
= − − = − 2
4 4 2 2
5π
+
3π 5π
−
3π
60. sin
5π
− sin
3π
= 2 cos 4 4 sin 4 4 = 2 cos π sin
4 4  2 2 4
sin
5π
− sin
3π 2 2
= − − = − 2
4 4 2 2
61. sin 6x + sin 2x = 0
2 sin
6x + 2x
cos
6x − 2x
= 0
2 2


2(sin 4x) cos 2x = 0
sin 4x = 0 or cos 2x = 0
−2
2
4x = nπ 2x =
π
2
+ nπ
0 2π
x =
nπ
x =
π
+
nπ
4 4 2
In the interval [0, 2π)
x = 0,
π
,
π
,
3π
, π,
5π
,
3π
,
7π
.
4 2 4 4 2 4

Section 2.5 Multiple Angle and Product-to-Sum Formulas 269
62. h(x) = cos 2x − cos 6x
cos 2x − cos 6x = 0
−2 sin 4x sin(−2x) = 0
2 sin 4x sin 2x = 0
sin 4x = 0 or sin 2x = 0 2
4x = nπ 2x = nπ
0 2π
x =
nπ
x =
nπ
4 2
−2
x = 0,
π
,
π
,
3π
, π,
5π
,
3π
,
7π
x = 0,
π
, π,
3π
4 2 4 4 2 4 2 2
63.
cos 2x
− 1 = 0
sin 3x − sin x
cos 2x
= 1
sin 3x − sin x
2
cos 2x
= 1
65. csc 2θ
1
=
sin 2θ
1
=
2 sin θ cos θ
=
1
⋅
1
2 cos 2x sin x
0 2π
2 sin x = 1
sin θ
csc θ
=
2 cos θ
sin x =
1
−2
2
2 cos θ
x =
π
,
5π 66. ( )( )
cos4
x − sin4
x =
6 6 = (
cos2
x − sin2
x
cos 2x)(1)
cos2
x + sin2
x
64. f (x) = sin2
3x − sin2
x
sin2
3x − sin2
x = 0
(sin 3x + sin x)(sin 3x − sin x) = 0
(2 sin 2x cos x)(2 cos 2x sin x) = 0
67. (sin x + cos x)
2
= cos 2x
= sin2
x + 2 sin x cos x + cos2
x
= (sin2
x + cos2
x) + 2 sin x cos x
= 1 + sin 2x
sin 2x = 0 x = 0,
π
, π,
3π
or
2 2
68. tan
u 1 − cos u
=
cos x = 0 x =
π
,
3π
or
2 2
2 sin u
1 cos u
= −
cos 2x = 0 x =
π
,
3π
,
5π
,
7π
or sin u sin u
4 4 4 4
sin x = 0 x = 0, π
1
= csc u − cot u
2 sin
x ± y
cos
x y
0 2π
69.
sin x ± sin y
cos x + cos y
=
2 2 
2 cos
x + y
cos
x − y
2 2


−1
= tan
x ± y 
2
π
+ x +
π
− x
 π
+ x −
π

− x
3 

 
70.
π
cos π
+ x + cos − x = 2 cos 3 3 cos
3 3
3 3  2 2


= 2 cos
π
cos(x)

1
= 2 cos x = cos x
2
2 
=
1
2
270 Chapter 2 Analytic Trigonometry
71. (a) sin
θ
= ±

1 − cos θ
2
1
=
M (c) When M = 4.5, cos θ
(4.5)
2
− 2
=
(4.5)
2
2
1 − cos θ 
±  cos θ ≈ 0.901235.
2  M  So, θ ≈ 0.4482 radian.
1 − cos θ
2
1
=
M 2 (d) When M = 2,
speed of object
= M
speed of sound
M 2
(1 − cos θ) = 2 speed of object
= 2
1 − cos θ
−cos θ
2
=
M 2
2
= − 1
760 mph
speed of object = 1520 mph.
speed of object
cos θ
M 2
= 1 −
2
M 2
M 2
− 2
When M = 4.5,
speed of sound
speed of object
760 mph
= M
= 4.5
cos θ =
M 2
22
− 2 1 π
speed of object = 3420 mph.
(b) When M = 2, cos θ = =
22
2
. So, θ = .
3
72.
1
(75)
2
sin 2θ
32
sin 2θ
= 130
130(32)=
752
75. True. Using the double angle formula and that sine is an
odd function and cosine is an even function,
sin(−2x) = sin2(− x)
= 2 sin(− x) cos(− x)
θ =
1
sin−1
130(32)
= 2(−sin x) cos x
2 752

θ ≈ 23.85°
= −2 sin x cos x.
76. False. If 90° < u < 180°,
73.
x
= 2r sin2 θ
= 2r
1 − cos θ
2 2 2

u
is in the first quadrant and
= r(1 − cos θ) 2
So, x = 2r(1 − cos θ). sin
u
=
1 − cos u
.
74. (a) Using the graph, sin 2u ≈ 1and
2 2
77. Because φ and θ are complementary angles,
2 sin u cos u ≈ 2(0.7)(0.7) ≈ 1.
Because 1 = 1, sin 2u = 2 sin u cos u.
sin φ = cos θ and cos φ = sin θ.
(b) Using the graph, cos 2u ≈ 0 and
cos2
u − sin2
u ≈ (0.7)
2
− (0.7)
2
= 0.
(a) sin(φ − θ) = sin φ cos θ − sin θ cos φ
= (cos θ)(cos θ) − (sin θ)(sin θ)
= cos2
θ − sin2
θ
Because 0 = 0, cos 2u = cos2
u − sin2
u.
R
e
v
iew Exercises for Chapter 2
(b)
=
c
o
s
2
θ
c
o
s
(
φ
−
θ
)
=
c
o
s
φ
c
o
s
θ
+
s
i
n
φ
s
i
n
θ
=
(
s
i
n
θ
)
(
c
o
s
θ) + (cos θ)(sin θ)
= 2 sin θ cos θ
= sin 2θ
1. cot x 3. cos x
2. sec x 4. cot2
x + 1 = csc2
x = csc x
= −
= −
tan2
x
2
Review Exercises for Chapter 2 271
5. cos θ
2
, tan θ
5
> 0, θ is in Quadrant III.
sec θ =
1
= −
5
cos θ 2
sin θ = − 1 − cos2
θ = − 1 −
4
= −
21
= −
21
cscθ
25 25 5
=
1
= −
5
= −
5 21
sin θ 21 21
−
21
tan θ =
sin
= 5 =
21
cos θ −
2 2
5
cot θ =
1
=
2
=
2 21
tan θ 21 21
6. cot x
2
, cos x < 0, x is in Quadrant II.
3
tan x =
1
= −
3
cot x 2
csc x = 1 + cot2
x = 1 +
4
=
13 13
=
9 9 3
sin x =
1
=
3
=
3 13
csc x 13 13
cos x = − 1 − sin2
x = − 1 −
9 4 2 2 13
= − = − = −
sec x =
1
= −
13
13 13 13 13
cos x 2
1 1
7. = = sin2
x
cot2
x + 1 csc2
x
13. cos2
x + cos2
x cot2
x = cos2
x(1 + cot2
x)
= cos2
x(csc2
x)
sin θ 1
8.
tan θ
=
cos θ
=
1 = cos2
x 
sin2
x
1 − cos2
θ sin2
θ sin θ cos θ
cos2
x
= csc θ sec θ =
sin2
x
2
9. tan2
x(csc2
x − 1) = tan2
x(cot2
x) = cot x
= tan2
x
1


14. (tan x + 1)2
cos x = (tan2
x + 2 tan x + 1) cos x
= 1
= (sec x + 2 tan x) cos x
10.
( ) cos x
=
2
cot2
x sin
2
x
=
sin2
x
=
cos2
x
s
i
n2
x
sin x 
= sec2
x cos x + 2 cos x
cos x
= sec x + 2 sin x
cot
π
− u
11.
2 
cos u
tan u
cos u
= tan u sec u
12.
sec (−θ) sec θ 1 cos θ sin θ 2
2 2 2 2
= = = = tan θcsc2
θ csc2
θ 1 sin2
θ cos2
θ
2



272 Chapter 2 Analytic Trigonometry
15.
1 1 (csc θ − 1) − (csc θ + 1)
− =
16.
tan x sec x − 1
2 2
=csc θ + 1 csc θ − 1 (csc θ + 1)(csc θ − 1)
=
−2
csc2
θ − 1
=
−2
cot2
θ
= −2 tan2
θ
1 + sec x 1 + sec x
(sec x + 1)(sec x − 1)=
sec x + 1
= sec x − 1
17. Let x = 5 sin θ, then
25 − x2
= 25 − (5 sin θ)
2
= 25 − 25 sin2
θ = 25(1 − sin2
θ) = 25 cos2
θ = 5 cos θ.
18. Let x = 4 sec θ, then
x2
− 16 = (4 sec θ)
2
− 16 = 16 sec2
θ − 16 = 16(sec2
θ − 1) = 16 tan2
θ = 4 tan θ.
19. cos x(tan2
x + 1) = cos x sec2
x 25. sin5
x cos2
x = sin4
x cos2
x sin x
1
= sec2
x
sec x
= (1 − cos2
x) cos2
x sin x
= sec x
= (1 − 2 cos x + cos x) cos x sin x
20. sec2
x cot x − cot x = cot x(sec2
x − 1)
= cot x tan2
x 26.
2 4 2
= (cos2
x − 2 cos4
x + cos6
x) sin x
cos3
x sin2
x = cos x cos2
x sin2
x
1 
= tan2
x = tan x
tan x
= cos x(1 − sin2
x) sin2
x
4
= cos x(sin2
x − sin x)
21. sin
π
2
− θ tan θ = cos θ tan θ
= (sin2
x − sin4
x) cos x

sin θ 
= cos θ 
cos θ 
= sin θ
27. sin x =
sin x =
3 − sin x
3
2
x =
π
+ 2πn,
2π
+ 2πn
22. cot
π
2
− θ csc θ
3 3
= tan θ csc θ

sin θ 1 
=
cos θ sin θ 
28. 4 cos θ
2 cos θ
= 1 + 2 cos θ
= 1
1
1
=
cos θ
cos θ =
2
π 5π
= sec θ
θ = + 2nπ or
3
+ 2nπ
3
23.
1
=
1
= cos θ 29. 3 3 tan u = 3
tan θ csc θ sin θ
cos θ
⋅
1
sin θ tan u =
1
3
π
24.
1 1 1
= =

u = + nπ
6
tan x csc x sin x (tan x)
1
(sin x)sin x tan x
= cot x
Review Exercises for Chapter 2 273
30.
1
sec x − 1 = 0
2
1
sec x = 1
2
35. cos2
x + sin x = 1
1 − sin2
x + sin x − 1 = 0
−sin x(sin x − 1) = 0
sec x = 2 sin x = 0 sin x − 1 = 0
cos x =
1
2
x = 0, π sin x = 1
x =
π
x =
π
+ 2nπ or
5π 2
+ 2nπ
31.
3 3
3 csc2
x = 4
36. sin2
x + 2 cos x = 2
1 − cos2
x + 2 cos x = 2
2
csc2
x =
4 0 = cos x − 2 cos x + 1
3
sin x = ±
3
2
0 = (cos x − 1)
2
cos x − 1 = 0
cos x = 1
x =
π
+ 2πn,
2π
+ 2πn,
4π
+ 2πn,
5π
+ 2πn x = 0
3 3 3 3
These can be combined as: 37. 2 sin 2x − 2 = 0
x =
π
+ nπ or x =
2π
+ nπ sin 2x =
2
3 3
2x =
π
+ 2πn,
3π
2
+ 2πn
32. 4 tan2
u − 1 = tan2
u 4 4
3 tan2
u − 1 = 0
x =
π
+ πn,
3π
+ πn
tan2
u =
1
3
tan u = ±
1
3
= ±
3
3
8 8
x =
π
,
3π
,
9π
,
11π
8 8 8 8
x
u =
π
+ nπ or
5π
+ nπ
38. 2 cos + 1 = 0
2
6 6 x 1
cos = −
33. sin3
x = sin x
2 2
sin3
x − sin x = 0
sin x(sin2
x − 1) = 0
sin x = 0 x = 0, π
sin2
x = 1
x
=
2π
2 3
x =
4π
3
x
sin x = ±1 x =
π
,
3π
2 2
39. 3 tan2
− 1 = 0
3
tan2 x
=
1
34.
32
c
o
s
2
x
+
3
c
o
s
x
=
0
c
o
s
x
(
2
c
o
s
x
+
3
)
=
0
cos
x =
0
or
2
cos
x +
3 =
0

3
tan
x
=
±
1
3 3
tan
x
=
±
3
= −
3 3
x =
π
,
3π
2 2
2 cos x = −3 x
=
π
,
3 6
5π
,
7π
6 6
cos x
3
2 x =
π
,
2
5π
,
7π
2 2
No solution 5π
and
7π
2 2
are greater than 2π, so they are not
solutions. The solution is x =
π
.
2
2
(

(
= −
274 Chapter 2 Analytic Trigonometry
40. 3 tan 3x = 0
tan 3x = 0
3x = 0, π, 2π, 3π, 4π, 5π
43. tan2
x − 2 tan x = 0
tan x(tan x − 2) = 0
tan x = 0 or tan x − 2 = 0
x = 0,
π
,
2π
, π,
4π
,
5π
3 3 3 3
x = nπ tan x = 2
x = arctan 2 + nπ
41. cos 4x(cos x − 1) = 0 44. 2 tan2
x − 3 tan x = −1
cos 4x = 0 cos x − 1 = 0 2 tan2
x − 3 tan x + 1 = 0
4x =
π
+ 2πn,
3π
+ 2πn cos x = 1 (2 tan x − 1)(tan x − 1) = 0
2 2
2 tan x − 1 = 0 or tan x − 1 = 0
x =
π
+
π
n,
3π
+
π
n x = 0 2 tan x = 1 tan x = 1
8 2 8 2
x = 0,
π
,
3π
,
5π
,
7π
,
9π
,
11π
,
13π
,
15π
8 8 8 8 8 8 8 8
tan x =
1
2
x =
π
+ nπ
4
42. 3 csc2
5x = −4
x = arctan
1
+ nπ
csc2
5x
4
3
csc 5x = ± −
4
3
No real solution
45. tan2
θ + tan θ − 6 = 0
(tan θ + 3)(tan θ − 2) = 0
tan θ + 3 = 0 or tan θ − 2 = 0
tan θ
θ
= −3 tan θ
= arctan(−3) + nπ θ
= 2
= arctan 2 + nπ
46. sec2
x + 6 tan x + 4 = 0
1 + tan2
x + 6 tan x + 4 = 0
tan2
x + 6 tan x + 5 = 0
47. sin 75° = sin(120° − 45°)
= sin 120° cos 45° − cos120° sin 45°
3 2 1 2 
= − −

(tan x + 5)(tan x + 1) = 0
2 2  2 2
tan x + 5 = 0 or tan x + 1 = 0 =
2
4
3 + 1)
tan x = −5 tan x = −1 cos 75° = cos(120° − 45°)
x = arctan(−5) + nπ x =
3π
+ nπ = cos120° cos 45° + sin 120° sin 45°
4
= −
1 2 3 2 
+
2 2  2 2
=
2
4
3 − 1)
tan 75° = tan(120° − 45°) =
tan 120° −tan 45°
1 + tan 120° tan 45°
=
− 3 − 1
=
− 3 − 1
1 + (− 3)(1) 1 − 3
=
− 3 − 1
⋅
1 + 3
1 − 3 1 + 3
=
−4 − 2 3
−2
= 2 + 3
(
(
= − + = (
(
)
)
Review Exercises for Chapter 2 275
48. sin(375°) = sin(135° + 240°)
= sin 135° cos 240° + cos 135° sin 240°
2 1  2 3
= − + − −
2 2  2 2
=
2
3 − 1
4
cos(375°) = cos(135° + 240°)
= cos 135° cos 240° − sin 135° sin 240°
2 1 2 3
= − − − −
2 2 2 2
2
= 1 + 3
4
tan(375°) = tan(135° + 240°)
=
tan 135° +tan 240°
1 − tan 135° tan 240°
=
−1 + 3
1 − (−1)( 3)
=
−1 + 3
⋅
1 − 3
=
−4 + 2 3
= 2 − 3
1 + 3 1 − 3 1 − 3
49. sin
25π
= sin
11π
+
π
= sin
11π
cos
π
+ cos
11π
sin
π
12

6 4

6 4 6 4

1 2 3 2 2 3 − 1)
2 2  2 2 4
cos
25π
= cos
11π
+
π
= cos
11π
cos
π
− sin
11π
sin
π
12

6 4

6 4 6 4

3 2 1 2 2
= − − =
3 + 1)

2 2  2 2 4
tan
11π
+ tan
π
tan
25π
= tan
11π
+
π
= 6 4
12

6 4

1 tan
11π
tan
π
−
6 4
3 
− + 1
3

= = 2 − 3
3 
1 − − (1)3

5 3
4
−4
v
−3
5
(
=
4 4
276 Chapter 2 Analytic Trigonometry
50. sin
19π
= sin
11π
−
π 
cos
19π
= cos
11π
−
π
12

6 4

12

6 4

= sin
11π
cos
π
− cos
11π
sin
π

= cos
11π
cos
π
+ sin
11π
sin
π
6 4 6 4
1 2 3 2
6 4 6 4
3 2 1 2
= − ⋅ − ⋅ = ⋅ + −
2 2 2 2 2 2  2 2
= −
2
(1 + 3) = −
2
( 3 + 1) =
2
3 − 1)
4 4 4
tan
19π
= tan
11π
−
π
12

6 4
tan
11π
− tan
π
= 6 4
1 + tan
11π
tan
π
6 4
−
3
− 1
= 3 = − 3 − 3
⋅
3 + 3
3 
1 + − (1)
3 − 3 3 + 3
3


−(12 + 6 3)= = −2 − 3
6
51. sin 60° cos 45° − cos 60° sin 45° = sin(60° − 45°)
= sin 15°
52.
tan 68° −tan 115°
= tan(68° − 115°)
1 + tan 68° tan 115°
= tan(−47°)
y y
u x x
53. ( )
Figures for Exercises 53–56
3
( 4
) 4
( 3
) 24
sin u + v = sin u cos v + cos u sin v = 5
− 5
3
+
3 3
+ 5
− 5
= − 25
54. tan(u + v) =
tan u + tan v
= 4 4 = 2 =
316 24
1 − tan u tan v
1 −
3 3

7
16
2 7 7
55. ( ) 4
( 4
) 3
( 3
)cos u − v = cos u cos v + sin u sin v =
5
− 5
+ 5
− 5
=
−1
56. ( ) 3
( 4
) 4
( 3
)sin u − v = sin u cos v − cos u sin v = 5
− 5
− 5
− 5
= 0
57. cosx +
π
= cos x cos
π
− sin x sin
π
= cos x(0) − sin x(1) = −sin x
2 2 2
, π
2

4
1 −
4
= −
=
2
= −
Review Exercises for Chapter 2 277
58. tan x −
π
= −tan
π
− x = −cot x 61. sin x +
π
− sinx −
π
= 1
2 2

4 4
59.

tan(π − x) =
tan π − tan x
= −tan x
1 − tan π tan x

2 cos x sin
π
= 1
4
60. sin(x − π) = sin x cos π − cos x sin π
= sin x(−1) − cos x(0)
= −sin x
cos x =
2
2
x =
π
,
7π
4 4
62. cosx +
π
− cosx −
π
= 1
6 6

cos x cos
π
− sin x sin
π
− cos x cos
π
+ sin x sin
π
= 1
6 6

6 6

−2 sin x sin
π
= 1
6
63. sin u
4
< u <
3π
−2 sin x
1
= 1

sin x = −1
x =
3π
2
65. sin 4x = 2 sin 2x cos 2x
5 2 = 22 sin x cos x(cos2
x − sin2
x)
cos u = − 1 − sin2
u =
−3
5 = 4 sin x cos x(2 cos2
x − 1)
tan u =
sin u
=
4
cos u 3
= 8 cos3
x sin x − 4 cos x sin x
2
4 3 24 sin
2u = 2 sin u cos u = 2− − =
5 5 25 −2π 2π
cos 2u = cos2
u − sin2
u = −
3 2 2
− −
 7
= −
5 5 25 −2

4
2
1 − cos 2x 1 − (1 − 2 sin2
x)
tan 2u =
2 tan u
1 − tan2
u
3
= −
24
7

3
66.
1 + cos 2x
=
1 + (2 cos x2
− 1)
2 sin2
x
=
2 cos2
x
64. cos u = −
2
,
π
5 2
< u < π sin u =
1
and
5 = tan2
x
tan u
1 4
2
1 2 4 sin
2u = 2 sin u cos u = 2 − = −
5 5 5 −2π 2π
2
2 4
cos 2u = cos2
u − sin2
u = −
2  2 2
−
1
=
3 −1
5 5 5

2 sin2
3x
1 − cos 6x
2 1 − cos 6x
1
2−  67. tan 3x = 2
= =
tan 2u =
2tan u
=
2
=
−1
= −
4 cos 3x 1 + cos 6x 1 + cos 6x
1 − tan2
u 1 3 3 2
1 − − 
2 

12 
2


3
3
=
278 Chapter 2 Analytic Trigonometry
68. sin2
x cos2
x =
1 − cos 2x1 + cos 2x
2 2


1 − cos2
2x
=
4
1 −
1 + cos 4x 
= 
4
=
1 − cos 4x
8
1 − cos 150°
3 
1 − −
2 
2 + 3 1
69. sin(−75°) = − = − = − = − 2 + 3
2 2 2 2
3 
1 + −
1 + cos 150° 2  2 − 3 1
cos(−75°) = − = = = 2 − 3
2 2 2 2
3 
1 − −
− °
tan(−75°) 1 cos 150

2
= −(2 + 3) = −2 − 3
= −
sin 150°
= −
1

2 


5π 1 − −
−
5π  1 cos
6
2  2 + 3 1
70. sin = = = = 2 + 3
12  2 2 2 2

5π 1 + −
+
5π  1 cos
6
2  2 − 3 1
cos = = = = 2 − 3
12  2 2 2 2
tan
5π
=

1 − cos
5π
6
sin
5π
3 
1 − − 
= 
1 = 2 + 3
71. tan u =
4
, π
6 2
< u <
3π
(b) sin
u
=
1 − cos u
=
1 − −
3
5 4
3 2 2 2 2 5
y
2 5
=
5
1 + −
3

u cos
u 1 + cos u
= − = −
5
= −
1
−3 x 2 2 2 5
−4 5
5
= −
5
1 − −
3
(a) Because u is in Quadrant III,
u
is in Quadrant II. tan
u 1 − cos u
= =
5 = −2
2 2 sin u
−
4
5

5 3
4
1 −
1 +
1 −
,



= −
=
Review Exercises for Chapter 2 279
72. sin u =
3
, 0 < u <
π
5 2
y
u
x
(a) Because u is in Quadrant I,
u
is in Quadrant I.
2
4
(b) sin
u
=
1 − cos u
=
5
=
1
=
10
2 2 2 10 10
4
cos
u
=
1 + cos u
=
5
=
9
=
3 10
2 2 2 10 10
4
tan
u
=
1 − cos u
=
5
=
1
2 sin u 3 3
5
73. cos u
2 π
7 2
y
< u < π
7
3 5
u
x
−2
(a) Because u is in Quadrant II,
u
is in Quadrant I.
2
1 − −
2
(b) sin
u
=
1 − cos u
=
7
=
9
2 2 2 14
3 14
=
cos
u
=
14
1 + cos u
=
1 + −
2
7 5
2 2 2 14
70
=
14
1 − −
2
tan
u 1 − cos u
= =
7 3 5
=
2 sin u 3 5 5
7
1 −
1 +
1 −
= −
2 
2 
2
cos 
θ
280 Chapter 2 Analytic Trigonometry
74. tan u = −
21
,
3π
2 2
y
< u < 2π
u
2 x
5 − 21
(a) Because u is in Quadrant IV,
u
is in Quadrant II.
2
2
(b) sin
u
=
1 − cos u
=
5
=
3
=
30
2 2 2 10 10
2
cos
u
= −
1 + cos u
= −
5  = −
7
= −
70
2 2 2 10 10
2
tan
u
=
1 − cos u
=
5 3 3 21
= − = −
21
2 sin u 21
− 
21 21 7
5 
75. cos 4θ sin 6θ = 1 sin(4θ + 6θ) − sin(4θ − 6θ) = 1 sin 10θ − sin(−2θ)
76.
77.
2 sin 7θ cos 3θ
cos 6θ + cos 5θ
= 2 ⋅ 1
sin(7θ + 3θ) + sin(7θ − 3θ) = sin 10θ + sin 4θ
= 2 cos
6θ + 5θ
cos
6θ − 5θ
= 2 cos
11θ
cos
θ
2 2 2 2
78. sin 3x − sin x = 2
3x + x
sin
3x − x 79. r =
1
v0
2
sin 2θ
2 2 32
= 2 cos 2x sin x
range = 100 feet
v0 = 80 feet per second
r =
1
(80)
2
sin 2θ
32
= 100
sin 2θ
2θ
θ
= 0.5
= 30°
= 15° or
π
12
80. Volume V of the trough will be the area A of the isosceles triangle times the length l of the trough.
V =
(a)
A ⋅ l
A =
1
bh
2
cos
θ
=
h
h = 0.5 cos
θ 4 m
2 0.5 2
b b
sin
θ
= 2 b
= 0.5 sin
θ h
2 0.5 2 2 0.5 m
0.5 m
A = 0.5 sin
θ
0.5 cos
θ
= (0.5)
2
sin
θ
cos
θ
= 0.25 sin
θ
cos
θ
square meters
2 2 2 2 2 2
V = (0.25)(4) sin
θ
cos
θ
cubic meters = sin
θ
cos
θ
cubic meters
2 2 2 2
Not drawn to scale

 
=
Problem Solving for Chapter 2 281
(b) V = sin
θ
cos
θ
=
1
2 sin
θ
cos
θ
=
1
sin θ cubic meters
2 2 2

2 2 2

Volume is maximum when θ =
π
.
2
81. False. If
π
< θ < π, then
π
<
θ
<
π
, and
θ
is in
84. True. It can be verified using a product-to-sum formula.
2
Quadrant I. cos
θ
> 0
4 2 2 2
4 sin 45° cos 15° = 4 ⋅
1
[sin 60° + sin 30°]
2
2
3 1
82. True. cot x sin2
x =
cos x
sin2
x = cos x sin x.
sin x
= 2

+ =
2 2
3 + 1
85. Yes. Sample Answer. When the domain is all real
83. True. 4 sin(−x)cos(−x) = 4(−sin x) cos x
= −4 sin x cos x
numbers, the solutions of sin x =
5π
1
are x =
π
2 6
+ 2nπ
= −2(2 sin x cos x)
= −2 sin 2x
Problem Solving for Chapter 2
and x = + 2nπ, so there are infinitely many
6
solutions.
1. sin θ = ± 1 − cos2
θ You also have the following relationships:
tan θ =
sin θ
= ±
cos θ
1 − cos2
θ
cos θ
sin θ = cos
π
2
− θ
cscθ =
1
= ±
sin θ
1
1 − cos2
θ
tan θ
csc θ
cos(π 2) − θ
cos θ
1
=
secθ
cot θ
=
1
cos θ
=
1
= ±
cos θ sec θ
cos(π 2) − θ
1
=
cos θ
tan θ 1 − cos2
θ
cot θ
cos θ
=
cos(π 2) − θ
(2n + 1)π 2nπ + π 
2. cos = cos
(12n + 1)π 1 
3. sin = sin (12nπ + π)
2 2

6 6

= cosnπ +
π 

= sin2nπ +
π
2

6
= cos nπ cos
π
− sin nπ sin
π
= sin
π
=
1
2 2
= (±1)(0) − (0)(1)
6 2
(12n + 1)π 1
= 0 So, sin
6
= for all integers n.
2

(2n + 1)π 
So, cos = 0 for all integers n.
2

4π
1 2 3 5 6

1
2
282 Chapter 2 Analytic Trigonometry
4. p(t) =
1
p (t) + 30p (t) + p (t) + p (t) + 30p (t)
1.4
1.4
p1(t) p2(t)
(a) p1(t) = sin(524πt)
1 −0.006 0.006
−0.006 0.006
p2 (t) =
p3(t) =
p5 (t) =
sin(1048πt)
2
1
sin(1572πt)
3
1
sin(2620πt)
5
1.4
p3(t)
−1.4
1.4
p5(t)
−1.4
1.4
p6
(t)
p6 (t) =
1
sin(3144πt)
6
−0.006 0.006 −0.006 0.006 −0.006 0.006
The graph of −1.4 −1.4 −1.4
p(t) =
1
sin(524πt) + 15 sin(1048πt) +
1
sin(1572πt) +
1
sin(2620πt) + 5 sin(3144πt)
4π 3 5 
yields the graph shown in the text below.
y
1.4
y = p(t)
t
0.006
(b)
−1.4
Function Period
p (t)
2π
524π
p (t)
2π
1
= ≈ 0.0038
262
=
1
≈ 0.0019
(c) 1.4 Max
0 0.00382
p3(t)
1048π
2π
524
=
1
≈ 0.0013
−1.4 Min
1
1572π
2π
786
1
Over one cycle, 0 ≤ t < , you have five t-intercepts:
262
p5(t)
p6(t)
2620π
2π
3144π
= ≈ 0.0008
1310
1
= ≈ 0.0006
1572
t = 0, t ≈ 0.00096, t ≈ 0.00191, t ≈ 0.00285,
t ≈ 0.00382
(d) The absolute maximum value of p over one cycle is
p ≈ 1.1952, and the absolute minimum value
The graph of p appears to be periodic with a
period of
1
≈ 0.0038.
262
of p over one cycle is p ≈ −1.1952.

2
2
= −
b
Problem Solving for Chapter 2 283
5. From the figure, it appears that u + v = w. Assume that u, v, and w are all in Quadrant I.
From the figure:
tan u =
s
=
1
3s 3
tan v =
s
=
1
2s 2
tan w =
s
= 1
s
tan u + v
tan u + tan v 1 3 + 1 2 5 6
= = = = 1 = tan w.
( )
1 − tan u tan v
1 − (1 3)(1 2) 1 − (1 6)
So, tan(u + v) = tan w. Because u, v, and w are all in Quadrant I, you have
arctantan(u + v) = arctan[tan w]u + v = w.
6. y = −
16
x2
+ (tan θ)x + h0
Let h0
v0
2
cos2
θ
= 0 and take half of the horizontal distance:
1 1
v sin 2θ =
1
v 2 sin θ cos θ
1
= v sin θ cos θ
2
2 32
0
0 ( ) 0
2
64 32
Substitute this expression for x in the model.
2
y = −
16 1
v 2
sin θ cos θ
 sin θ 1 
+ v sin θ cos θ
v 2
cos2
θ 32
0
cos θ 32
0
0 
1
v 2
sin2
θ +
1
v 2
sin2
θ
64
0
1
= v0
2
sin2
θ
64
32
0
7. (a)
10 θ 10
h
sin
θ
b
1
b
= 2
1
2
and cos
θ
=
h
2 10 2 10
b = 20 sin
θ
h = 10 cos
θ
2 2
A =
1
bh
2
1 θ θ 
= 20 sin 10 cos
2 2 2
2
(b)

= 100 sin
θ
cos
θ
2 2
θ θ 
A = 502 sin cos
2 2
θ 
= 50 sin 2


= 50 sin θ
Because sin
π
= 1 is a maximum, θ =
π
.So, the area is a maximum at A = 50 sin
π
= 50 square meters.
2 2 2
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual

More Related Content

What's hot

Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0José Encalada
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2José Encalada
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralErick Chevez
 
formulas calculo integral y diferencial
formulas calculo integral y diferencialformulas calculo integral y diferencial
formulas calculo integral y diferencialUANL-FIME
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1José Encalada
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式zoayzoay
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)sanjay gupta
 

What's hot (13)

Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Identidades
IdentidadesIdentidades
Identidades
 
Formulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-IntegralFormulario de Calculo Diferencial-Integral
Formulario de Calculo Diferencial-Integral
 
formulas calculo integral y diferencial
formulas calculo integral y diferencialformulas calculo integral y diferencial
formulas calculo integral y diferencial
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Calculo
CalculoCalculo
Calculo
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 

Similar to Trigonometry 10th Edition Larson Solutions Manual

Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionarioLuis Manuel Leon
 
51541 0131469657 ism-0
51541 0131469657 ism-051541 0131469657 ism-0
51541 0131469657 ism-0Ani_Agustina
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7Carlos Fuentes
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7crhisstian
 
1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdfRajuSingh806014
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Jhonatan Minchán
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaLuis Perez Anampa
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltosbellidomates
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integrationmusadoto
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1Ani_Agustina
 

Similar to Trigonometry 10th Edition Larson Solutions Manual (20)

Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
 
51541 0131469657 ism-0
51541 0131469657 ism-051541 0131469657 ism-0
51541 0131469657 ism-0
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Calculo i
Calculo iCalculo i
Calculo i
 
Calculo i
Calculo iCalculo i
Calculo i
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
1. limits
1. limits1. limits
1. limits
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
trigonometry.pdf
trigonometry.pdftrigonometry.pdf
trigonometry.pdf
 
Tabla integrales
Tabla integralesTabla integrales
Tabla integrales
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integration
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 

Trigonometry 10th Edition Larson Solutions Manual

  • 1. Trigonometry 10th Edition Larson SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/trigonometry-10th-edition-larson- solutions-manual/ C H A P T E R 2 Analytic Trigonometry Section 2.1 Using Fundamental Identities ............................................................213 Section 2.2 Verifying Trigonometric Identities....................................................221 Section 2.3 Solving Trigonometric Equations......................................................227 Section 2.4 Sum and Difference Formulas...........................................................242 Section 2.5 Multiple-Angle and Product-to-SumFormulas ................................258 Review Exercises ........................................................................................................270 Problem Solving .........................................................................................................281 Practice Test .............................................................................................................288
  • 2. 2 4 = − = −  2 5 3 = − = − = −   C H A P T E R 2 Analytic Trigonometry Section 2.1 Using Fundamental Identities 1. tan u 2. csc u 9. sin θ 3 = − , cos θ 4 > 0 θ is in Quadrant IV. 3 9 7 3. cot u cos θ = 1 − − =  − 3 1 − = 16 4 4. csc u tan θ = sin θ = 4 = − 3 3 7 5. 1 cos θ 7 7 7 4 6. −sin u sec θ 1 1 4 = = = = 4 7 7. sec x 5 , tan x < 0 x is in Quadrant II. cos θ 7 7 7 4 2 cot θ 1 1 7 = = = − cos x = 1 = 1 = − 2 tan θ − 3 3 7 sec x − 5 5 2 csc θ 1 1 4 = = = − sin x = 1 − − 2 =  1 − 4 = 21 25 5 sin θ − 3 3 4 2 tan x = sin x 21 = 5 = − 21 10. cos θ = , sin θ 3 < 0 θ is in Quadrant IV. 2 cos x − 2 2 sin θ = − 1 − 2 = − 1 − 4 = − 5 5 csc x = 1 = 5 = 5 21  9 3 − 5 sin x 21 21 tan θ = sin θ = 2 = − 5 cot x = 1 = − 2 = − 2 21 cos θ 2 2 3 tan x 21 21 1 1 3 8. csc x 7 , tan x > 0 x is in Quadrant III. secθ = cos θ = 2 = 2 3 6 cot θ = 1 = 1 = − 2 2 5 sin x = 1 = 1 = − 6 tan θ − 5 5 5 csc x − 7 7 6 cscθ 2 = 1 = 1 = − 3 3 5
  • 3.  2 7 cos x = − 1 − − 6  − 6 = − 1 − 36 = − 13 49 7 sin θ − 5 5 5 3 tan x = sin x cos x = 7 = 6 = − 13 13 6 13 13 7 sec x = 1 = 1 = − 7 = − 7 13 cos x − 13 13 13 7 cot x = 1 = 1 = 13 tan x 6 6 13
  • 4.  2 2 2 csc x = − 1 + 7 = −  = − cos x  2 214 Chapter 2 Analytic Trigonometry 11. tan x = 2 , cos x > 0 x is in Quadrant I. 15. cos x(1 + tan2 x) = cos x(sec2 x) 3 1 cot x = 1 = 1 = 3 = cos x cos2 x tan x 2 2 3 2 4 13 = 1 cos x = sec x sec x = 1 + = 3 3 1 + = 9 3 9 13 Matches (f). cos x 1 1 csc x = 1 + = 1 + = 16. cot x sec x = ⋅ = = csc x 2 4 2 sin x cos x sin x sin x = 1 = 1 = 2 = 2 13 Matches (a). csc x 13 13 13 sec2 x − 1 tan2 x sin2 x 1 2 17. = = ⋅ = sec2 x cos x = 1 = 1 = 3 = 3 13 sin2 x sin2 x cos2 x sin2 x sec x 13 13 13 3 Matches (e). cos2 (π 2) − x sin2 x sin x cot x = 1 = 1 = 3 18. cos x = cos x = sin x = tan x sin x cos x tan x 2 2 3 Matches (d). 12. cot x = 7 , sin x < 0 x is in Quadrant III. 4 19. tan θ cot θ 1  tan θ  = tan θ tan x = 1 = 1 = 4 secθ 1 cot x 7 7 4 4 16 65 cos θ = 1 1 sec x = − 1 + = − 7 2  = − 1 + = − 49 7 1 + 49 = − 65 π  cos θ = cos θ 4 16 4 20. cos − x sec x = sin x sec x sin x = 1 = 1 = − 4 4 65 2  1 csc x − 65 65 65 4 = sin x cos x cos x = 1 = 1 = − 7 7 65 = tan x sec x − 65 65 65 7 21. tan2 x − tan2 x sin2 x = tan2 x(1 − sin2 x) = tan2 x cos2 x 2 13. sec x cos x = 1 cos x  = sin x ⋅ cos2 x cos2 x = 1 Matches (c). 22.
  • 5. = s i n 2 x sin2 x sec2 x − sin2 x = sin2 x(sec2 x − 1) 14. cot2 x − csc2 x = (csc2 x − 1) − csc2 x = −1 = sin2 x tan2 x Matches (b). 23. sec x − 1 = (sec x + 1)(sec x − 1) sec x − 1 sec x − 1 = sec x + 1 24. cos x − 2 = cos x − 2 cos2 x − 4 (cos x + 2)(cos x − 2) = 1 cos x + 2
  • 6. = − 2 Section 2.1 Using Fundamental Identities 215 25. 1 − 2 cos x + cos x = (1 − cos x) 26. sec4 x − tan4 x = (sec2 x + tan2 x)(sec2 x − tan2 x) 2 4 2 2 ( 2 2 )( ) = (sin2 x) = sec x + tan x 1 27. 28. = sin4 x cot3 x + cot2 x + cot x + 1 = cot2 x(cot x + 1) + (cot x + 1) = (cot x + 1)(cot2 x + 1) = (cot x + 1)csc2 x sec3 x − sec2 x − sec x + 1 = sec2 x(sec x − 1) − (sec x − 1) = (sec2 x − 1)(sec x − 1) = tan2 x(sec x − 1) = sec2 x + tan2 x 29. 3 sin2 x − 5 sin x − 2 = (3 sin x + 1)(sin x − 2) 38. cot u sin u + tan u cos u = cos u (sin u) + sin u (cos u) 30. 6 cos2 x + 5 cos x − 6 = (3 cos x − 2)(2 cos x + 3) sin u = cos u + sin u cos u 2 2 2 31. cot2 x + csc x − 1 = (csc2 x − 1) + csc x − 1 39. 1 − sin x = cos x = cos2 x tan2 x = (cos2 x) sin x 2 2 2 = csc2 x + csc x − 2 = (csc x − 1)(csc x + 2) csc x − 1 cot x = sin2 x cos x 32. sin2 x + 3 cos x + 3 = (1 − cos2 x) + 3 cos x + 3 = −cos2 x + 3 cos x + 4 = −(cos2 x − 3 cos x − 4) = −(cos x + 1)(cos x − 4) 40. cos2 y 1 − sin y 1 − sin2 y = 1 − sin y = (1 + sin y)(1 − sin y) 1 − sin y = 1 + sin y 33. tan θ csc θ = sin θ ⋅ 1 = 1 = secθ 41. (sin x + cos x) 2 = sin2 x + 2 sin x cos x + cos2 x = (sin2 x + cos2 x) + 2 sin x cos x cos θ sin θ cos θ = 1 + 2 sin x cos x 34. tan(−x) cos x = −tan x cos x sin x ⋅ cos x cos x = −sin x 42. (2 csc x + 2)(2 csc x − 2) = 4 csc2 x − 4 = 4(csc2 x − 1) = 4 cot2 x 35. sin φ(csc φ − sin φ) = (sin φ) 1 − sin2 φ 43. 1 + 1 = 1 − cos x + 1 + cos x sin φ 1 + cos x 1 − cos x (1 + cos x)(1 − cos x) = 1 − sin2 φ = cos2 φ = 2 1 − cos2 x 36. cos x(sec x − cos x) = cos x 1 − cos x  = 2 cos x  sin2 x  = 1 − cos2 x = sin2 x 44. = 2 csc2 x 1 − 1 = sec x − 1 − (sec x + 1) 37. sin β tan β + cos β = (sin β) sin β + cos β
  • 7. c o s β sec x + 1 sec x − 1 (sec x + 1)(sec x − 1) = sec x − 1 − sec x − 1 sin2 β = + cos β cos2 β cos β sec2 x − 1 = −2 sin2 β + cos2 β = cos β tan2 x 1  = −2 2 = 1 tan x cos β = sec β = −2 cot2 x
  • 8. 216 Chapter 2 Analytic Trigonometry 45. cos x − cos x = cos x(1 − sin x) − cos x(1 + sin x) 1 + sin x 1 − sin x (1 + sin x)(1 − sin x) = cos x − sin x cos x − cos x − sin x cos x (1 + sin x)(1 − sin x) = −2sin x cos x 1 − sin2 x = −2sin x cos x cos2 x = −2sin x cos x = −2 tan x 46. sin x 1 + cos x + sin x = 1 − cos x sin x(1 − cos x) + sin x(1 + cos x) (1 + cos x)(1 − cos x) = sin x − sin x cos x + sin x + sin x cos x (1 + cos x)(1 − cos x) = 2sin x 1 − cos2 x = 2sin x sin2 x = 2 sin x = 2 csc x 47. sec2 x tan x − = tan2 x − sec2 x 50. 5 ⋅ tan x − sec x = 5(tan x − sec x) tan x tan x = −1 = −cot x tan x 2 2 tan x + sec x tan x − sec x tan2 x − sec2 x 5(tan x − sec x)= −1 = 5(sec x − tan x) 48. cos x 1 + sin x cos x + (1 + sin x)+ = y = 1 sin x cot x + cos x 1 + sin x cos x cos x(1 + sin x) cos2 x + 1 + 2 sin x + sin2 x 51. 1 ( ) 2 = 1  cos x cos x(1 + sin x) = sin x + cos x = 2 + 2 sin x 2 sin x  1 cos x(1 + sin x) = (cos x + cos x) 2 2(1+ sin x)= cos x(1 + sin x) = cos x 2 = 2 cos x = 2 sec x −2π 2π 49. sin2 y 1 − cos y −2 1 − cos2 y = 1 − cos y (1 + cos y)(1 − cos y)= 1 − cos y
  • 9. = 1 + cos y
  • 10.  Section 2.1 Using Fundamental Identities 217 52. y1 = sec x csc x − tan x 1 1 sin x = − 53. y = tan x + 1 1 sec x + csc x cos x sin x cos x sin x + 1 1 sin2 x = − = cos x 1 1 cos x sin x 1 − sin2 x cos x sin x cos x + sin x = cos x sin x cos2 x = cos x sin x cos x = sin x + cos x = cos x sin x + cos x sin x cos x sin x + cos x  sin x cos x sin x = = cotx 6  = sin x cos x sin x + cos x 2 −2π 2π −2π 2π −6 54. y1 = 1 1 −2  − cos x = tan x sin x cos x 5 1 1 1 cos x − cos x = − sin x cos x sin x cos x sin x −2π 2π  1 − cos2 x sin2 x sin x = = = = tan x −5 sin x cos x sin x cos x cos x 55. Let x = 3 cos θ . 57. Let x = 2 sec θ . 9 − x2 = = = 9 − (3 cos θ) 2 9 − 9 cos2 θ 9(1 − cos2 θ) x2 − 4 = = = (2 sec θ) 2 − 4 4(sec2 θ − 1) 4 tan2 θ = 9 sin2 θ = 3 sin θ = 2 tan θ 56. Let x = 7 sin θ. 58. Let 3x = 5 tan θ. 2 2 49 − x2 = 49 − (7 sin θ) 2 9x + 25 = (3x) + 25 = 49 − 49 sin2 θ = 49(1 − sin2 θ) = 49 cos2 θ
  • 11. = (5 tan θ) 2 + 25 = 25 tan2 θ + 25 = 25(tan2 θ + 1) = 7 cos θ = 25 sec2 θ = 5 sec θ
  • 12. = ± 1 − 1 218 Chapter 2 Analytic Trigonometry 59. Let x = 2 sin θ . 4 − x2 = 2 4 − (2 sin θ) 2 = 2 4 − 4 sin2 θ = 2 4(1 − sin2 θ) = 2 4 cos2 θ = 2 2 cos θ = 2 cos θ = 2 2 2 sin θ = 1 − cos2 θ = 2 2 1 − = ± 60. Let x = 2 cos θ. 2  2 61. x = 6 sin θ 16 − 4x2 = 2 2 3 = 36 − x2 16 − 4(2 cos θ) 2 = 2 2 = 36 − (6 sin θ) 2 16 − 16 cos2 θ 16(1 − cos2 θ) = 2 2 = 2 2 = = 36(1 − sin2 θ) 36 cos2 θ 16 sin2 θ = 2 2 = 6 cos θ 4 sin θ = ±2 2 cos θ = 3 = 1 sin θ = ± 2 2 sin θ 6 2 = ± 1 − cos2 θ cos θ = = 1 − sin2 θ 1 − 1 2   2 2 = ± 3 = 1 4 2 = ± 3 2 2 = 2 62. x = 10 cos θ 5 3 = 5 3 = 5 3 = 5 3 = 100 − x2 100 − (10 cos θ) 2 100(1 − cos2 θ) 100 sin2 θ 5 3 = 10 sin θ sin θ = 5 3 = 3 cos θ = 10 2
  • 13. 1 − sin2 θ = 2 3 1 1 − = 2 2
  • 14. Section 2.1 Using Fundamental Identities 219 63. sin θ = 1 − cos2 θ 67. μW cos θ μ = W sin θ W sin θ = = tan θ Let y1 = sin x and y2 = 1 − cos2 x, 0 ≤ x ≤ 2π. W cos θ y1 = y2 for 0 ≤ x ≤ π. sec x tan x − sin x = 1 ⋅ sin x − sin x So, sin θ = 1 − cos2 θ for 0 ≤ θ ≤ π. 68. cos x cos x 2 y2 0 2π y1 sin x = − sin x cos2 x sin x − sin x cos2 x = cos2 x 64. −2 cos θ = − 1 − sin2 θ sin x(1 − cos2 x)= cos2 x 2 sin x sin x = 2 Let y1 = cos x and y2 = − 1 − sin2 x, 0 ≤ x ≤ 2π. cos x 2 y1 = π y2 for ≤ x ≤ 3π . = sin x tan x So, cos θ 2 2 = − 1 − sin2 θ for π 3π ≤ θ ≤ . 69. True. sin u 2 2 2 0 2π tan u = cos u cot u = cos u sin u sec u = 1 cos u 65. −2 sec θ = 1 + tan2 θ 1 csc u = 1 sin u Let y1 = and y2 = cos x π 1 + tan2 x, 0 ≤ x ≤ 2π. 3π 70. False. A cofunction identity can be used to transform a tangent function so that it can be represented by a cotangent function. y1 = y2 for 0 ≤ x < and 2 2 < x ≤ 2π. π − 71. As x → , tan x → ∞ and cot x → 0. So, sec θ = 1 + tan2 θ for 0 ≤ θ < π 2 and 2 + 1 3π < θ 2 < 2π. 4 72. As x → π , sin x → 0 and csc x = sin x → −∞. y2 0 2π y1 −4 73. cos(−θ) ≠ −cos θ cos(−θ) = cos θ The correct identity is sin θ = cos(−θ) sin θ cos θ 66. csc θ = 1 + cot2 θ 1 = tan θ Let y1 = and y2 = s i n x
  • 15. 1 + cot2 x, 0 ≤ x ≤ 2π. 74. Let u = a tan θ, then y1 = y2 for 0 < x < π. a2 + u2 = a2 + (a tan θ) 2 So, csc θ = 1 + cot2 θ for 0 < θ < π. 2 2 2 = a + a 2 tan θ 0 2π = a2 (1 + tan2 θ) = a2 sec2 θ = a sec θ. −2
  • 16. = 1 + a = 1 + b 2 220 Chapter 2 Analytic Trigonometry 75. Because sin2 θ + cos2 θ = 1, then cos2 θ = 1 − sin2 θ. cos θ = ± 1 − sin θ tan θ = sin θ = sin θ cot θ cos θ ± = cos θ = ± sin θ 1 − sin2 θ 1 − sin2 θ sin θ sec θ = 1 = 1 csc θ cos θ 1 = sin θ ± 1 − sin2 θ 76. To derive sin2 θ + cos2 θ = 1, let sin θ = a and cos θ = b a2 + b2 a2 + b2 . 2 2 a b a b2 So, sin2 θ + cos2 θ =  + = + a2 + b2  a2 + b2  a2 + b2 a2 + b2 = a2 + b2 a2 + b2 = 1. To derive 1 + tan2 θ = sec2 θ, let tan θ = a and sec θ b a2 + b2 = . b So, 1 + tan2 θ 2   b  a2 = 1 + = b2 b2 + a2 b2 2 2 a2 + b2 a2 + b2 = = b2 b   = sec2 θ. To derive 1 + cot2 θ = csc2 θ, let cot θ = b and csc θ a a2 + b2 = . a So, 1 + cot2 θ 2   a  = 1 + b2 a2 2 a2 + b2 a2 + b2 = = a2  a2  2 a2 + b2 =  = csc2 θ. a   Answers will vary.
  • 17. 1 1 + sin θ      Section 2.2 Verifying Trigonometric Identities 221 77. sec θ(1 + tan θ ) sec θ + csc θ  cos θ cos θ  = 1 + 1 cos θ sin θ cos θ + sin θ = cos2 θ sin θ + cos θ sin θ cos θ = sin θ + cos θ sin θ cos θ cos2 θ sin θ + cos θ  = sin θ cos θ Section 2.2 Verifying Trigonometric Identities 1. identity 2. conditional equation 3. tan u 16. cos(π 2) − x sin(π 2) − x π  sin x = = tan x cos x 1 4. cot u 17. sin t csc 2 − t = sin t sec t = sin t cos t 5. sin u sin t = cos t = tan t 6. cot2 u 7. −csc u 18. sec2 y − cot2 π 2 − y = sec2 y − tan2 y = 1  8. sec u 19. 1 + 1 = cot x + tan x 9. tan t cot t = sin t cos t ⋅ cos t = 1 sin t tan x cot x tan x cot x = cot x + tan x 1 10. tan x cot x cos x = 1 = sec x cos x 20. = tan x + cot x 1 − 1 = csc x − sin x 11. (1 + sin α)(1 − sin α) = 1 − sin2 α = cos2 α sin x csc x sin x csc x csc x − sin x = 12. cos2 β − sin2 β = cos2 β − (1 − cos2 β) = 2 cos2 β − 1 1 = csc x − sin x 13. 14. cos2 β − sin2 β sin2 α − sin4 α = (1 − sin2 β) − sin2 β = 1 − 2 sin2 β = sin2 α(1 − sin2 α) = (1 − cos2 α)(cos2 α) = cos2 α − cos4 α 21. 1 + sin θ cos θ + cos θ = 1 + sin θ = = (1 + sin θ) 2 + cos2 θ cos θ(1 + sin θ) 1 + 2 sin θ + sin2 θ + cos2 θ cos θ(1 + sin θ) 2 + 2 sin θ cos θ(1 + sin θ) 2(1+ sin θ)
  • 18. 15. tan π 2 − θ tan θ = cot θ tan θ = cos θ(1 + sin θ)  1  = tan θ tan θ  = 1 = 2 cos θ = 2 sec θ
  • 19.  ( ) ( 222 Chapter 2 Analytic Trigonometry cos θ cot θ cos θ cot θ − (1 − sin θ) 1 22. 1 − sin θ − 1 = = 1 − sin θ cos θ  cos θ sin θ − 1 + sin θ ⋅ 1 − sin θ cos2 θ − sin θ + sin2 θ sin θ sin θ 25. 26. 27. sec y cos y = cos y = 1 cos y  cot2 y(sec2 y − 1) = cot2 y tan2 y = 1 tan = ( ) = sin θ tan θ 2 θ sin θ cos θ tan θ = sin θ(1 − sin θ) sec θ 1 cos θ = 1 − sin θ sin θ(1 − sin θ) = 1 sin θ = csc θ 28. cot3 t csc t cot t cot2 t = csc t cot t(csc2 t − 1)= csc t cos t csc2 t − 1 sin t 23. 1 1 + = cos x + 1 cos x − 1 = cos x − 1 + cos x + 1 (cos x + 1)(cos x − 1) 2 cos x cos2 x − 1 2 cos x = 1 sin t = cos t sin t csc2 sin t t − 1) = −sin2 x = cos t(csc2 t − 1) = −2 ⋅ 1 ⋅ cos x 1 1 + tan2 β sin x sin x 29. tan β + tan β = tan β 24. = −2 csc x cot x cos x − cos x = cos x(1 − tan x) − cos x sec2 β = tan β 1 − tan x 1 − tan x = −cos x tan x 1 − tan x −cos x(sin x cos x) cos x = ⋅ 1 − (sin x cos x) = −sin x cos x cos x − sin x sin x cos x cos x = sin x − cos x 30. sec θ − 1 = sec θ − 1 ⋅ sec θ sec θ(sec θ − 1)= = sec θ 1 − cos θ 1 − (1 sec θ) sec θ sec θ − 1 cot2 t cos2 t sin2 t cos2 t 1 − sin2 t 1 31. = = = 33. sec x − cos x = − cos x csc t 1 sin t sin t sin t cos x 1 − cos2 x =
  • 20. 32. sin x  cos x + sin x tan x = cos x + sin x  cos x  cos2 x + sin2 x cos x sin2 x = cos x = cos x = sin x ⋅ sin x = 1 cos x = sec x cos x = sin x tan x
  • 21.   Section 2.2 Verifying Trigonometric Identities 223 34. cot x − tan x = cos x − sin x sin x cos x cos2 x − sin2 x = sin x cos x 1 − sin2 x − sin2 x = sin x cos x 1 − 2 sin2 x = sin x cos x 1 1 − 2 sin2 x  = cos x sin x 1 1 2 sin2 x = cos x sin x − sin x = sec x(csc x − 2 sin x) cot x cos x sin x cos2 x 1 − sin2 x 1 sin2 x 35. = = = = − = csc x − sin x 36. sec x csc(−x) sec(−x) 1 cos x 1 sin(−x)= 1 cos(−x) cos(−x) sin x sin x sin x sin x = sin(−x) 37. = cos x −sin x = −cot x sin1 2 x cos x − sin5 2 x cos x = sin1 2 x cos x(1 − sin2 x) = sin1 2 x cos x ⋅ cos2 x = cos3 x sin x 38. sec6 x(sec x tan x) − sec4 x(sec x tan x) = sec4 x(sec x tan x)(sec2 x − 1) = sec4 x(sec x tan x) tan2 x = sec5 x tan3 x 39. (1 + sin y)1 + sin(−y) = (1 + sin y)(1 − sin y) = 1 − sin2 y 41. 1 + sin θ = 1 − sin θ 1 + sin θ 1 − sin θ 1 + sin θ ⋅ 1 + sin θ 40. = cos2 y 1 + 1 tan x + tan y = cot x cot y ⋅ cot x cot y (1 + sin θ) 2 = 1 − sin2 θ (1 + sin θ) 2 =1 − tan x tan y 1 − 1 ⋅ 1 cot x cot y cos2 θ cot x cot y 1 + sin θ == cot y + cot x cot x cot y − 1 cos θ 42. cos x − cos y + sin x − sin y = (cos x − cos y)(cos x + cos y) + (sin x − sin y)(sin x + sin y) sin x + sin y cos x + cos y (sin x + sin y)(cos x + cos y) cos2 x − cos2 y + sin2 x − sin2 y = (sin x + sin y)(cos x + cos y) (cos2 x + sin2 x) − (cos2 y + sin2 y)= (sin x + sin y)(cos x + cos y) 43. = 0
  • 22. cot( − x) ≠ cot x 44. The first line claims that sec(−θ) = −sec θ and The correct substitution is cot(− x) = −cot x. sin(−θ) = sin θ. The correct substitutions are 1 + cot(− x) = cot x − cot x = 0 tan x sec(−θ) = sec θ and sin(−θ) = −sin θ.
  • 23. ( )( )  ( 2 2 )  224 Chapter 2 Analytic Trigonometry 45. (a) 3 −2π 2π −1 Identity (b) Identity (c) 1 + cot2 x cos2 x = csc2 x cos2 x = 1 ⋅ cos2 x = cot2 x sin2 x 3 46. (a) (b) −2π 2π −1 Identity Identity (c) csc x(csc x − sin x) + sin x − cos x + cot x = csc2 x − csc x sin x + 1 − cos x + cot x sin x sin x = csc2 x − 1 + 1 − cot x + cot x = csc2 x 47. (a) 5 y2 y1 −2π 2π −1 Not an identity (b) Not an identity (c) 2 + cos2 x − 3 cos4 x = (1 − cos2 x)(2 + 3 cos2 x) = sin2 x(2 + 3 cos2 x) ≠ sin2 x(3 + 2 cos2 x) 48. (a) −π 5 y1 y2 π (b) −5 Not an identity sin4 x sin2 x Not an identity (c) tan4 x + tan2 x − 3 = + − 3 cos4 x 1 cos2 x sin4 x = cos2 x cos2 x + sin2 x − 3 1 sin4 x + sin2 x cos2 x =  cos2 x cos2 x − 3  1 sin2 x  = sin x + cos x − 3 cos2 x cos2 x 1 sin2 x  = cos2 x cos2 x ⋅ 1 − 3
  • 24. = sec2 x tan2 x − 3 ≠ sec2 x(4 tan2 x − 3)
  • 25. . cos2 x ( ) Section 2.2 Verifying Trigonometric Identities 225 49. (a) 3 50. (a) 3 y1 −2π 2π −2 2 y2 −3 −5 (b) Identity (b) Not an identity (c) Identity 1 + cos x (1 + cos x)(1 − cos x)= Not an identity (c) cot α is the reciprocal of csc α + 1 sin x sin x(1 − cos x) csc α + 1 cot α 1 − cos2 x = sin x(1 − cos x) sin2 x = sin x(1 − cos x) sin x = 51. They will only be equivalent at isolated points in their respective domains. So, not an identity. tan3 x sec2 x − tan3 x = tan3 x(sec2 x − 1) = tan3 x tan2 x 5 1 − cos x = tan x 2 4 52. (tan2 x + tan4 x) sec2 x = sin x sin x 1 +  cos4 x cos2 x 1  = sin2 x + sin4 x  cos4 x cos2 x 1 sin2 x cos2 x + sin4 x = cos4 x cos2 x 1 sin2 x cos2 x + sin2 x  = cos4 x cos2 x 1 sin2 x =   ⋅ 1 = sec4 x ⋅ tan2 x cos4 x cos2 x  53. (sin2 x − sin4 x) cos x = sin2 x(1 − sin2 x) cos x = sin2 x cos2 x cos x = sin2 x cos3 x 54. sin4 x + cos4 x = sin2 x sin2 x + cos4 x = (1 − cos2 x)(1 − cos2 x) + cos4 x = 1 − 2 cos2 x + cos4 x + cos4 x = 1 − 2 cos2 x + 2 cos4 x 55. sin2 25° + sin2 65° = sin2 25° + cos2 (90° − 65°) = sin2 25° + cos2 25° = 1 56. tan2 63° + cot2 16° − sec2 74° − csc2 27° = tan2 63° + cot2 16° − csc2 (90° − 74°) − sec2 (90° − 27°) = tan2 63° + cot2 16° − csc2 16° − sec2 63°
  • 27. θ 15° 30° 45° 60° 75° 90° s 18.66 8.66 5 2.89 1.34 0 1 226 Chapter 2 Analytic Trigonometry 57. Let θ = sin−1 x sin θ = x = x . 60. Let θ = cos−1 x + 1 cos θ = x + 1 . 1 2 2 1 x 2 4 − (x + 1)2 θ 1 − x2 θ x + 1 From the diagram, From the diagram, tan(sin−1 x) = tan θ = x . −1 x + 1 4 − (x + 1)2 1 − x2 tancos 2 = tan θ = x 1 . 58. Let θ = sin−1 x sin θ = x = x . + 1 cos x 1 61. cos x − csc x cot x = cos x − sin x sin x 1  = cos x1 − sin2 x x θ 1 − x2 = cos x(1 − csc2 x) = −cos x(csc2 x − 1) = −cos x cot2 x From the diagram, cos(sin−1 x) = cos θ 1 − x2 = = 1 1 − x2 . 62. (a) (b) h sin(90° −θ) sin θ = h cos θ = h cot θ sin θ 59. Let θ = sin−1 x − 1 sin θ = x − 1 . 4 4 4 x − 1 (c) Maximum: 15° Minimum: 90° (d) Noon θ 63. False. tan x2 = tan(x ⋅ x) and 16 − (x − 1)2 From the diagram, tansin−1 x − 1 = tan θ x − 1 = . tan2 x = (tan x)(tan x), tan x2 64. True. Cosine is an even function, ≠ tan2 x. π  π 4  16 − (x − 1) 2 cosθ − = cos− − θ 2   = cos π 2  − θ 2   = sin θ.
  • 28. 65. False. For the equation to be an identity, it must be true for all values of θ in the domain.
  • 29. 2 b 2 b 2 2 2 Section 2.3 Solving Trigonometric Equations 227 66. If sin θ = a , sec θ = c , and 68. tan θ = sec2 θ − 1 c b True identity: tan θ = ± sec2 θ − 1 a2 + b2 = c2 a2 c  = c2 − b2 , then tan θ = sec2 θ − 1 is not true for π 2 < θ < π sec2 θ − 1 − 1 =  or 3π 2 < θ < 2π. So, the equation is not true for sec2 θ c    c2 θ 69. = 3π 4. 1 − cos θ = sin θ b2 − 1 = c2 (1 − cos θ) = (sin θ) 2 2 b2 1 − 2 cos θ + cos θ = sin θ c2 − b2 = b2 c2 1 − 2 cos θ + cos2 θ 2 cos2 θ − 2 cos θ = 1 − cos2 θ = 0 b2 c2 − b2 b2 = ⋅ b2 c2 c2 − b2 2 cos θ(cos θ − 1) = 0 The equation is not an identity because it is only true when cos θ = 0 or cos θ = 1. So, one angle for which the equation is not true is − π . = c2 a2 70. = c2 1 + tan θ (1 + tan θ) 2 2 = sec θ = (sec θ) 2 a 2 2 =  1 + 2 tan θ + tan θ = sec θ c  = sin2 θ. 1 + 2 tan θ + tan2 θ 2 tan θ = 1 + tan2 θ = 0 67. Because sin2 θ = 1 − cos2 θ, then tan θ = 0 sin θ = ± 1 − cos2 θ; sin θ ≠ 1 − cos2 θ if θ This equation is not an identity because it is only true lies in Quadrant III or IV. when tan θ = 0. So, one angle for which the equation One such angle is θ = 7π . 4 is not true is π . 6 Section 2.3 Solving Trigonometric Equations 1. isolate 6. sec x − 2 = 0 2. general 3. quadratic (a) x = π 3 sec π − 2 = 1 − 2 4. extraneous 5. ta n x −
  • 30. 3 = 0 3 cos(π 3) = 1 − 2 = 2 − 2 = 0 1 2 (a) x = π 3 tan π − 3 = 3 − 3 = 0 (b) x = 5π 3 sec 5π − 2 = 1 − 2 (b) 3 x = 4π 3 3 cos(5π 3) = 1 − 2 = 2 − 2 = 0 1 2 tan 4π − 3 = 3 3 − 3 = 0
  • 31.  = 2 cos2 2 2 2 cos2 2 2  = − 228 Chapter 2 Analytic Trigonometry 7. 3 tan2 2x − 1 = 0 10. csc4 x − 4 csc2 x = 0 (a) x = π 12 2 3tan 2 π  − 1 = 3 tan2 π − 1 (a) x = π 6 csc4 π − 4 csc2 π 1 4 = − 12 6 4 2  2 1  3 − 1 6 6 sin (π 6) 1 4= − sin (π 6) 3  (1 2) 4 (1 2) 2 (b) = 0 x = 5π 12 2 (b) x = 5π 6 = 16 − 16 = 0 3tan 2 5π  − 1 = 3 tan2 5π − 1 csc4 5π 4 csc 5π 1 4  12 6 − = 4 − 2  2 1  = 3− − 1 6 6 sin (5π 6) 1 4 = − sin (5π 6) 3  (1 2) 4 (1 2) 2 = 0 8. 2 cos2 4x − 1 = 0 11. 3 csc x − 2 = 0 = 16 − 16 = 0 (a) x = π 16 π π 4 − 1 = 2 cos − 1 3 csc x = 2 csc x = 2 3 16 4 2  x = π + 2nπ 3 = 2 2 − 1 2 (b) x = 3π  1  = 2 − 1 = 1 − 1 = 0  12. tan x + or x = 2π 3 3 = 0 + 2nπ 16 3π 3π 4 − 1 = 2 cos − 1 tan x = − 3 x = 2π + nπ 16  4 2 2  = 2− − 1 3 13. cos x + 1 = −cos x 2  2 cos x + 1 = 0  = 1 − 1 = 0 2 cos x 1 2 x = 2π + 2nπ or x = 4π + 2nπ 9. 2 sin2 x − sin x − 1 = 0 3 3
  • 32. 2 (a) x = π 2 2 sin2 π − sin π − 1 = 2(1)2 − 1 − 1 14. 3 sin x + 1 = sin x 2 sin x + 1 = 0 1 2 2 sin x = − = 0 7π (b) x = 7π 6 2 sin2 7π − sin 7π 1 2 − 1 = 2−  1 − − − 1 x = + 2nπ or 6 x = 11π + 2nπ 6 6 6  2 2 = 1 + 1 − 1 2 2 = 0
  • 33. Section 2.3 Solving Trigonometric Equations 229 15. 3 sec2 x − 4 = 0 20. (2 sin2 x − 1)(tan2 x − 3) = 0 sec2 x = 4 3 2 sin2 x − 1 = 0 or tan2 x = 3 sec x = ± 2 3 sin2 x = 1 2 tan x = ± 3 x = π 6 + nπ sin x = ± 1 2 x = π 3 + nπ or x = 5π + nπ sin x = ± 2 x = 2π + nπ 16. 6 3 cot2 x − 1 = 0 cot2 x = 1 x = π 4 x = 3π 2 3 + 2nπ + 2nπ 3 cot x = ± 1 3 4 x = 5π 4 x = 7π + 2nπ + 2nπ x = π 3 + nπ 4 or x = 2π 3 + nπ 21. cos3 x − cos x = 0 cos x(cos2 x − 1) = 0 17. 4 cos2 x − 1 = 0 cos x = 0 or cos2 x − 1 = 0 cos2 x = 1 4 cos x 1 x = π + nπ 2 cos x = ±1 x = nπ = ± 2 Both of these answers can be represented as x = nπ . x = π + nπ or x = 2π 2 + nπ 18. 3 3 2 − 4 sin2 x = 0 sin2 x = 1 2 22. sec2 x − 1 = 0 sec2 x = 1 sec x = ±1 x = nπ sin x = ± 1 2 = ± 2 2 23. 3 tan3 x = tan x 3 x = π + 2nπ 3 tan x − tan x = 0 4 x = 3π + 2nπ tan x(3 tan2 x − 1) = 0 4 x = 5π 4 x = 7π + 2nπ + 2nπ tan x = 0 x = nπ or 3 tan2 x − 1 = 0 tan x = ± x = π 3 3 + nπ, 5π + nπ
  • 34. 4 These answers can be represented as x = π + nπ . 24. 6 6 sec x csc x = 2 csc x 19. sin x(sin x + 1) = 0 4 2 sec x csc x − 2 csc x = 0 csc x(sec x − 2) = 0 sin x = 0 or sin x = −1 csc x = 0 or sec x − 2 = 0 x = nπ x = 3π 2 + 2nπ No solution sec x = 2 x = π + 2nπ, 5π + 2nπ 3 3
  • 35.  = − 230 Chapter 2 Analytic Trigonometry 25. 2 cos2 x + cos x − 1 = 0 (2 cos x − 1)(cos x + 1) = 0 2 cos x − 1 = 0 or cos x + 1 = 0 cos x = 1 cos x = −1 2 x = π + 2nπ, 5π + 2nπ x = π + 2nπ 3 3 26. 2 sin2 x + 3 sin x + 1 = 0 (2 sin x + 1)(sin x + 1) = 0 2 sin x + 1 = 0 or sin x + 1 = 0 sin x 1 2 sin x = −1 x = 3π + 2nπ x = 7π + 2nπ, 11π + 2nπ 2 6 6 27. sec2 x − sec x = 2 sec2 x − sec x − 2 = 0 (sec x − 2)(sec x + 1) = 0 sec x − 2 = 0 sec x = 2 or sec x + 1 = 0 sec x = −1 x = π + 2nπ, 5π + 2nπ x = π + 2nπ 3 3 28. csc2 x + csc x = 2 csc2 x + csc x − 2 = 0 (csc x + 2)(csc x − 1) = 0 csc x + 2 = 0 csc x = −2 or csc x − 1 = 0 csc x = 1 x = 7π + 2nπ, 11π + 2nπ x = π + 2nπ 6 6 2 29. sin x − 2 = cos x − 2 sin x = cos x 30. cos x + sin x tan x = 2 cos x + sin x sin x = 2 sin x = 1 cos x cos x cos2 x + sin2 x tan x = 1 x = tan−1 1 x = π , 5π 4 4 cos x = 2 1 = 2 cos x 1 cos x = 2 x = π , 5π 3 3
  • 36.  Section 2.3 Solving Trigonometric Equations 231 31. 2 sin2 x = 2 + cos x 2 − 2 cos2 x = 2 + cos x 2 cos2 x + cos x = 0 36. 3 sec x − 4 cos x = 0 3 − 4 cos x = 0 cos x cos x(2 cos x + 1) = 0 3 − 4 cos2 x = 0 cos x cos x = 0 or 2 cos x + 1 = 0 3 − 4 cos2 x = 0 x = π , 3π 2 cos x = −1 3 2 2 1 cos x = − 2 cos2 x = 4 3 32. tan2 x = sec x − 1 sec2 x − 1 = sec x − 1 x = 2π , 4π 3 3 37. cos x = ± 2 x = π , 5π , 7π , 11π 6 6 6 6 csc x + cot x = 1 sec2 x − sec x = 0 (csc x + cot x) 2 = 12 33. sec x(sec x − 1) = 0 sec x = 0 or sec x − 1 = 0 No Solutions sec x = 1 x = 0 sin2 x = 3 cos2 x csc2 x + 2 csc x cot x + cot2 x = 1 cot2 x + 1 + 2 csc x cot x + cot2 x = 1 2 cot2 x + 2 csc x cot x = 0 2 cot x(cot x + csc x) = 0 2 cot x = 0 or cot x + csc x = 0 x π , 3π cos x 1 sin2 x − 3 cos2 x = 0 = = − 2 2 sin x sin x sin2 x − 3(1 − sin2 x) = 0 4 sin2 x = 3 sin x = ± 3 3π  2 is extraneous.  cos x = −1 x = π (π is extraneous.) 2 x = π , 2π , 4π , 5π 3 3 3 3 34. 2 sec2 x + tan2 x − 3 = 0 38. x = π 2 is the only solution. sec x + tan x = 1 1 sin x + = 1 cos x cos x 2(tan2 x + 1) + tan2 x − 3 = 0 1 + sin x = cos x 3 tan2 x − 1 = 0 (1 + sin x) 2 = cos2 x tan x = ± 3 3 1 + 2 sin x + sin2 x = cos2 x 1 + 2 sin x + sin2 x = 1 − sin2 x x = π , 5π , 7π , 11π 6 6 6 6 2 sin2 x + 2 sin x = 0 35. 2 sin x + csc x = 0 2 sin x + 1 = 0 2 sin x(sin x + 1) = 0 sin x = 0 or sin x + 1 = 0
  • 37. . sin x 2 sin2 x + 1 = 0 sin2 x 1 No solution x = 0, π (π is extraneous.) sin x = −1 x = 3π 2 = − 2 x = 0 is the only solution. 3π  2 is extraneous 
  • 38. 2 2 232 Chapter 2 Analytic Trigonometry 39. 2 cos 2x − 1 = 0 45. 3 tan x − 3 = 0 cos 2x = 1 2 2 tan x = 3 2x = π + 2nπ or 2x = 5π 2 3 + 2nπ 3 3 x = π + nπ x = π + 2nπ x = π + nπ x = 5π + nπ 2 6 3 6 6 x 46. tan + 3 = 0 40. 2 sin 2x + 3 = 0 2 x sin 2x = − 3 2 tan 2 x = − 3 = 2π + nπ x = 4π + 2nπ 2x = 4π + 2nπ or 2x = 5π + 2nπ 2 3 3 3 3 x = 2π + nπ x = 5π + nπ 47. y = sin π x + 1 3 6 2 πx + =41. tan 3x − 1 = 0 tan 3x = 1 sin 1 0  πx 3x = π + nπ sin = −1 4 x = π + nπ πx 2 = 3π 2 + 2nπ 12 3 42. sec 4x − 2 = 0 sec 4x = 2 cos 4x = 1 2 48. x = 3 + 4n For −2 < x < 4, the intercepts are −1 and 3. y = sin πx + cos πx sin πx + cos πx = 0 sin πx = −cos πx 4x = π + 2nπ or 4x = 5π + 2nπ π 3 3 πx = − + nπ 4 x = π + nπ x = 5π + nπ 1 12 2 12 2 x = − + n 4 43. 2 cos x = 2 = 0 For 1 x 3, the intercepts are − 1 , 3 , 7 , 11 2 cos x = 2 − < < . 4 4 4 4 2 2 49. 5 sin x + 2 = 0 8 x = π + 2nπ or x = 7π + 2nπ
  • 39. 2 4 2 4 x = π + 4nπ x = 7π + 4nπ 0 2π 2 2 44. 2 sin x = 2 3 = 0 −5 x ≈ 3.553 and x ≈ 5.872 sin x = − 3 50. 2 tan x + 7 = 0 2 2 15 x = 4π + 2nπ or x 5π = + 2nπ 2 3 2 3 x = 8π + 4nπ x = 10π + 4nπ 0 2π 3 3 −5 x ≈ 1.849 and x ≈ 4.991
  • 40. Section 2.3 Solving Trigonometric Equations 233 51. sin x − 3 cos x = 0 5 55. sec2 x − 3 = 0 5 0 2π 0 2π −5 x ≈ 1.249 and x ≈ 4.391 52. sin x + 4 cos x = 0 5 56. −4 x ≈ 0.955, x ≈ 2.186, x ≈ 4.097 and x ≈ 5.328 csc2 x − 5 = 0 5 0 2π 0 2π −5 x ≈ 1.816 and x ≈ 4.957 −5 x ≈ 0.464, x ≈ 2.678, x = 3.605 and x ≈ 5.820 53. cos x = x 4 57. 2 tan2 x = 15 6 0 2π 0 2π −8 x ≈ 0.739 54. tan x = csc x −18 x ≈ 1.221, x ≈ 1.921, x ≈ 4.362 and x ≈ 5.062 10 58. 6 sin2 x = 5 6 0 2π 0 2π −10 x ≈ 0.905 and x ≈ 5.379 −18 x ≈ 1.150, x ≈ 1.991, x ≈ 4.292 and x ≈ 5.133 59. tan2 x + tan x − 12 = 0 (tan x + 4)(tan x − 3) = 0 tan x + 4 = 0 or tan x − 3 = 0 tan x = −4 tan x = 3 x = arctan(−4) + nπ x = arctan 3 + nπ 60. tan2 x − tan x − 2 = 0 (tan x + 1)(tan x − 2) = 0 tan x + 1 = 0 or tan x − 2 = 0 tan x = −1 tan x = 2 x = 3π 4 + nπ x = arctan 2 + nπ
  • 41. 3 3 234 Chapter 2 Analytic Trigonometry 61. sec2 x − 6 tan x = −4 1 + tan2 x − 6 tan x + 4 = 0 tan2 x − 6 tan x + 5 = 0 (tan x − 1)(tan x − 5) = 0 tan x − 1 = 0 tan x − 5 = 0 tan x = 1 tan x = 5 x = π 4 + nπ x = arctan 5 + nπ 62. sec2 x + tan x − 3 = 0 1 + tan2 x + tan x − 3 = 0 tan2 x + tan x − 2 = 0 (tan x + 2)(tan x − 1) = 0 tan x + 2 = 0 tan x − 1 = 0 tan x = −2 tan x = 1 x = arctan(−2) + nπ x = arctan(1) + nπ 63. ≈ −1.1071 + nπ 2 sin2 x + 5 cos x = 4 2(1 − cos2 x) + 5 cos x − 4 = 0 −2 cos2 x + 5 cos x − 2 = 0 −(2 cos x − 1)(cos x − 2) = 0 = π + nπ 4 2 cos x − 1 = 0 or cos x − 2 = 0 cos x = 1 2 x = π + 2nπ, 5π + 2nπ cos x = 2 No solution 3 3 64. 2 cos2 x + 7 sin x = 5 2(1 − sin2 x) + 7 sin x − 5 = 0 −2 sin2 x + 7 sin x −3 = 0 −(2 sin x − 1)(sin x − 3) = 0 2 sin x − 1 = 0 or sin x − 3 = 0 sin x = 1 2 sin x = 3 x = π + 2nπ, 5π + 2nπ No solution 6 6 65. cot2 x − 9 = 0 cot2 x = 9 1 = tan2 x 9 ± 1 = tan x 3 x = arctan 1 + nπ, arctan(− 1 ) + nπ
  • 42. 5 5 = Section 2.3 Solving Trigonometric Equations 235 66. cot2 x − 6 cot x + 5 = 0 (cot x − 5)(cot x − 1) = 0 cot x − 5 = 0 or cot x − 1 = 0 cot x = 5 cot x = 1 1 = tan x 5 1 = tan x x = arctan 1 + nπ x = π + nπ 5 4 67. sec2 x − 4 sec x = 0 sec x(sec x − 4) = 0 sec x = 0 sec x − 4 = 0 No solution sec x = 4 1 = cos x 4 x = arccos 1 + 2nπ, −arccos 1 + 2nπ 4 4 68. sec2 x + 2 sec x − 8 = 0 (sec x + 4)(sec x − 2) = 0 sec x + 4 = 0 or sec x − 2 = 0 sec x = −4 sec x = 2 − 1 = cos x 1 = cos x 4 2 x = arccos− 1 + 2nπ, −arccos− 1 + 2nπ x = π + 2nπ, 5π + 2nπ 4 4 3 3 69. csc2 x + 3 csc x − 4 = 0 (csc x + 4)(csc x − 1) = 0 csc x + 4 = 0 or csc x − 1 = 0 csc x = −4 csc x = 1 − 1 = sin x 4 1 = sin x x = arcsin 1 + 2nπ, arcsin− 1 + 2nπ x = π + 2nπ 4 4 2 70. csc2 x − 5 csc x = 0 csc x(csc x − 5) = 0 csc x = 0 or csc x − 5 = 0 No solution csc x = 5 1 sin x5 x = arcsin(1 ) + 2nπ, arcsin(− 1 ) + 2nπ
  • 43. 3  236 Chapter 2 Analytic Trigonometry 71. 12 sin2 x − 13 sin x + 3 = 0 −(−13) ± (−13) 2 − 4(12)(3) 30 13 ± 5 sin x = = 2(12) 24 0 2π sin x = 1 or sin x = 3 −10 3 4 x ≈ 0.3398, 2.8018 x ≈ 0.8481, 2.2935 The x-intercepts occur at x ≈ 0.3398, x ≈ 0.8481, x ≈ 2.2935, and x ≈ 2.8018. 72. 3 tan2 x + 4 tan x − 4 = 0 −4 ± 42 − 4(3)(−4) −4 ± 64 2 tan x = = = −2, tan x = −2 tan x = 2(3) 6 3 2 3 50 x = arctan(−2) + nπ ≈ −1.1071 + nπ x = arctan 2 + nπ  ≈ 0.5880 + nπ 0 2 The values of x in [0, 2π) are 0.5880, 3.7296, 2.0344, 5.1760. −10 73. tan2 x + 3 tan x + 1 = 0 −3 ± 32 − 4(1)(1) −3 ± 5 tan x = = 10 2(1) 2 tan x = −3 − 5 or tan x = −3 + 5 0 2π 2 2 x ≈ 1.9357, 5.0773 x ≈ 2.7767, 5.9183 −5 The x-intercepts occur at x ≈ 1.9357, x ≈ 2.7767, x ≈ 5.0773, and x ≈ 5.9183. 74. 4 cos2 x − 4 cos x − 1 = 0 4 ± (−4) 2 − 4(4)(−1) 4 ± 32 1 ± 2 cos x = = = cos x = 1 − 2 2(4) 8 2 cos x = 1 + 2 7 2 2 −1 2 x = arccos  No solution 2  0 2π  ≈ 1.7794 1 + 2 −3 > 1 2  −1 − 2  Solutions in [0, 2π) are arccos and 2π − arccos 1 2 : 1.7794, 4.5038.
  • 45. −  −  −  Section 2.3 Solving Trigonometric Equations 237 75. 3 tan2 x + 5 tan x − 4 = 0,   3 π , π 2 2 77. 4 cos2 x − 2 sin x + 1 = 0,   6 π , π 2 2 −π π 2 2 −p p 2 2 76. −7 x ≈ −1.154, 0.534 cos2 x − 2 cos x − 1 = 0, [0, π] 3 78. −2 x ≈ 1.110 2 sec2 x + tan x − 6 = 0,   π , π 2 2 4 0 π −3 x ≈ 1.998 −π π 2 2 −6 x ≈ −1.035, 0.870 79. (a) f (x) = sin2 x + cos x 2 (b) 2 sin x cos x − sin x = 0 sin x(2 cos x − 1) = 0 0 2π sin x = 0 or 2 cos x − 1 = 0 x = 0, π −2 ≈ 0, 3.1416 cos x = 1 2 Maximum: (1.0472, 1.25) Maximum: (5.2360, 1.25) Minimum: (0, 1) Minimum: (3.1416, −1) x = π , 5π 3 3 ≈ 1.0472, 5.2360 80. (a) f (x) = cos2 x − sin x 2 (b) −2 sin x cos x − cos x = 0 −cos x(2 sin x + 1) = 0 −cos x = 0 2 sin x + 1 = 0 0 2π −2 cos x = 0 sin x = − 1 2 x = π , 3π x = 7π , 11π Maximum: (3.6652, 1.25) 2 2 6 6 81. (a) Maximum: (5.7596, 1.25) Minimum: (1.5708, −1) Minimum: (4.7124, 1) f (x) = sin x + cos x 3 ≈ 1.5708, 4.7124 (b) cos x − sin x = 0 cos x = sin x ≈ 3.6652, 5.7596 0 2π 1 = sin x cos x
  • 46. −3 Maximum: (0.7854, 1.4142) Minimum: (3.9270, −1.4142) tan x = 1 x = π , 5π 4 4 ≈ 0.7854, 3.9270
  • 47. 2 += 238 Chapter 2 Analytic Trigonometry 82. (a) f (x) = 2 sin x + cos 2x 3 (b) 2 cos x − 4 sin x cos x = 0 2 cos x(1 − 2 sin x) = 0 2 cos x = 0 1 − 2 sin x = 0 0 2π x = π , 3π sin x = 1 2 2 2 −3 Maximum: (0.5236, 1.5) Maximum: (2.6180, 1.5) Minimum: (1.5708, 1.0) Minimum: (4.7124, −3.0) ≈ 1.5708, 4.7124 x = π , 5π 6 6 ≈ 0.5236, 2.6180 83. (a) f (x) = sin x cos x 2 84. (a) f (x) = sec x + tan x − x 6 0 2π 0 2π −2 Maximum: (0.7854, 0.5) Maximum: (3.9270, 0.5) Minimum: (2.3562, −0.5) (b) −8 Maximum: (3.1416, −4.1416) Minimum: (0, 1) sec x tan x + sec2 x − 1 = 0 Minimum: (5.4978, −0.5) 1 ⋅ sin x + 1 − 1 = 0 (b) −sin2 x + cos2 x = 0 cos x cos x cos x −sin2 x + 1 − sin2 x = 0 −2 sin2 x + 1 = 0 sin x + 1 − 1 = 0 cos2 x sin x + 1 cos2 x − = 0 sin2 x = 1 cos2 x cos2 x 2 sin x + 1 − cos2 x 2 = 0 sin x = ± 1 = ± 2 cos x 2 2 sin x + sin2 x = 0 x = π , 3π , 5π , 7π 4 4 4 4 ≈ 0.7854, 2.3562, 3.9270, 5.4978 cos2 x sin x + sin2 x = 0 sin x(1 + sin x) = 0 sin x = 0 or 1 + sin x = 0 x = 0, π ≈ 0, 3.1416 sin x = −1 x = 3π 2 3π is undefined in original function. So, it is not 2 a solution. 85. The graphs of y1 = 2 sin x and y2 equation 2 sin x = 3x + 1. = 3x + 1 appear to have one point of intersection. This implies there is one solution to the 86. The graphs of y1 = 2 sin x and y2 1 x 1 appear to have three points of intersection. This implies there are three solutions2
  • 48. +to the equation 2 sin x = 1 x 1.2
  • 49. x 32 32 Monthlysales (inthousandsofdollars) Section 2.3 Solving Trigonometric Equations 239 87. f (x) = sin x 90. Graph the following equations. 4 x y1 = 1.56t −1 2 cos1.9t 0 10 (a) Domain: all real numbers except x = 0. y2 = 1 (b) The graph has y-axis symmetry. (c) As x → 0, f (x) → 1. y3 = −1 −4 (d) sin x x = 0 has four solutions in the interval [−8, 8]. The rightmost point of intersection is at approximately (1.91, −1). The displacement does not exceed one foot from sin x 1 = 0  equilibrium after t ≈ 1.91 seconds. πt sin x = 0 x = −2π, −π, π, 2π 91. Graph y1 = 58.3 + 32 cos  6 y2 = 75. 88. f (x) = cos 1 x (a) Domain: all real numbers x except x = 0. (b) The graph has y-axis symmetry and a horizontal asymptote at y = 1. (c) As x → 0, f (x) oscillates between −1 and 1. Left point of intersection: (1.95, 75) Right point of intersection: (10.05, 75) So, sales exceed 7500 in January, November, and December. S (d) There are infinitely many solutions in the interval 2 100 75 [−1, 1]. They occur at x = (2n + 1)π any integer. where n is 50 25 x 89. (e) The greatest solution appears to occur at x ≈ 0.6366. y = 1 (cos 8t − 3 sin 8t) 92. 2 4 6 8 10 12 Month (1 ↔ January) Range = 300 feet 12 v0 = 100 feet per second 1 (cos 8t − 3 sin 8t) = 0 12 r = 1 v0 2 sin 2θ cos 8t = 3 sin 8t 1 = tan 8t 3 8t ≈ 0.32175 + nπ t ≈ 0.04 + nπ 8 1 (100) 2 sin 2θ sin 2θ 2θ θ or = 300 = 0.96 = arcsin(0.96) ≈ 73.74° ≈ 36.9° In the interval 0 ≤ t ≤ 1, t ≈ 0.04, 0.43, and 0.83. 2θ = 180° − arcsin(0.96) ≈ 106.26° θ ≈ 53.1°
  • 50. 0 16 2  16 2  16 2  6 1 1 6 6  240 Chapter 2 Analytic Trigonometry 93. (a) and (c) 100 94. h(t) = 53 + 50 sin π t − π  (a) h(t) = 53 when 50 sin π t − π = 0. 1 12 0 π t − π = 0 or π t − π = π The model fits the data well. 16 2 16 2 π π π 3π (b) C = a cos(bt − c) + d t = t = 16 2 16 2 a = 1 [high − low] = 1 [84.1 − 31.0] = 26.55 t = 8 t = 24 2 2 p = 2[high time − low time] = 2[7 − 1] = 12 A person on the Ferris wheel will be 53 feet above ground at 8 seconds and at 24 seconds b = 2π p = 2π = π 12 6 (b) The person will be at the top of the Ferris wheel when The maximum occurs at 7, so the left end point is sin π t − π = 1 c = 7 c = 7 π = 7π  b 6 π t − π = π 16 2 2 d = [high + low] = [93.6 + 62.3] = 57.55 2 2 π 16 t = π C = 26.55 cos π t − 7π + 57.55  (d) The constant term, d, gives the average maximum t = 16. The first time this occurs is after 16 seconds. 2π temperature. The period of this function is π 16 = 32. 95. The average maximum temperature in Chicago is 57.55°F. (e) The average maximum temperature is above 72°F from June through September. The average maximum temperature is below 70°F from October through May. A = 2x cos x, 0 < x < π 2 During 160 seconds, 5 cycles will take place and the person will be at the top of the ride 5 times, spaced 32 seconds apart. The times are: 16 seconds, 48 seconds, 80 seconds, 112 seconds, and 144 seconds. (a) 2 π 2 −2 (b) The maximum area of A ≈ 1.12 occurs when x ≈ 0.86. A ≥ 1 for 0.6 < x < 1.1 96. f (x) = 3 sin(0.6x − 2)
  • 51. (a) Zero: sin(0.6x − 2) = 0 (b) g(x) = 0.6x − 2 = 0 0.6x = 2 x = 2 = 10 4 0 −0.45x2 + 5.52x − 13.70 6 0.6 3 f g −4 For 3.5 ≤ x ≤ 6 the approximation appears to be good.
  • 52. = = −  = Section 2.3 Solving Trigonometric Equations 241 (c) −0.45x2 + 5.52x − 13.70 = 0 −5.52 ± (5.52) 2 − 4(−0.45)(−13.70) x = x ≈ 3.46, 8.81 2(−0.45) The zero of g on [0, 6] is 3.46. The zero is close to the zero 10 3 ≈ 3.33 of f. 97. f (x) = tan π x 4 Because tan π 4 = 1, x = 1 is the smallest nonnegative fixed point. 100. False. sin x = 3.4 has no solution because 3.4 is outside the range of sine. 98. Graph y = cos x and y = x on the same set of axes. 101. cot x cos2 x = 2 cot x cos2 x = 2 Their point of intersection gives the value of c such that f (c) = c cos c = c. 2 (0.739, 0.739) −3 3 −2 c ≈ 0.739 cos x = ± 2 No solution Because you solved this problem by first dividing by cot x, you do not get the same solution as Example 3. When solving equations, you do not want to divide each side by a variable expression that will cancel out because you may accidentally remove one of the solutions. 102. The equation 2 cos x − 1 = 0 is equivalent to 99. True. The period of 2 sin 4t − 1 is π and the period of cos x = 1 . So, the points of intersection of y cos x2 2 and y 1 2 represent the solutions of the equation 2 sin t − 1 is 2π. 2 cos x − 1 = 0. In the interval (−2π, 2π) the solutions In the interval [0, 2π) the first equation has four cycles whereas the second equation has only one cycle, so the first equation has four times the x-intercepts (solutions) as the second equation. of the equation are x 5π , − π , π , and 3 3 3 5π . 3 103. (a) 3 0 2π −2 The graphs intersect when x = π 2 and x = π. (b) 3 0 2π −2 The x-intercepts are π , 0 and (π, 0). 2   (c) Both methods produce the same x-values. Answers will vary on which method is preferred.
  • 53. 4 6 4 6 242 Chapter 2 Analytic Trigonometry Section 2.4 Sum and Difference Formulas 1. sin u cos v − cos u sin v π π  π π π π 7. (a) cos + = cos cos − sin sin 2. cos u cos v − sin u sin v 3. tan u + tan v 1 − tan u tan v 4 3  4 3 4 3 2 1 2 3 = ⋅ − ⋅ 2 2 2 2 2 − 6 = 4 4. sin u cos v + cos u sin v (b) cos π + cos π = 2 + 1 = 2 + 1 5. cos u cos v + sin u sin v 4 3 2 2 2 7π π  5π π 1 6. tan u − tan v 8. (a) sin 6 − 3 = sin 6 = sin = 6 2 1 + tan u tan v (b) sin 7π − sin π = − 1 − 3 = −1 − 3 9. (a) sin(135° − 30°) = sin 135° cos 30° − cos 135° sin 30° 6 3 2 2 2 2  3  2 1 6 + 2 = − − = 2 2  2 2 4 (b) sin 135° − cos 30° = 2 − 3 = 2 − 3 10. (a) 2 2 2 cos(120° + 45°) = cos 120° cos 45° − sin 120° sin 45° 1 2  3  2 − 2 − 6 = − − = 2 2  2 2 4 (b) cos 120° + cos 45° = − 1 + 2 = −1 + 2 11. sin 11π = sin 3π + π  2 2 2 tan 11π = tan 3π + π  12   4 = sin 3π cos π + cos 3π sin π tan 3π + tan π 4 6 4 6 = 4 6 2 3  2 1 1 − tan 3π tan π = ⋅ + − 4 6 2 2  2 2 −1 + 3 co s 11π
  • 54. ( 4 6 ( 2 = 4 = cos 3π 3 − 1) + π  = 3 1 − ( − 1 ) 3 3  12  = −3 + 3 ⋅ 3 − 3 = cos 3π cos π − sin 3π sin π 3 + 3 3 − 3 4 6 4 6 = −12 + 6 3 = −2 + 3 2 3 2 1 2 = − ⋅ − ⋅ = − 3 + 1) 6 2 2 2 2 4
  • 55. 4 6 3 4 ( (  3 4 ( 4 6 3 4 ) ) ) Section 2.4 Sum and Difference Formulas 243 12. 7π = π + π 13. sin 17π = sin 9π 5π  − 12 3 4  12 sin 7π = sin π + π  = sin 9π cos 5π − cos 9π sin 5π  12  = sin π cos π + sin π cos π 4 6 4 6 2 3 2 1 = − − 3 4 4 3 3 2 2 1 2 2  2 2 = ⋅ + ⋅ 2 2 2 2 = − 2 3 + 1 4 = 2 3 + 1 4 cos 17π 12 = cos 9π 4 5π  − 6 cos 7π = cos π + π   = cos 9π cos 5π + sin 9π sin 5π  12  4 6 4 6 = cos π cos π − sin π sin π 2 3  2 1 3 4 3 4 = 2 − 2 + 2 2 = 1 ⋅ 2 − 3 ⋅ 2  2 2 2 2 2 = 4 (1 − 3) 2 = 4 1 − 3 tan 17π = tan 9π − 5π tan 7π = tan π + π   12  12  tan(9π 4) − tan(5π 6)= 1 + tan(9π 4) tan(5π 6) tan π + tan π = 3 4 1 − (− 3 3) 1 − tan π tan π 3 4 = 1 + (− 3 3) 3 + 1 = = 3 + 3 ⋅ 3 + 3 1 − 3 3 − 3 3 + 3 = −2 − 3 = 12 + 6 3 6 = 2 + 3 14. − π = π − π 12 6 4 sin− π = sin π − π  cos− π = cos π − π  tan− π = tan π − π 12 6 4  12 6 4  12 6 4  
  • 56. ( () ) = sin π cos π − sin π cos π = cos π cos π + sin π sin π tan π − tan π 6 4 4 6 1 2 2 3 = ⋅ − ⋅ 2 2 2 2 2 = 1 − 3 4 6 4 6 4 3 2 1 2 = ⋅ + ⋅ 2 2 2 2 = 2 3 + 1 4 = 6 4 1 + tan π tan π 6 4 3 − 1 = 3 1 + 3 3 = −2 + 3
  • 57. ( ( ( ( ( ( ( ) ) ) ) ) 244 Chapter 2 Analytic Trigonometry 15. sin 105° = sin(60° + 45°) = sin 60° cos 45° + cos 60° sin 45° 3 2 1 2 = ⋅ + ⋅ 2 2 2 2 17. sin(−195°) = sin(30° − 225°) = sin 30° cos 225° − cos 30° sin 225° = sin 30°(−cos 45°) − cos 30°(−sin 45°) = 1 − 2 − 3 − 2  2 2 2 2 = 2 3 + 1) 4 cos 105° = cos(60° + 45°) = − 2 1 − 3 4 = cos 60° cos 45° − sin 60° sin 45° 1 2 3 2 = 2 4 3 − 1) = ⋅ − ⋅ 2 2 2 2 2 = 1 − 3 4 cos(−195°) = cos(30° − 225°) = cos 30° cos 225° + sin 30° sin 225° = cos 30°(−cos 45°) + sin 30°(−45°) tan 105° = tan(60° + 45°) 3 2 1 2  = − + − tan 60° +tan 45° = 2 2  2 2 1 − tan 60° tan 45° = − 2 3 + 1 4 3 + 1 3 + 1 1 + 3 = = ⋅ tan(−195°) = tan(30° − 225°) 1 − 3 1 − 3 1 + 3 = tan 30° −tan 225° = 4 + 2 3 −2 = −2 − 3 1 + tan 30° tan 225° = tan 30° −tan 45° 16. 165° = 135° + 30° sin 165° = sin (135° + 30°) = sin 135° cos 30° + sin 30° cos 135° 1 + tan 30° tan 45° 3  3 − 1 3 − 3 3 − 3 = = ⋅ = sin 45° cos 30° − sin 30° cos 45° 3  1 + 3 + 3 3 − 3 3 2 3 1 2 = ⋅ − ⋅ 2 2 2 2  = −12 + 6 3 = −2 + 3 6 = 2 3 − 1 4 18. 225° = 300° − 45° cos 165° = cos (135° + 30°) = cos 135° cos 30° − sin 135° sin 30° = −cos 45° cos 30° − sin 45° cos 30° sin 255° = sin(300° − 45°) = sin 300° cos 45° − sin 45° cos 300° = −sin 60° cos 45° − sin 45° cos 60° 2 3 2 1 = − ⋅ − ⋅ = − 3 ⋅ 2 − 2 ⋅ 1 = − 2 ( 3 + 1) 2 2 2 2 2 2 2 2 4 = − 2 3 + 1 4 tan 165° = tan (135° + 30°) cos 255° = cos(300° − 45°) = cos 300° cos 45° + sin 300° sin 45° = cos 60° cos 45° − sin 60° sin 45°
  • 58. ( )tan 135° +tan 30° = 1 2 3 2 = ⋅ − ⋅ 2 = 1 − 3 1 − tan 135° tan 30° = −tan 45° + tan 30° 1 + tan 45° tan 30° −1 + 3 = 3 1 + 3 2 2 2 2 4 tan 255° = tan(300° − 45°) tan 300° −tan 45° = 1 + tan 300° tan 45° = −tan 60° − tan 45° 1 − tan 60° tan 45° 3 − 3 − 1 = −2 + 3 = 1 − 3 = 2 + 3
  • 59. 4 3 4 3 4 3 ( 3 4 ( 3 4 ( 3 4 ) ) ) Section 2.4 Sum and Difference Formulas 245 19. 13π = 3π + π 12 4 3 sin 13π = sin 3π + π  tan 13π = tan 3π + π  12  = sin 3π cos π + cos 3π sin π  12  tan 3π + tan π 4 3 4 3  = 2 1 2 3  1 − tan 3π tan π = ⋅ + −  4 3 2 2 = 2 (1 − 2 2  3)  = −1 + 3 ( )4 1 − −1 ( 3) cos 13π = cos 3π + π  1 − 3 1 − 3 12 4 3  = − ⋅ 1 + 3 1 − 3 = cos 3π cos π − sin 3π sin π 4 − 2 3 4 3 4 3 = − −2 2 1 2 3 = − ⋅ − ⋅ 2 = − 1 + 3 = 2 − 3 20. 19π 2 2 2 2 4 π 5π = + 12 3 4 sin 19π = sin π 5π  +  12  = sin π cos 5π + sin 5π cos π 3 4 4 3 3 = − 2  + − 2 1 ⋅ 2 2  2 2 = − 2 3 + 1 4 cos 19π = cos π 5π  +  12  = cos π cos 5π − sin π sin 5π 3 4 3 4 1 2  = − − 3 2  − 2 2  2 2 2 = 4 −1 + 3 tan 19π = tan π + 5π  12 tan π + tan 5π
  • 60. = 3 4 1 − tan π tan 5π 3 4 tan π + tan π = 3 4 1 − tan π tan π 3 4 3 + 1 1 + 3 = ⋅ 1 − 3 1 + 3 = 4 + 2 3 −2 = −2 − 3
  • 61. ( ( − =  ( = + − = (1 − ) 246 Chapter 2 Analytic Trigonometry 21. − 5π = − π − π 12 4 6 sin − π − π = sin − π cos π − cos − π sin π 4 6 4 6 4 6  2 3 2 1 2 = − − = − 3 + 1) 2 2  2 2 4 cos− π − π = cos − π cos π + sin − π sin π 4 6 4 6 4 6  2 3 2 1 2 = + − = 3 − 1) 2 2  2 2 4 tan − π tan− π − tan π π 4 6 4 6  1 + tan − π tan π 4 6 −1 − 3 = 3 = −3 − 3 − 1 + (−1) 3 3 3 3   = −3 − 3 ⋅ 3 + 3 3 − 3 3 + 3 22. − 7π = − π = −12 − 6 3 6 − π = −2 − 3 12 3 4 sin− 7π = sin− π − π = sin− π cos π − cos − π sin π 12  3 4  3 4  3 4 3 2 1 2 2 = − − = − 3 + 1)  2 2  2 2 4 cos− 7π = cos− π − π = cos− π cos π + sin− π sin π 12  3 4  3 4  3 4  1 2 3 2 2 3 2 2  2 2 4 tan− 7π = tan− π
  • 62. π 3 4 tan− π − tan π  − =  = − 3 − 1 = 2 + 3 12  3 4  1 + tan− π tan π  1 + (− 3)(1) 3 4
  • 63. − = − ( − − = ( ( ( (  ) Section 2.4 Sum and Difference Formulas 247 23. 285° = 225° + 60° sin 285° = sin(225° + 60°) = sin 225° cos 60° + cos 225° sin 60° 2 1 2 3 2 = −  3 + 1) 2 2 2 2 4 cos 285° = cos(225° + 60°) = cos 225° cos 60° − sin 225° sin 60° 2 1 2 3 2 = −  3 − 1) 2 2  2 2 4 tan 285° = tan(225° + 60°) = tan 225° +tan 60° 1 − tan 225° tan 60° 1 + 3 1 + 3 = ⋅ = 4 + 2 3 = −2 − 3 = −(2 + 3) 1 − 3 1 + 3 −2 24. 15° = 45° − 30° sin 15° = sin(45° − 30°) = sin 45° cos 30° − cos 45° sin 30° 2 3 2 1 2( 3 − 1) 2 = − = = 3 − 1) 2 2  2 2 4 4 cos 15° = cos(45° − 30°) = cos 45° cos 30° + sin 45° sin 30° 2 3 2 1 2( 3 + 1) 2 = + = = 3 + 1) 2 2  2 2 4 4 tan 15° = tan(45° − 30°) = tan 45° −tan 30° 1 + tan 45° tan 30° 1 − 3 3 − 3 = 3 = 3 = 3 − 3 ⋅ 3 − 3 12 − 6 3 = = 2 − 3 3  3 + 3 3 + 3 3 − 3 6 1 + (1) 3 3 25.  −165° = −(120° + 45°) sin(−165°) = sin−(120° + 45°) = −sin(120° + 45°) = −[sin 120° cos 45° + cos 120° sin 45°] 3 2 1 2 2 ( 3 1)= −  ⋅ − ⋅ 2 2 2 2 = − − 4 cos(−165°) = cos−(120° + 45°) = cos(120° + 45°) = cos 120° cos 45° − sin 120° sin 45° 1 2 3 2 = − ⋅ − ⋅ 2 = − 1 + 3 2 2 2 2 4 tan(−165°) = tan−(120° + 45°) = −tan(120° + tan 45°) = − tan 120° +tan 45° 1 − tan 120° tan 45° = − − 3 + 1 = − 1 − 3 ⋅ 1 − 3 = − 4 − 2 3 = 2 − 3
  • 64. 1 − (− 3)(1) 1 + 3 1 − 3 −2
  • 65. = − − = − (1 + (  7 5 8 8  ) ) 248 Chapter 2 Analytic Trigonometry 26. −105 = 30° − 135° sin(30° − 135°) = sin 30° cos 135° − cos 30° sin 135° = sin 30°(−cos 45°) − cos 30° sin 45° 1 2 3 2 2 3 2 2  2 2 4 cos(30° − 135°) = cos 30° cos 135° + sin 30° sin 135° = cos 30°(−cos 45°) + sin 30° sin 45° 3 2 1 2 2 = − + = 1 − 3  2 2  2 2 4 tan(30° − 135°) = tan 30° −tan 135° = tan 30° −(−tan 45°) 1 + tan 30° tan 135° 3 − (−1) = 3 = 2 + 3  1 + (−1) 1 + tan 30°(−tan 45°) 3 3 27.  sin 3 cos 1.2 − cos 3 sin 1.2 = sin(3 − 1.2) = sin 1.8 36. cos π cos 3π − sin π sin 3π = cos π + 3π 16 16 16 16 16 16 28. cos π cos π − sin π sin π = cos π + π  π 2 7 5 7 5   = cos 12π = cos = 4 2 29. 30. 35 sin 60° cos 15° + cos 60° sin 15° = sin(60° + 15°) = sin 75° cos 130° cos 40° − sin 130° sin 40° = cos(130° + 40°) = cos 170° 37. 38. cos 130° cos 10° + sin 130° sin 10° = cos(130° − 10°) = cos 120° 1 = − 2 sin 100° cos 40° − cos 100° sin 40° = sin(100° − 40°) = sin 60° 3 31. tan (π 15) + tan(2π 5) = = tan(π 15 + 2π 5) 2 1 − tan(π 15) tan(2π 5) = tan(7π 15) 39. tan(9π 8) − tan(π 8) 9π = tan − π 32. tan 1.1 − tan 4.6 = tan(1.1 − 4.6) = tan(−3.5) 1 + tan 1.1 tan 4.6 1 + tan(9π 8) tan(π 8)   = tan π = 0 33. 34. cos 3x cos 2y + sin 3x sin 2y = cos(3x − 2y) sin x cos 2x + cos x sin 2x = sin(x + 2x) = sin(3x) 40. tan 25° +tan 110° = tan(25° + 110°) 1 − tan 25° tan 110° = tan 135° = −1 35. sin π cos π + cos π sin π = sin π + π 12 4 12 4 12 4  = sin π 3 3
  • 66. = 2
  • 67. (15, 8 17 v 17 17 15 − − − + 5 85  4 15  − 25 25 24 Section 2.4 Sum and Difference Formulas 249 For Exercises 41–46, you have: sin u = – 3, u in Quadrant IV cos u = 4, tan u = – 4 5 5 3 cos v = 15, v in Quadrant I sin v = 8 , tan v = 8 y y ) u x x 5 (4, −3) 41. Figures for Exercises 41–46 sin(u + v) = sin u cos v + cos u sin v = − 3 15 + 4 8  44. csc(u − v) = 1 = 1 ( ) 517 517  sin u − v 1 sin u cos v − cos u sin v  13 = 3 15 4 8  = −  85 517 517 1 85 42. cos(u − v) = cos u cos v + sin u sin v = 4 15 + − 3 8  = = − − 77 77 85 517  517  1 1  45. sec(v − u) = cos(v − u) = cos v cos u + sin v sin u 60 −24 36 = + = 1 1 85 85 85 = 15 4 8  = 3 60  24 3 8   + − 17 5 17 1 85 + −  85 43. tan(u + v) = tan u + tan v = 4 15 = 36 = 36 1 − tan u tan v 1 − − 3 8 85 415 − 13 60 13 5  13 tan u + tan v − 3 + 8  = = − = − 46. tan(u + v) = = 3 8 1 + 32 60 60 7 84 1 − tan u tan v 1 − −  415 13 = 60 7 5 = − 13 84 1 1 84 For Exercises 47– 52, you have: sin u = – 7 , u in Quadrant III cos u = – 24, tan u = 7 cot(u + v) = = tan(u + v) = − − 13 13 84
  • 68. u 25 (−24, −7) cos v = – 4, v in Quadrant III sin v = – 3, tan v = 3 5 5 4 y y v x x 5 (−4, −3) Figures for Exercises 47–52
  • 69. 25 5 25 5 25 5 25 5 25 5 25 5 24 4 − 5 25 5  4 24 ( = = 250 Chapter 2 Analytic Trigonometry 47. cos(u + v) = cos u cos v − sin u sin v 51. csc(u − v) = 1 = 1 = (− 24 )(− 4 ) − (− 7 )(− 3 ) sin(u − v) sin u cos v − cos u sin v 1 3 = 5 7  − −  4  − −  24 3 −  48. sin(u + v) = sin u cos v + cos u sin v = (− 7 )(− 4 ) + (− 24 )(− 3 ) 1 = 44 − 125 = 28 + 72 = 100 = 4 49. 125 125 125 5 tan(u − v) = tan u − tan v 1 + tan u tan v 7 3 11 52. 125 = − 44 sec(v − u) = 1 cos(v − u) − − 24 4 24 44 1 = = = − 1 + 7 3 39 32 117 = cos v cos u + sin v sin u 1 = 50. tan(v − u) = tan v − tan u = 3 7   4 24 4 − −  24  + −  3 −  7  25 1 + tan v tan u 11 1 + 3 7   1 = 117 125 125 = 24 44 = 39 117 32 117 1 1 117 cot(v − u) = tan(v − u) = 44 = 44 117 53. sin(arcsin x + arccos x) = sin(arcsin x) cos(arccos x) + sin(arccos x) cos(arcsin x) = x ⋅ x + 1 − x2 ⋅ 1 − x2 = x2 + 1 − x2 = 1 1 x 1 1 − x2 θ θ 1 − x2 x 54. sin(arctan 2x − arccos x) = sin(arctan 2x − arccos x) θ = arcsin x θ = arccos x = sin(arctan 2x) cos(arccos x) − cos(arctan 2x) sin(arccos x) = 2x (x) − 1 4x2 + 1 4x2 + 1 1 − x2 ) 2x2 − =
  • 70. 1 − x2 4x2 + 1 4x2 + 1 2x 1 1 − x2 θ 1 θ = arctan 2x θ x θ = arccos x
  • 71. ( Section 2.4 Sum and Difference Formulas 251 55. cos(arccos x + arcsin x) = cos(arccos x) cos(arcsin x) − sin(arccos x) sin(arcsin x) = x ⋅ = 0 (Use the triangles in Exercise 53.) 1 − x2 − 1 − x2 ⋅ x 56. cos(arccos x − arctan x) = cos(arccos x − arctan x) = cos(arccos x) cos(arctan x) + sin(arccos x) sin(arctan x) = (x) 1 + ( 1 − x2 ) x  = x + x 1 + x2  1 − x2 1 + x2  1 1 − x2 1 + x2 x 1 + x2 θ x θ = arccos x θ 1 θ = arctan x 57. sin π − x = sin π cos x − cos π sin x 59. sin π + x = sin π cos x + cos π sin x 2 2 2 6 6 6  = (1)(cos x) − (0)(sin x) = cos x  = 5π  1 cos x + 2 5π 3 sin x) 5π 58. sin π + x = sin π cos x + sin x cos π 60. cos 4 − x = cos cos x + sin 4 sin x 4 2 2 2 θ + π = (1)(cos x) + (sin x)(0) = cos x tan θ + tan π tan θ + 0 = = = tan θ = θ = − 2 (cos x + sin x) 2 61. tan( ) 1 − tan θ tan π 1 − (tan θ)(0) tan 1 π  tan π − tan θ 4 1 − tan θ 62. tan 4 − θ =  1 + tan π tan θ 4 = 1 + tan θ 63. cos(π − θ) + sin π + θ = cos π cos θ + sin π sin θ + sin π cos θ + cos π sin θ 2 2 2 = (−1)(cos θ) + (0)(sin θ) + (1)(cos θ) + (sin θ)(0) = −cos θ + cos θ = 0 64. cos(x + y) cos(x − y) = (cos x cos y − sin x sin y)(cos x cos y + sin x sin y) = cos2 x cos2 y − sin2 x sin2 y = cos2 x(1 − sin2 y) − sin2 x sin2 y
  • 73.   252 Chapter 2 Analytic Trigonometry 65. cos 3π − θ = cos 3π cos θ + sin 3π sin θ 68. tan(π + θ) = tan π + tan θ 2 2 2 1 − tan π tan θ  = (0)(cos θ) + (−1)(sin θ) = −sin θ 2 0 + tan θ = 1 − (0) tan θ = tan θ 1 1 −2π 2π cot(π + θ) = = tan(π + θ) tan θ = cot θ 5 −2 The graphs appear to coincide, so −2π 2π cos 3π 2 − θ = −sin θ. 66.  sin(π + θ) = sin π cos θ + cos π sin θ = (0) cos θ + (−1) sin θ = −sin θ 69. −5 The graphs appear to coincide, so cot(π + θ) = cot θ sin(x + π) − sin x + 1 = 0 sin x cos π + cos x sin π − sin x + 1 = 0 2 −2π 2π (sin x)(−1) + (cos x)(0) − sin x + 1 = 0 −2 sin x + 1 = 0 sin x = 1 2 −2 The graphs appear to coincide, so sin(π + θ) = −sin(θ). 70. x = π , 5π 6 6 cos(x + π) − cos x − 1 = 0 67. sin 3π + θ = sin 3π cosθ + cos 3π sin θ cos x cos π − sin x sin π − cos x − 1 = 0 2 2 2 = (−1)(cos θ) + (0)(sin θ) = −cosθ (cos x)(−1) − (sin x)(0) − cos x − 1 = 0 −2 cos x − 1 = 0 cos x 1 csc 3π = − + θ = 1 = 1 = −sec θ 2 2  sin(3π + θ) −cos θ 2π 4π 2 5 x = , 3 3 −2π 2π −5 The graphs appear to coincide, so csc 3π 2 + θ = −sec θ.
  • 74. Section 2.4 Sum and Difference Formulas 253 71. cosx + π − cosx − π = 1 4 4  cos x cos π − sin x sin π − cos x cos π + sin x sin π = 1 4 4  4 4  2  −2 sin x = 1 2  − 2 sin x = 1 sin x = − 1 2 sin x = − 2 2 x = 5π , 7π 4 4 72. sin x + π − sinx − 7π = 3 6  6 2 sin x cos π + cos x sin π − sin x cos 7π − cos x sin 7π = 3 6 6  6 6 2   (sin x) 3 + (cos x) 1 − (sin x)− 3 + (cos x)− 1 = 3 2  2  2  2 2 73.  tan(x + π) + 2 sin(x + π) = 0 tan x + tan π + 2(sin x cos π + cos x sin π) = 0 1 − tan x tan π 3 sin x = 3 2 sin x = 1 2 x = π , 5π 6 6 tan x + 0 + − + = 1 − tan x(0) 2 sin x( 1) cos x(0) 0 tan x − 2 sin x = 0 1 sin x cos x = 2 sin x sin x = 2 sin x cos x sin x(1 − 2 cos x) = 0 sin x = 0 or cos x = 1 2 x = 0, π x = π , 5π 3 3
  • 75. 1  4 4 1 3 4 3 254 Chapter 2 Analytic Trigonometry 74. sin x + π − cos2 x = 0 76. tan(x + π) − cosx + π = 0 2  2 sin x cos π  + cos x sin π − cos2 x = 0  x = 0, π 2 2 (sin x)(0) + (cos x)(1) − cos2 x = 0 cos x − cos2 x = 0 cos x(1 − cos x) = 0 cos x = 0 or 1 − cos x = 0 4 0 2π −4 x = π , 3π 2 2 cos x = 1 77. sin x + π + cos2 x = 0 x = 0 2  75. cosx + π + cosx − π = 1 4 4  Graph y = cosx +  π  + cosx −  π  and y2  = 1. 0 2π x = π , 7π 4 4 2 −1 x = π , π, 3π 2 2 0 2π 78. cosx − π − sin2 x = 0 2   −2 1 0 2 79. y = 1 sin 2t + 1 cos 2t 3 4 −3 x = 0, π , π 2 (a) a = 1 , b = 1 , B = 2 3 4 C = arctan b a = arctan 3 ≈ 0.6435 4 y ≈ 1 2 2 +  sin(2t + 0.6435) = 5 sin(2t + 0.6435)  12 (b) Amplitude: 5 12 feet (c) Frequency: 1 = B = 2 = 1 cycle per second period 2π 2π π
  • 76. λ λ λ T λ λ λT T  Section 2.4 Sum and Difference Formulas 255 t x 80. y1 = A cos 2π −  T t x  y2 = A cos 2π +  T  t x t x y1 + y2 = A cos 2π T − + A cos 2π +  t x t x  t x t x t x y1 + y2 = Acos 2π  cos 2π λ + sin 2π T sin 2π + Acos 2π  cos 2π λ − sin 2π T sin 2π = 2A cos 2π T cos 2π λ 81. True. sin(u + v) = sin u cos v + cos u sin v sin(u − v) = sin u cos v − cos u sin v So, sin(u ± v) = sin u cos v ± cos u sin v. 82. False. cos(u + v) = cos u cos v − sin u sin v cos(u − v) = cos u cos v + sin u sin v So, cos(u ± v) = cos u cos v sin u sin v. 83. sin(α + β) = sin α cos β + sin β cos α = 0 sin α cos β + sin β cos α sin α cos β = 0 = −sin β cos α False. When α and β are supplementary, sin α cos β = −cos α sin β. 84. cos(A + B) = cos(180° − C) = cos(180°) cos(C) + sin(180°) sin(C) = (−1) cos(C) + (0) sin(C) = −cos(C) True. cos(A + B) = −cos C. When A, B and C form Δ ABC, A + B + C = 180°, so A + B = 180° − C. 85. The denominator should be 1 + tan x tan(π 4). tan x − π = tan x − tan(π 4) 87. cos(nπ + θ) = cos nπ cos θ − sin nπ sin θ = (−1)n (cos θ) − (0)(sin θ) 4  1 + tan x tan(π 4) = tan x − 1 1 + tan x 88. sin(nπ = (−1) n (cos θ), where n is an integer. + θ) = sin nπ cos θ + sin θ cos nπ n 86. (a) Using the graph, sin(u + v) ≈ 0 and sin u + sin v ≈ 0.7 + 0.7 = 1.4. Because = (0)(cos θ) + (sin θ)(−1) = (−1) n (sin θ), where n is an integer. 0 ≠ 1.4, sin(u + v) ≠ sin u + sin v. (b) Using the graph, sin(u − v) ≈ −1and sin u − sin v ≈ 0.7 − 0.7 = 0. Because 89. −1 ≠ 0, C = arctan b sin(u − v) ≠ sin u − sin v. sin C = b , cos C = a a a2 + b2 a2 + b2
  • 77. a2 + b2 sin(Bθ + C) = a b  a2 + b2 sin Bθ ⋅ + ⋅ cos Bθ = a sin Bθ + b cos Bθ a2 + b2 a2 + b2 90. C = arctan a sin C = a , cos C = b b a2 + b2 a2 + b2 a2 + b2 cos(Bθ − C) = b a  a2 + b2 cos Bθ ⋅ + sin Bθ ⋅  = b cos Bθ + a sin Bθ a2 + b2 = a sin Bθ + b cos Bθ a2 + b2
  • 78.  θ   256 Chapter 2 Analytic Trigonometry 91. sin θ + cos θ a = 1, b = 1, B = 1 94. sin 2θ + cos 2θ a = 1, b = 1, B = 2 (a) C = arctan b a = arctan 1 = π 4 (a) C = arctan b a = arctan(1) = π 4 sin θ + cos θ = a2 + b2 sin(Bθ + C) sin 2θ + cos 2θ = a2 + b2 sin(Bθ + C) π  = 2 sinθ +  = 2 sin2θ + π (b) C = arctan a b 4  = arctan 1 = π 4 (b) C = arctan a 4  = arctan(1) = π sin θ + cos θ = = a2 + b2 cos(Bθ − C) b 4 π ( ) 2 cosθ −  4  sin 2θ + cos 2θ = = a2 + b2 cos Bθ − C 2 cos2θ − π 4  92. 3 sin 2θ + 4 cos 2θ  a = 3, b = 4, B = 2 b π (a) C = arctan b = arctan 4 ≈ 0.9273 95. C = arctan a = a = b, a > 0, b > 0 4 a 3 sin 2θ + 4 cos 2θ = 3 a2 + b2 sin(Bθ + C) a2 + b2 B = 1 = 2 a = b = 2 ≈ 5 sin(2θ + 0.9273) 2 sin + π = 2 sin θ + 2 cos θ (b) C = arctan a b = arctan 3 4 ≈ 0.6435 4 3 sin 2θ + 4 cos 2θ = a2 + b2 cos(Bθ − C) 96. C = arctan b = π a 4 a = b, a > 0, b > 0 93. 12 sin 3θ + 5 cos 3θ a = 12, b = 5, B = 3 ≈ 5 cos(2θ − 0.6435) a2 + b2 B = 1 = 5 a = b = 5 2 2 (a) C = arctan b = arctan 5 ≈ 0.3948 π 5 2 5 2 5 cosθ − = sin θ + cos θ a 12 sin 3θ + 5 cos 3θ 12 = a2 + b2 sin(Bθ + C) 97. 4 2 2 y (b) C = arctan a b ≈ 13 sin(3θ + 0.3948) = arctan 12 ≈ 1.1760 5 ≈ 13 cos(3θ − 1.1760) y1 = m1x + b1 θ δ α β x y2 = m2x + b2
  • 79. m1 = tan α and m2 = tan β β + δ = 90° δ = 90° − β α + θ + δ = 90° α + θ + (90° − β) = 90° θ = β − α So, θ = arctan m2 − arctan m1. For y = x and y = 3x you have m1 = 1 and m2 = 3. θ = arctan 3 − arctan 1 = 60° − 45° = 15°
  • 80.    2 2 B Section 2.4 Sum and Difference Formulas 257 98. For m2 > m1 > 0, the angle θ between the lines is: 99. y1 = cos(x + 2), y2 2 = cos x + cos 2 m2 − m1  θ = arctan  1 + m1m2  m2 = 1 1 y2 0 2π y1 m1 = 3 1 − 1  −2 No, y1 ≠ y2 because their graphs are different.  θ = arctan 3 = arctan(2 − 1 + 1  3) = 15° 100. y1 = sin(x + 4), y2 2 = sin x + sin 4 3  y1 0 2π y2 −2 No, y1 ≠ y2 because their graphs are different. 101. (a) To prove the identity for sin(u + v) you first need to prove the identity for cos(u − v). y C 1 u − v Assume 0 < v < u < 2π and locate u, v, and u − v on the unit circle. B The coordinates of the points on the circle are: D A = (1, 0), B = (cos v, sin v), C = (cos(u − v), sin(u − v)), and D = (cos u, sin u). Because ∠DOB = ∠COA, chords AC and BD are equal. By the Distance Formula: −1 u v A x O 1 2 2 2 2 cos(u − v) − 1 + sin(u − v) − 0 = (cos u − cos v) + (sin u − sin v) −1 cos2 (u − v) − 2 cos(u − v) + 1 + sin2 (u − v) = cos2 u − 2 cos u cos v + cos2 v + sin2 u − 2 sin u sin v + sin2 v cos2 (u − v) + sin2 (u − v) + 1 − 2 cos(u − v) = (cos2 u + sin2 u) + (cos2 v + sin2 v) − 2 cos u cos v − 2 sin u sin v 2 − 2 cos(u − v) = 2 − 2 cos u cos v − 2 sin u sin v −2 cos(u − v) = −2(cos u cos v + sin u sin v) cos(u − v) = cos u cos v + sin u sin v Now, to prove the identity for sin(u + v), use cofunction identities. sin(u + v) = cos π − (u + v) = cos π − u − v 2  2 = cos π 2 − u cos v + sin π 2 − u sin v  = sin u cos v + cos u sin v (b) First, prove cos(u − v) = cos u cos v + sin u sin v using the figure containing points A(1, 0) B(cos(u − v), sin(u − v)) C(cos v, sin v) y 1 D u − v C u v A x D(cos u, sin u) on the unit circle. −1 u − v 1 Because chords AB and CD are each subtended by angle u − v, their lengths are equal. Equating −1
  • 81. 2 2    2 d(A, B) = d(C, D) you have (cos(u − v) − 1) + sin2 (u − v) = (cos u − cos v) + (sin u − sin v) . Simplifying and solving for cos(u − v), you have cos(u − v) = cos u cos v + sin u sin v. Using sin θ = cos π 2  − θ,   sin(u − v) = cos π 2 − (u − v) = cos π 2 − u − (−v) = cos π 2 − u cos(−v) + sin π 2 − u sin(−v)  = sin u cos v − cos u sin v 
  • 82. h 0.5 0.2 0.1 0.05 0.02 0.01 f (h) 0.267 0.410 0.456 0.478 0.491 0.496 g(h) 0.267 0.410 0.456 0.478 0.491 0.496 = − = − 258 Chapter 2 Analytic Trigonometry 102. (a) The domains of f and g are the same, all real numbers h, except h = 0. (b) (c) 2 (d) As h → 0*, f → 0.5 and −3 3 −2 Section 2.5 Multiple-Angle and Product-to-Sum Formulas g → 0.5. 1. 2 sin u cos u 2. cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u 8. sin 2x sin x = cos x 2 sin x cos x sin x − cos x = 0 cos x(2 sin2 x − 1) = 0 1 3. 2 sin(u + v) + sin(u − v) cos x = 0 or 2 sin2 x = π + 2nπ x − 1 = 0 sin2 x = 1 4. tan2 u 2 2 sin x = ± 2 2 5. ± 1 − cos u 2 x = π + nπ 6. −2 sin u + v sin u − v 4 2 9. cos 2x − cos x = 0 2 2  7. sin 2x − sin x = 0 2 sin x cos x − sin x = 0 sin x(2 cos x − 1) = 0 sin x = 0 or 2 cos x − 1 = 0 cos 2x = cos x cos2 x − sin2 x = cos x cos2 x − (1 − cos2 x) − cos x = 0 2 cos2 x − cos x − 1 = 0 (2 cos x + 1)(cos x − 1) = 0 x = nπ cos x = 1 2 2 cos x + 1 = 0 or cos x − 1 = 0 x = π + 2nπ, 5π + 2nπ cos x 1 cos x = 1 10. 3 3 cos 2x + sin x = 0 1 − 2 sin2 x + sin x = 0 2 sin2 x − sin x − 1 = 0 (2 sin x + 1)(sin x − 1) = 0 2 x = 2nπ 3 x = 0 2 sin x + 1 = 0 or sin x − 1 = 0 sin x 1 2 sin x = 1 x = 7π + 2nπ, 11π + 2nπ x = π + 2nπ 6 6 2
  • 83. ( ) Section 2.5 Multiple Angle and Product-to-Sum Formulas 259 11. sin 4x = −2 sin 2x sin 4x + 2 sin 2x = 0 2 sin 2x cos 2x + 2 sin 2x = 0 2 sin 2x(cos 2x + 1) = 0 2 sin 2x = 0 or cos 2x + 1 = 0 sin 2x = 0 cos 2x = −1 2x = nπ 2x = π + 2nπ x = n π x = π + nπ 2 2 12. (sin 2x + cos 2x) 2 = 1 sin2 2x + 2 sin 2x cos 2x + cos2 2x = 1 2 sin 2x cos 2x = 0 sin 4x = 0 4x = nπ x = nπ 4 13. tan 2x − cot x = 0 2tan x = cot x 1 − tan2 x 2 tan x = cot x(1 − tan2 x) 2 tan x = cot x − cot x tan2 x 2 tan x = cot x − tan x 3 tan x = cot x 3 tan x − cot x = 0 3 tan x − 1 = 0 tan x 3 tan2 x − 1 = 0 tan x 1 3 tan2 x − 1 = 0 tan x cot x(3 tan2 x − 1) = 0 cot x = 0 or 3 tan2 x − 1 = 0 x = π + nπ tan2 x = 1 2 3 tan x = ± x = π 3 3 + nπ, 5π + nπ 6 6
  • 84. tan 2x − 2 cos x 0 2tan x 1 − tan2 x 2 cos x 2 tan x 2 tan x 2 cos x(1 − tan2 x) 2 cos x − 2 cos x tan2 x cos x  2 2 = 260 Chapter 2 Analytic Trigonometry 14. = = = = 2 tan x = 2 cos x − 2 cos x sin2 x cos2 x 2 tan x = 2 cos x − 2 sin2 x cos x sin x sin2 x tan x = cos x − sin x = cos x − cos x sin2 x cos x sin2 x cos x cos x + − cos x = 0 cos x sin x + sin2 x − cos2 x = 0 cos x 1 sin x + sin2 x − (1 − sin2 x) = 0 sec x2 sin2 x + sin x − 1 = 0 sec x(2 sin x − 1)(sin x + 1) = 0 sec x = 0 or 2 sin x − 1 = 0 or sin x + 1 = 0 No solution sin x = 1 sin x = −1 2 3π x = x = π , 5π 2 6 6 Also, values for which cos x = 0 need to be checked. π , 3π are solutions. 2 2 x = π + 2nπ, π + nπ, 5π + 2nπ 15. 6 2 6 6 sin x cos x = 3(2 sin x cos x) = 3 sin 2x 19. 4 − 8 sin2 x = 4(1 − 2 sin2 x) = 4 cos 2x 16. sin x cos x = = 1 (2 sin x cos x) 1 sin 2x 20. 10 sin2 x − 5 = 5(2 sin2 x − 1) 2 17. 2 6 cos2 x − 3 = 3(2 cos2 x − 1) = 3 cos 2x = −5(1 − 2 sin x) = −5 cos 2x 18. cos2 x − 1 = 1 2(cos2 x − 1 ) 2 2 2  = 1 (2 cos2 x − 1) 1 cos 2x
  • 85. 2
  • 86. 5 3 u −4 u 4 5 − 34 3 5 , , 2  2  3 tan 2u = =   2  2 = − Section 2.5 Multiple Angle and Product-to-Sum Formulas 261 21. sin u 3 3π = − 5 2 y < u < 2π 22. cos u 4 π 5 2 y < u < π x x 3 sin 2u = 2 sin u cos u = − 3 4 = − 24 sin 2u = 2 sin u cos u = 3 − 4 24 = − 5 5 25 5 5 25 cos 2u = cos2 u − sin2 u = 16 − 9 = 7 25 25 25 3 2−  cos 2u = cos2 u − sin2 u = 16 − 9 = 7 25 25 25  2− tan 2u = 2tan u = 4 316 24 2tan u 4 316 24 = − = − tan 2u = = 9 = − = − 23. 1 − tan2 u tan u = 3 , 0 < u < π 5 2 1 − 9 16 2 7 7 1 − tan2 u 1 − 16 2 7 7 y 3 5 15 sin 2u = 2 sin u cos u = 2 = 34 34 17 cos 2u = cos2 u − sin2 u = 25 − 9 = 8 34 34 17 3 2u x 2tan u 5 = 6 25 = 15 24. sec u = −2, π < u < 3π 2 1 − tan2 u 1 − 9 25 5 16 8 y sin 2u = 2 sin u cos u = − 3 − 1 = 3 2 2 2 cos 2u = cos2 u − sin2 u = − 1 2 3  − − = 1 − 3 = − 1 u 2 2  4 4 2 −1 x 3  2 2 tan u 1 2 3 − 3 2 tan 2u = 1 − tan2 u = 2 = = − 3 3 −2 1 − 1 25. cos 4x = cos(2x + 2x) = cos 2x cos 2x − sin 2x sin 2x = cos2 2x − sin2 2x = cos2 2x − (1 − cos2 2x) = 2 cos2 2x − 1 = 2 ( c o s 2 x) 2 − 1
  • 87. 1 − tan2 x = 2 =  2 6. tan 3x = tan(2x + x) = tan 2x + tan x 1 − tan 2x tan x 2 t a n x 1 − tan2 x + tan x 1 − 2 tan x (tan x)  2 tan x + tan x − tan3 x = 2(2 cos2 x − 1) − 1 1 − tan2 x 2 2 = 2(4 cos4 x − 4 cos x + 1) − 1 1 − tan x − 2 tan x 1 − tan2 x = 8 cos4 x − 8 cos x + 1 3 tan x tan3 x = − 1 − 3 tan2 x
  • 88. 2 = 1 cos 2x 1 cos 2x 3  2 262 Chapter 2 Analytic Trigonometry 27. cos4 x = (cos2 x)(cos2 x) = 1 + cos 2x1 + cos 2x = 1 + 2 cos 2x + cos 2x 2 2 4 1 + 2 cos 2x + 1 + cos 4x = 2 4 = 2 + 4 cos 2x + 1 + cos 4x 8 = 3 + 4 cos 2x + cos 4x 8 = 1 (3 + 4 cos 2x + cos 4x) 8 8 4 4 2 2 2 2 28. sin x = (sin x)(sin x) = (sin x) (sin x) 2 2 − −  2 2  1 − 2 cos 2x + cos2 2x1 − 2 cos 2x + cos2 2x =  4 4  1 − 2 cos 2x + cos2 2x − 2 cos 2x + 4 cos2 2x − 2 cos3 2x + cos2 2x − 2 cos3 2x + cos4 2x = 16 1 − 4 cos 2x + 6 cos2 2x − 4 cos3 2x + cos4 2x = 16 2 3 2 2 1 − 4 cos 2x + 6 cos 2x − 4 cos 2x + (cos 2x)= 16 1 + cos 4x 1 + cos 4x 1 − 4 cos 2x + 6 − 4 cos 2x +  = 2 2  16 1 + 2 cos 4x + cos2 4x 1 − 4 cos 2x + 3 + 3 cos 4x − 4 cos3 2x +  = 4  16 4 − 16 cos 2x + 12 + 12 cos 4x − 16 cos3 2x + 1 + 2 cos 4x + cos2 4x = 64 17 − 16 cos 2x + 14 cos 4x − 16 cos3 2x + 1 + cos 8x = 2  64 34 − 32 cos 2x + 28 cos 4x − 32 cos3 2x + 1 + cos 8x = 128 35 − 32 cos 2x + 28 cos 4x − 32 cos3 2x + cos 8x = 128 35 − 32 cos 2x + 28 cos 4x − 32 cos2 2x cos 2x + cos 8x = 128 1 + cos 4x 35 − 32 cos 2x + 28 cos 4x − 32 2 cos 2x + cos 8x = 128 = 35 − 32 cos 2x + 28 cos 4x − 16 cos 2x − 16 cos 4x cos 2x + cos 8x 128 = 35 − 48 cos 2x + 28 cos 4x − 16 cos 4x cos 2x + cos 8x 128 = 1 (35 − 48 cos 2x + 28 cos 4x + cos 8x − 16 cos 2x cos 4x) 128
  • 89. = 1 cos 4x ( 2 )  = 1 cos 4x  ( 2 ) ( 2 ) 2 2  2   Section 2.5 Multiple Angle and Product-to-Sum Formulas 263 29. sin4 2x = (sin2 2x) 31. tan4 2x = (tan2 2x) 2 −   2 1 − cos 4x = 2  1 + cos 4x 1 = 1 − 2 cos 4x + cos 4x 4 = 1 1 − 2 cos 4x + 1 + cos 8x 1 − 2 cos 4x + cos2 4x = 1 + 2 cos 4x + cos2 4x 1 + cos 8x 4 2  1 1 1 1 = − cos 4x + + cos 8x 4 2 8 8 3 1 1 = − cos 4x + cos 8x 8 2 8 1 = (3 − 4 cos 4x + cos 8x) 8 1 − 2 cos 4x + = 2 1 + 2 cos 4x + 1 + cos 8x 2 1 (2 − 4 cos 4x + 1 + cos 8x) = 2 1 (2 + 4 cos 4x + 1 + cos 8x) 2 = 3 − 4 cos 4x + cos 8x 30. cos4 2x = (cos2 2x) 3 + 4 cos 4x + cos 8x 2 +   32. tan2 2x cos4 2x = 1 − cos 4x (cos2 2x) 2 2  = 1 (1 + 2 cos 4x + cos2 4x) 1 + cos 4x 1 − cos 4x 1 + cos 4x 2 4 = 1 + cos 4x 2 1 1 + cos 8x  = 1 + 2 cos 4x +  (1 − cos 4x)(1 + cos 4x)(1 + cos 4x) 4 2  1 1 1 1 = + cos 4x + + cos 8x 4 2 8 8 3 1 1 = + cos 4x + cos 8x 8 2 8 1 = (3 + 4 cos 4x + cos 8x)8 = 4(1 + cos 4x) (1 − cos 4x)(1 + cos 4x)= 4 1 = 1 − cos 4x 4 = 1 − 1 + cos 8x 1 4 2 33. sin2 2x cos2 2x = 1 − cos 4x1 + cos 4x 1 1 1 = − − cos 8x 4 8 8 1 1 = − cos 8x 8 8 1 = (1 − cos 8x) 8 2 2   1 = 1 − cos 4x 4 1 1 + cos 8x = 1 − 4 2   = 1 − 1 − 1 cos 8x 4 8 8 = 1 − 1 cos 8x
  • 90. 8 8 = 1 (1 − cos 8x) 8
  • 91. ( 2 ) ( 2 3 ) [ ] [ ] 2 + 3 264 Chapter 2 Analytic Trigonometry 34. sin4 x cos2 x = sin2 x sin2 x cos2 x = 1 − cos 2x1 − cos 2x1 + cos 2x 2  2 2  1 = (1 − cos 2x) 1 − cos 2x 8 1 = 1 − cos 2x − cos 2x + cos 2x 8 + +1 1 cos 4x 1 cos 4x = 1 − cos 2x − + cos 2x 8  2  2 1 = 2 − 2 cos 2x − 1 − cos 4x + cos 2x + cos 2x cos 4x 16 1 = 1 − cos 2x − cos 4x + cos 2x cos 4x 16 1 1 − cos 150° 1 + ( 3 2) 35. sin 75° = sin ⋅ 150° = = 2 2 2 = 1 2 + 3 2 1 1 + cos 150° 1 − ( 3 2) cos 75° = cos ⋅ 150° = = 2 2 2 = 1 2 − 3 2 tan 75° = tan 1 ⋅ 150° = sin 150° = 1 2 2  1 + cos 150° 1 ( 3 2)− 1 2 + 3 = ⋅ = 2 + 3 = 2 + 3 2 − 3 2 + 1  3 4 − 3 1 − cos 330° 1 − ( 3 2) 36. sin 165° = sin ⋅ 330° = = 2 2 2 = 1 2 − 3 2 1 1 + cos 330° 1 + ( 3 2) cos 165° = cos ⋅ 330° = − = − 2 2 2 1 = − 2 tan 165° = tan 1 ⋅ 330° = sin 330° = −1 2 2  1 + cos 330° 1 ( 3 2)+ −1 2 − 3 −2 + 3 = ⋅ = = −2 + 3 2 + 3 2 − 3 4 − 3
  • 92. 1 Section 2.5 Multiple Angle and Product-to-Sum Formulas 265 1 1 − cos 225° 1 − (− 2 2) 1 37. sin 112° 30′ = sin ⋅ 225° = = = 2 + 2 2  2 2 2 1 1 + cos 225° 1 + (− 2 2) 1 cos 112° 30′ = cos ⋅ 225° = − = − = − 2 − 2 2  2 2 2 tan 112° 30′ = tan 1 ⋅ 225° = sin 225° = − 2 2 = − 2 ⋅ 2 + 2 = −2 2 − 2 = −1 − 2 2  1 + cos 225° 1 ( 2 2) 2 − 2 2 + 2 2 + − 1 1 − cos 135° 1 + ( 2 2) 1 38. sin 67° 30′ = sin ⋅ 135° = = = 2 + 2 2  2 2 2 1 1 + cos 135° 1 − ( 2 2) 1 cos 67° 30′ = cos ⋅ 135° = = = 2 − 2 2  2 2 2 tan 67° 30′ = tan 1 ⋅ 135° = sin 135° = 2 2 = 1 + 2 2  1 + cos 135° 1 ( 2 2)− π 1π  1 − cos π 4 1 39. sin = sin = = 2 − 2 8 2 4 2 2 π π 1π  1 + cos 4 cos = cos = = 2 + 2 8 2 4 2 2 sin π 2 tan π = tan 1π = 4 = 2 = 2 − 1 8 2 4  1 + cos π 1 + 2 4 2 40. sin 7π = sin 1 7π = 1 − cos 7π 6 = 1 + 3 2 = 1 2 + 3 12 2 6  2 2 2 1 + cos 7π 1 − 3 cos 7π = cos 1 7π = − 6 = − 2 = − 1 2 − 3 12 2 6  2 2 2 sin 7π − 1 tan 7π = tan 1 7π = 6 = 2 = −2 − 3 12 2 6  1 + cos 7π 1 − 3 6 2
  • 93. 2 2 , 2 2 = −     266 Chapter 2 Analytic Trigonometry 41. cos u = 7 , 0 < u < π 42. sin u = 5 , π < u < π cos u 12 25 2 (a) Because u is in Quadrant I, u is also in Quadrant I. 2 1 − 7 13 2 13 (a) Because u is in Quadrant II, u is in Quadrant I. 2 1 + 12 (b) sin u = 1 − cos u = 25 = 9 3 = (b) sin u = 1 − cos u = 13 5 26 = 2 2 2 25 5 1 + 7 2 2 26 1 − 12 cos u = 1 + cos u = 25 = 16 4 = cos u = 1 + cos u = 13 26 = 2 2 2 25 5 1 − 7 2 2 26 5 tan u = 1 − cos u = 25 = 3 tan u = sin u = 13 = 5 2 sin u 24 4 2  1 + cos u 1 12 43. tan u 5 3π = − 12 2 25 < u < 2π − 13 (a) Because u is in Quadrant IV, u is in Quadrant II. 2 1 − 12 (b) sin u = 1 − cos u = 13 = 1 26 = 2 2 2 26 26 1 + 12 cos u 1 + cos u = − = − 13 25 5 26 = − = − 2 2 2 26 26 1 − 12 tan u = 1 − cos u = 13 = − 1 2 sin u − 5 5 13 44. cot u = 3, π  < u < 3π 2 (a) Because u is in Quadrant III, u is in Quadrant II. 2 1 + 3 (b) sin u = 1 − cos u = 10 = 10 + 3 10 = 1 10 + 3 10 2 2 20 2 5 1 − 3 cos u = − 1 + cos u = − 10 10 − 3 10 = − 1 10 − 3 10 = − 2 2 20 2 5 1 + 3 tan u = 1 − cos u = 10 = − 10 − 3
  • 95. Section 2.5 Multiple Angle and Product-to-Sum Formulas 267 45. sin x + cos x = 0 2 47. cos x − sin x = 0 2 ± 1 − cos x 2 1 − cos x 2 = −cos x = cos2 x ± 1 + cos x 2 1 + cos x 2 = sin x = sin2 x cos x = 1 2 0 = 2 cos2 x + cos x − 1 = (2 cos x − 1)(cos x + 1) or cos x = −1 1 + cos x = 2 sin2 x 1 + cos x = 2 − 2 cos2 x 2 cos2 x + cos x − 1 = 0 (2 cos x − 1)(cos x + 1) = 0 x = π , 5π 3 3 x = π 2 cos x − 1 = 0 or cos x + 1 = 0 2 1cos x = 2 cos x = −1 0 2π x = π , 5π 3 3 x = π −2 By checking these values in the original equation, x = π 3 and x = 5π 3 are extraneous, and x = π is the only solution. x = π , π, 5π 3 3 π 3, π, and 5π 3 are all solutions to the equation. 2 46. h(x) = sin x + cos x − 1 2 sin x + cos x − 1 = 0 2 0 2π −2 ± 1 − cos x 2 1 − cos x = 1 − cos x = 1 − 2 cos x + cos2 x 48. g(x) = tan x − sin x 2 x 2 1 − cos x = 2 − 4 cos x + 2 cos2 x tan − sin x = 0 2 1 − cos x 2 cos2 x − 3 cos x + 1 = 0 sin x = sin x (2 cos x − 1)(cos x − 1) = 0 2 cos x − 1 = 0 or cos x − 1 = 0 1 − cos x = sin2 x 1 − cos x = 1 − cos2 x 2 cos x = 1 cos x = 1 cos x − cos x = 0 2 x = π , 5π 3 3 x = 0 cos x(cos x − 1) = 0 cos x = 0 or cos x − 1 = 0 0, π , and 5π are all solutions to the equation. x = π , 3π 2 2 cos x = 1 3 3 x = 0 1 0, π , and 3π are all solutions to the equation. 0 2π 2 2
  • 97. 2  π π π 268 Chapter 2 Analytic Trigonometry 49. sin 5θ sin 3θ = 1 cos(5θ − 3θ) − cos(5θ + 3θ) = 1 (cos 2θ − cos 8θ) 2 2 50. 7 cos(−5β) sin 3β = 7 ⋅ 1 sin(−5β + 3β) − sin(−5β − 3β) = 7 (sin(−2β) − sin(−8β)) 2 2 51. cos 2θ cos 4θ = 1 cos(2θ − 4θ) + cos(2θ + 4θ) = 1 cos(−2θ) + cos 6θ 2 2 52. sin(x + y) cos(x − y) = 1 (sin 2x + sin 2y) 54. sin 3θ + sin θ = 2 sin 3θ + θ cos 3θ − θ 2 2 53. sin 5θ − sin 3θ = 2 cos 5θ + 3θ sin 5θ − 3θ  = 2 sin 2θ cos θ 2 2  = 2 cos 4θ sin θ 55. cos 6x + cos 2x = 2 cos 6x + 2x cos 6x − 2x 2 2 56. cos x + cos 4x = 2 cos x + 4x cos x − 4x   = 2 cos 4x cos 2x 2 2   = 2 cos 5x cos −3x  2 2   ° + °  ° − °  57. 75 15 75 15 2 3 6 sin 75° + sin 15° = 2 sin cos = 2 sin 45° cos 30° = 2 = 2 2  2 2 2  ° + °  ° − ° 58. 120 60 120 60 3 cos 120° + cos 60° = 2 cos cos = 2 cos 90° cos 30° = 2(0) = 0 2 2  2 3π + π 3π  − π 59. cos 3π − cos π = −2 sin 4 4 sin 4 4 = −2 sin sin 4 4  2 2 2 4 cos 3π − cos π 2 2 = − − = − 2 4 4 2 2 5π + 3π 5π − 3π 60. sin 5π − sin 3π = 2 cos 4 4 sin 4 4 = 2 cos π sin 4 4  2 2 4 sin 5π − sin 3π 2 2 = − − = − 2 4 4 2 2 61. sin 6x + sin 2x = 0 2 sin 6x + 2x cos 6x − 2x = 0 2 2   2(sin 4x) cos 2x = 0 sin 4x = 0 or cos 2x = 0
  • 98. −2 2 4x = nπ 2x = π 2 + nπ 0 2π x = nπ x = π + nπ 4 4 2 In the interval [0, 2π) x = 0, π , π , 3π , π, 5π , 3π , 7π . 4 2 4 4 2 4
  • 99.  Section 2.5 Multiple Angle and Product-to-Sum Formulas 269 62. h(x) = cos 2x − cos 6x cos 2x − cos 6x = 0 −2 sin 4x sin(−2x) = 0 2 sin 4x sin 2x = 0 sin 4x = 0 or sin 2x = 0 2 4x = nπ 2x = nπ 0 2π x = nπ x = nπ 4 2 −2 x = 0, π , π , 3π , π, 5π , 3π , 7π x = 0, π , π, 3π 4 2 4 4 2 4 2 2 63. cos 2x − 1 = 0 sin 3x − sin x cos 2x = 1 sin 3x − sin x 2 cos 2x = 1 65. csc 2θ 1 = sin 2θ 1 = 2 sin θ cos θ = 1 ⋅ 1 2 cos 2x sin x 0 2π 2 sin x = 1 sin θ csc θ = 2 cos θ sin x = 1 −2 2 2 cos θ x = π , 5π 66. ( )( ) cos4 x − sin4 x = 6 6 = ( cos2 x − sin2 x cos 2x)(1) cos2 x + sin2 x 64. f (x) = sin2 3x − sin2 x sin2 3x − sin2 x = 0 (sin 3x + sin x)(sin 3x − sin x) = 0 (2 sin 2x cos x)(2 cos 2x sin x) = 0 67. (sin x + cos x) 2 = cos 2x = sin2 x + 2 sin x cos x + cos2 x = (sin2 x + cos2 x) + 2 sin x cos x = 1 + sin 2x sin 2x = 0 x = 0, π , π, 3π or 2 2 68. tan u 1 − cos u = cos x = 0 x = π , 3π or 2 2 2 sin u 1 cos u = − cos 2x = 0 x = π , 3π , 5π , 7π or sin u sin u 4 4 4 4 sin x = 0 x = 0, π 1 = csc u − cot u 2 sin x ± y cos x y 0 2π 69. sin x ± sin y cos x + cos y = 2 2  2 cos x + y cos x − y 2 2   −1 = tan x ± y  2 π + x + π − x  π + x − π  − x
  • 100. 3     70. π cos π + x + cos − x = 2 cos 3 3 cos 3 3 3 3  2 2   = 2 cos π cos(x)  1 = 2 cos x = cos x 2
  • 101. 2  = 1 2 270 Chapter 2 Analytic Trigonometry 71. (a) sin θ = ±  1 − cos θ 2 1 = M (c) When M = 4.5, cos θ (4.5) 2 − 2 = (4.5) 2 2 1 − cos θ  ±  cos θ ≈ 0.901235. 2  M  So, θ ≈ 0.4482 radian. 1 − cos θ 2 1 = M 2 (d) When M = 2, speed of object = M speed of sound M 2 (1 − cos θ) = 2 speed of object = 2 1 − cos θ −cos θ 2 = M 2 2 = − 1 760 mph speed of object = 1520 mph. speed of object cos θ M 2 = 1 − 2 M 2 M 2 − 2 When M = 4.5, speed of sound speed of object 760 mph = M = 4.5 cos θ = M 2 22 − 2 1 π speed of object = 3420 mph. (b) When M = 2, cos θ = = 22 2 . So, θ = . 3 72. 1 (75) 2 sin 2θ 32 sin 2θ = 130 130(32)= 752 75. True. Using the double angle formula and that sine is an odd function and cosine is an even function, sin(−2x) = sin2(− x) = 2 sin(− x) cos(− x) θ = 1 sin−1 130(32) = 2(−sin x) cos x 2 752  θ ≈ 23.85° = −2 sin x cos x. 76. False. If 90° < u < 180°, 73. x = 2r sin2 θ = 2r 1 − cos θ 2 2 2  u is in the first quadrant and = r(1 − cos θ) 2 So, x = 2r(1 − cos θ). sin u = 1 − cos u . 74. (a) Using the graph, sin 2u ≈ 1and 2 2 77. Because φ and θ are complementary angles, 2 sin u cos u ≈ 2(0.7)(0.7) ≈ 1. Because 1 = 1, sin 2u = 2 sin u cos u. sin φ = cos θ and cos φ = sin θ. (b) Using the graph, cos 2u ≈ 0 and cos2 u − sin2 u ≈ (0.7) 2 − (0.7) 2 = 0. (a) sin(φ − θ) = sin φ cos θ − sin θ cos φ = (cos θ)(cos θ) − (sin θ)(sin θ) = cos2 θ − sin2 θ Because 0 = 0, cos 2u = cos2 u − sin2 u. R e v iew Exercises for Chapter 2
  • 103. 1. cot x 3. cos x 2. sec x 4. cot2 x + 1 = csc2 x = csc x
  • 104. = − = − tan2 x 2 Review Exercises for Chapter 2 271 5. cos θ 2 , tan θ 5 > 0, θ is in Quadrant III. sec θ = 1 = − 5 cos θ 2 sin θ = − 1 − cos2 θ = − 1 − 4 = − 21 = − 21 cscθ 25 25 5 = 1 = − 5 = − 5 21 sin θ 21 21 − 21 tan θ = sin = 5 = 21 cos θ − 2 2 5 cot θ = 1 = 2 = 2 21 tan θ 21 21 6. cot x 2 , cos x < 0, x is in Quadrant II. 3 tan x = 1 = − 3 cot x 2 csc x = 1 + cot2 x = 1 + 4 = 13 13 = 9 9 3 sin x = 1 = 3 = 3 13 csc x 13 13 cos x = − 1 − sin2 x = − 1 − 9 4 2 2 13 = − = − = − sec x = 1 = − 13 13 13 13 13 cos x 2 1 1 7. = = sin2 x cot2 x + 1 csc2 x 13. cos2 x + cos2 x cot2 x = cos2 x(1 + cot2 x) = cos2 x(csc2 x) sin θ 1 8. tan θ = cos θ = 1 = cos2 x  sin2 x 1 − cos2 θ sin2 θ sin θ cos θ cos2 x = csc θ sec θ = sin2 x 2 9. tan2 x(csc2 x − 1) = tan2 x(cot2 x) = cot x = tan2 x 1   14. (tan x + 1)2 cos x = (tan2 x + 2 tan x + 1) cos x = 1 = (sec x + 2 tan x) cos x 10.
  • 105. ( ) cos x = 2 cot2 x sin 2 x = sin2 x = cos2 x s i n2 x sin x  = sec2 x cos x + 2 cos x cos x = sec x + 2 sin x cot π − u 11. 2  cos u tan u cos u = tan u sec u 12. sec (−θ) sec θ 1 cos θ sin θ 2 2 2 2 2 = = = = tan θcsc2 θ csc2 θ 1 sin2 θ cos2 θ
  • 106. 2    272 Chapter 2 Analytic Trigonometry 15. 1 1 (csc θ − 1) − (csc θ + 1) − = 16. tan x sec x − 1 2 2 =csc θ + 1 csc θ − 1 (csc θ + 1)(csc θ − 1) = −2 csc2 θ − 1 = −2 cot2 θ = −2 tan2 θ 1 + sec x 1 + sec x (sec x + 1)(sec x − 1)= sec x + 1 = sec x − 1 17. Let x = 5 sin θ, then 25 − x2 = 25 − (5 sin θ) 2 = 25 − 25 sin2 θ = 25(1 − sin2 θ) = 25 cos2 θ = 5 cos θ. 18. Let x = 4 sec θ, then x2 − 16 = (4 sec θ) 2 − 16 = 16 sec2 θ − 16 = 16(sec2 θ − 1) = 16 tan2 θ = 4 tan θ. 19. cos x(tan2 x + 1) = cos x sec2 x 25. sin5 x cos2 x = sin4 x cos2 x sin x 1 = sec2 x sec x = (1 − cos2 x) cos2 x sin x = sec x = (1 − 2 cos x + cos x) cos x sin x 20. sec2 x cot x − cot x = cot x(sec2 x − 1) = cot x tan2 x 26. 2 4 2 = (cos2 x − 2 cos4 x + cos6 x) sin x cos3 x sin2 x = cos x cos2 x sin2 x 1  = tan2 x = tan x tan x = cos x(1 − sin2 x) sin2 x 4 = cos x(sin2 x − sin x) 21. sin π 2 − θ tan θ = cos θ tan θ = (sin2 x − sin4 x) cos x  sin θ  = cos θ  cos θ  = sin θ 27. sin x = sin x = 3 − sin x 3 2 x = π + 2πn, 2π + 2πn 22. cot π 2 − θ csc θ 3 3 = tan θ csc θ  sin θ 1  = cos θ sin θ  28. 4 cos θ 2 cos θ = 1 + 2 cos θ = 1 1 1 = cos θ cos θ = 2 π 5π
  • 107. = sec θ θ = + 2nπ or 3 + 2nπ 3 23. 1 = 1 = cos θ 29. 3 3 tan u = 3 tan θ csc θ sin θ cos θ ⋅ 1 sin θ tan u = 1 3 π 24. 1 1 1 = =  u = + nπ 6 tan x csc x sin x (tan x) 1 (sin x)sin x tan x = cot x
  • 108. Review Exercises for Chapter 2 273 30. 1 sec x − 1 = 0 2 1 sec x = 1 2 35. cos2 x + sin x = 1 1 − sin2 x + sin x − 1 = 0 −sin x(sin x − 1) = 0 sec x = 2 sin x = 0 sin x − 1 = 0 cos x = 1 2 x = 0, π sin x = 1 x = π x = π + 2nπ or 5π 2 + 2nπ 31. 3 3 3 csc2 x = 4 36. sin2 x + 2 cos x = 2 1 − cos2 x + 2 cos x = 2 2 csc2 x = 4 0 = cos x − 2 cos x + 1 3 sin x = ± 3 2 0 = (cos x − 1) 2 cos x − 1 = 0 cos x = 1 x = π + 2πn, 2π + 2πn, 4π + 2πn, 5π + 2πn x = 0 3 3 3 3 These can be combined as: 37. 2 sin 2x − 2 = 0 x = π + nπ or x = 2π + nπ sin 2x = 2 3 3 2x = π + 2πn, 3π 2 + 2πn 32. 4 tan2 u − 1 = tan2 u 4 4 3 tan2 u − 1 = 0 x = π + πn, 3π + πn tan2 u = 1 3 tan u = ± 1 3 = ± 3 3 8 8 x = π , 3π , 9π , 11π 8 8 8 8 x u = π + nπ or 5π + nπ 38. 2 cos + 1 = 0 2 6 6 x 1 cos = − 33. sin3 x = sin x 2 2 sin3 x − sin x = 0 sin x(sin2 x − 1) = 0 sin x = 0 x = 0, π sin2 x = 1 x = 2π 2 3 x = 4π 3 x sin x = ±1 x = π , 3π 2 2 39. 3 tan2 − 1 = 0 3 tan2 x = 1 34.
  • 110. = − 3 3 x = π , 3π 2 2 2 cos x = −3 x = π , 3 6 5π , 7π 6 6 cos x 3 2 x = π , 2 5π , 7π 2 2 No solution 5π and 7π 2 2 are greater than 2π, so they are not solutions. The solution is x = π . 2
  • 111. 2 (  ( = − 274 Chapter 2 Analytic Trigonometry 40. 3 tan 3x = 0 tan 3x = 0 3x = 0, π, 2π, 3π, 4π, 5π 43. tan2 x − 2 tan x = 0 tan x(tan x − 2) = 0 tan x = 0 or tan x − 2 = 0 x = 0, π , 2π , π, 4π , 5π 3 3 3 3 x = nπ tan x = 2 x = arctan 2 + nπ 41. cos 4x(cos x − 1) = 0 44. 2 tan2 x − 3 tan x = −1 cos 4x = 0 cos x − 1 = 0 2 tan2 x − 3 tan x + 1 = 0 4x = π + 2πn, 3π + 2πn cos x = 1 (2 tan x − 1)(tan x − 1) = 0 2 2 2 tan x − 1 = 0 or tan x − 1 = 0 x = π + π n, 3π + π n x = 0 2 tan x = 1 tan x = 1 8 2 8 2 x = 0, π , 3π , 5π , 7π , 9π , 11π , 13π , 15π 8 8 8 8 8 8 8 8 tan x = 1 2 x = π + nπ 4 42. 3 csc2 5x = −4 x = arctan 1 + nπ csc2 5x 4 3 csc 5x = ± − 4 3 No real solution 45. tan2 θ + tan θ − 6 = 0 (tan θ + 3)(tan θ − 2) = 0 tan θ + 3 = 0 or tan θ − 2 = 0 tan θ θ = −3 tan θ = arctan(−3) + nπ θ = 2 = arctan 2 + nπ 46. sec2 x + 6 tan x + 4 = 0 1 + tan2 x + 6 tan x + 4 = 0 tan2 x + 6 tan x + 5 = 0 47. sin 75° = sin(120° − 45°) = sin 120° cos 45° − cos120° sin 45° 3 2 1 2  = − −  (tan x + 5)(tan x + 1) = 0 2 2  2 2 tan x + 5 = 0 or tan x + 1 = 0 = 2 4 3 + 1) tan x = −5 tan x = −1 cos 75° = cos(120° − 45°) x = arctan(−5) + nπ x = 3π + nπ = cos120° cos 45° + sin 120° sin 45° 4 = − 1 2 3 2  + 2 2  2 2 = 2 4
  • 112. 3 − 1) tan 75° = tan(120° − 45°) = tan 120° −tan 45° 1 + tan 120° tan 45° = − 3 − 1 = − 3 − 1 1 + (− 3)(1) 1 − 3 = − 3 − 1 ⋅ 1 + 3 1 − 3 1 + 3 = −4 − 2 3 −2 = 2 + 3
  • 113. ( ( = − + = ( ( ) ) Review Exercises for Chapter 2 275 48. sin(375°) = sin(135° + 240°) = sin 135° cos 240° + cos 135° sin 240° 2 1  2 3 = − + − − 2 2  2 2 = 2 3 − 1 4 cos(375°) = cos(135° + 240°) = cos 135° cos 240° − sin 135° sin 240° 2 1 2 3 = − − − − 2 2 2 2 2 = 1 + 3 4 tan(375°) = tan(135° + 240°) = tan 135° +tan 240° 1 − tan 135° tan 240° = −1 + 3 1 − (−1)( 3) = −1 + 3 ⋅ 1 − 3 = −4 + 2 3 = 2 − 3 1 + 3 1 − 3 1 − 3 49. sin 25π = sin 11π + π = sin 11π cos π + cos 11π sin π 12  6 4  6 4 6 4  1 2 3 2 2 3 − 1) 2 2  2 2 4 cos 25π = cos 11π + π = cos 11π cos π − sin 11π sin π 12  6 4  6 4 6 4  3 2 1 2 2 = − − = 3 + 1)  2 2  2 2 4 tan 11π + tan π tan 25π = tan 11π + π = 6 4 12  6 4  1 tan 11π tan π − 6 4 3  − + 1 3  = = 2 − 3 3  1 − − (1)3 
  • 114. 5 3 4 −4 v −3 5 ( = 4 4 276 Chapter 2 Analytic Trigonometry 50. sin 19π = sin 11π − π  cos 19π = cos 11π − π 12  6 4  12  6 4  = sin 11π cos π − cos 11π sin π  = cos 11π cos π + sin 11π sin π 6 4 6 4 1 2 3 2 6 4 6 4 3 2 1 2 = − ⋅ − ⋅ = ⋅ + − 2 2 2 2 2 2  2 2 = − 2 (1 + 3) = − 2 ( 3 + 1) = 2 3 − 1) 4 4 4 tan 19π = tan 11π − π 12  6 4 tan 11π − tan π = 6 4 1 + tan 11π tan π 6 4 − 3 − 1 = 3 = − 3 − 3 ⋅ 3 + 3 3  1 + − (1) 3 − 3 3 + 3 3   −(12 + 6 3)= = −2 − 3 6 51. sin 60° cos 45° − cos 60° sin 45° = sin(60° − 45°) = sin 15° 52. tan 68° −tan 115° = tan(68° − 115°) 1 + tan 68° tan 115° = tan(−47°) y y u x x 53. ( ) Figures for Exercises 53–56 3 ( 4 ) 4 ( 3 ) 24 sin u + v = sin u cos v + cos u sin v = 5 − 5 3 + 3 3 + 5 − 5 = − 25 54. tan(u + v) = tan u + tan v = 4 4 = 2 = 316 24 1 − tan u tan v 1 − 3 3  7 16 2 7 7 55. ( ) 4 ( 4 ) 3 ( 3 )cos u − v = cos u cos v + sin u sin v =
  • 115. 5 − 5 + 5 − 5 = −1 56. ( ) 3 ( 4 ) 4 ( 3 )sin u − v = sin u cos v − cos u sin v = 5 − 5 − 5 − 5 = 0 57. cosx + π = cos x cos π − sin x sin π = cos x(0) − sin x(1) = −sin x 2 2 2
  • 116. , π 2  4 1 − 4 = − = 2 = − Review Exercises for Chapter 2 277 58. tan x − π = −tan π − x = −cot x 61. sin x + π − sinx − π = 1 2 2  4 4 59.  tan(π − x) = tan π − tan x = −tan x 1 − tan π tan x  2 cos x sin π = 1 4 60. sin(x − π) = sin x cos π − cos x sin π = sin x(−1) − cos x(0) = −sin x cos x = 2 2 x = π , 7π 4 4 62. cosx + π − cosx − π = 1 6 6  cos x cos π − sin x sin π − cos x cos π + sin x sin π = 1 6 6  6 6  −2 sin x sin π = 1 6 63. sin u 4 < u < 3π −2 sin x 1 = 1  sin x = −1 x = 3π 2 65. sin 4x = 2 sin 2x cos 2x 5 2 = 22 sin x cos x(cos2 x − sin2 x) cos u = − 1 − sin2 u = −3 5 = 4 sin x cos x(2 cos2 x − 1) tan u = sin u = 4 cos u 3 = 8 cos3 x sin x − 4 cos x sin x 2 4 3 24 sin 2u = 2 sin u cos u = 2− − = 5 5 25 −2π 2π cos 2u = cos2 u − sin2 u = − 3 2 2 − −  7 = − 5 5 25 −2  4 2 1 − cos 2x 1 − (1 − 2 sin2 x) tan 2u = 2 tan u 1 − tan2 u 3 = − 24 7  3 66. 1 + cos 2x = 1 + (2 cos x2 − 1) 2 sin2 x = 2 cos2 x 64. cos u = − 2 , π 5 2 < u < π sin u = 1 and 5 = tan2 x tan u 1 4 2 1 2 4 sin 2u = 2 sin u cos u = 2 − = − 5 5 5 −2π 2π
  • 117. 2 2 4 cos 2u = cos2 u − sin2 u = − 2  2 2 − 1 = 3 −1 5 5 5  2 sin2 3x 1 − cos 6x 2 1 − cos 6x 1 2−  67. tan 3x = 2 = = tan 2u = 2tan u = 2 = −1 = − 4 cos 3x 1 + cos 6x 1 + cos 6x 1 − tan2 u 1 3 3 2 1 − − 
  • 118. 2   12  2   3 3 = 278 Chapter 2 Analytic Trigonometry 68. sin2 x cos2 x = 1 − cos 2x1 + cos 2x 2 2   1 − cos2 2x = 4 1 − 1 + cos 4x  =  4 = 1 − cos 4x 8 1 − cos 150° 3  1 − − 2  2 + 3 1 69. sin(−75°) = − = − = − = − 2 + 3 2 2 2 2 3  1 + − 1 + cos 150° 2  2 − 3 1 cos(−75°) = − = = = 2 − 3 2 2 2 2 3  1 − − − ° tan(−75°) 1 cos 150  2 = −(2 + 3) = −2 − 3 = − sin 150° = − 1  2    5π 1 − − − 5π  1 cos 6 2  2 + 3 1 70. sin = = = = 2 + 3 12  2 2 2 2  5π 1 + − + 5π  1 cos 6 2  2 − 3 1 cos = = = = 2 − 3 12  2 2 2 2 tan 5π =  1 − cos 5π 6 sin 5π 3  1 − −  =  1 = 2 + 3 71. tan u = 4 , π 6 2 < u < 3π (b) sin u = 1 − cos u = 1 − − 3 5 4 3 2 2 2 2 5 y 2 5 = 5 1 + − 3
  • 119.  u cos u 1 + cos u = − = − 5 = − 1 −3 x 2 2 2 5 −4 5 5 = − 5 1 − − 3 (a) Because u is in Quadrant III, u is in Quadrant II. tan u 1 − cos u = = 5 = −2 2 2 sin u − 4 5 
  • 120. 5 3 4 1 − 1 + 1 − ,    = − = Review Exercises for Chapter 2 279 72. sin u = 3 , 0 < u < π 5 2 y u x (a) Because u is in Quadrant I, u is in Quadrant I. 2 4 (b) sin u = 1 − cos u = 5 = 1 = 10 2 2 2 10 10 4 cos u = 1 + cos u = 5 = 9 = 3 10 2 2 2 10 10 4 tan u = 1 − cos u = 5 = 1 2 sin u 3 3 5 73. cos u 2 π 7 2 y < u < π 7 3 5 u x −2 (a) Because u is in Quadrant II, u is in Quadrant I. 2 1 − − 2 (b) sin u = 1 − cos u = 7 = 9 2 2 2 14 3 14 = cos u = 14 1 + cos u = 1 + − 2 7 5 2 2 2 14 70 = 14 1 − − 2 tan u 1 − cos u = = 7 3 5 = 2 sin u 3 5 5 7
  • 121. 1 − 1 + 1 − = − 2  2  2 cos  θ 280 Chapter 2 Analytic Trigonometry 74. tan u = − 21 , 3π 2 2 y < u < 2π u 2 x 5 − 21 (a) Because u is in Quadrant IV, u is in Quadrant II. 2 2 (b) sin u = 1 − cos u = 5 = 3 = 30 2 2 2 10 10 2 cos u = − 1 + cos u = − 5  = − 7 = − 70 2 2 2 10 10 2 tan u = 1 − cos u = 5 3 3 21 = − = − 21 2 sin u 21 −  21 21 7 5  75. cos 4θ sin 6θ = 1 sin(4θ + 6θ) − sin(4θ − 6θ) = 1 sin 10θ − sin(−2θ) 76. 77. 2 sin 7θ cos 3θ cos 6θ + cos 5θ = 2 ⋅ 1 sin(7θ + 3θ) + sin(7θ − 3θ) = sin 10θ + sin 4θ = 2 cos 6θ + 5θ cos 6θ − 5θ = 2 cos 11θ cos θ 2 2 2 2 78. sin 3x − sin x = 2 3x + x sin 3x − x 79. r = 1 v0 2 sin 2θ 2 2 32 = 2 cos 2x sin x range = 100 feet v0 = 80 feet per second r = 1 (80) 2 sin 2θ 32 = 100 sin 2θ 2θ θ = 0.5 = 30° = 15° or π 12 80. Volume V of the trough will be the area A of the isosceles triangle times the length l of the trough. V = (a) A ⋅ l A = 1 bh 2 cos θ = h h = 0.5 cos θ 4 m 2 0.5 2 b b
  • 122. sin θ = 2 b = 0.5 sin θ h 2 0.5 2 2 0.5 m 0.5 m A = 0.5 sin θ 0.5 cos θ = (0.5) 2 sin θ cos θ = 0.25 sin θ cos θ square meters 2 2 2 2 2 2 V = (0.25)(4) sin θ cos θ cubic meters = sin θ cos θ cubic meters 2 2 2 2 Not drawn to scale
  • 123.    = Problem Solving for Chapter 2 281 (b) V = sin θ cos θ = 1 2 sin θ cos θ = 1 sin θ cubic meters 2 2 2  2 2 2  Volume is maximum when θ = π . 2 81. False. If π < θ < π, then π < θ < π , and θ is in 84. True. It can be verified using a product-to-sum formula. 2 Quadrant I. cos θ > 0 4 2 2 2 4 sin 45° cos 15° = 4 ⋅ 1 [sin 60° + sin 30°] 2 2 3 1 82. True. cot x sin2 x = cos x sin2 x = cos x sin x. sin x = 2  + = 2 2 3 + 1 85. Yes. Sample Answer. When the domain is all real 83. True. 4 sin(−x)cos(−x) = 4(−sin x) cos x = −4 sin x cos x numbers, the solutions of sin x = 5π 1 are x = π 2 6 + 2nπ = −2(2 sin x cos x) = −2 sin 2x Problem Solving for Chapter 2 and x = + 2nπ, so there are infinitely many 6 solutions. 1. sin θ = ± 1 − cos2 θ You also have the following relationships: tan θ = sin θ = ± cos θ 1 − cos2 θ cos θ sin θ = cos π 2 − θ cscθ = 1 = ± sin θ 1 1 − cos2 θ tan θ csc θ cos(π 2) − θ cos θ 1 = secθ cot θ = 1 cos θ = 1 = ± cos θ sec θ cos(π 2) − θ 1 = cos θ tan θ 1 − cos2 θ cot θ cos θ = cos(π 2) − θ (2n + 1)π 2nπ + π  2. cos = cos (12n + 1)π 1  3. sin = sin (12nπ + π) 2 2  6 6  = cosnπ + π   = sin2nπ + π 2  6 = cos nπ cos π − sin nπ sin π = sin π = 1 2 2 = (±1)(0) − (0)(1) 6 2 (12n + 1)π 1
  • 124. = 0 So, sin 6 = for all integers n. 2  (2n + 1)π  So, cos = 0 for all integers n. 2 
  • 125. 4π 1 2 3 5 6  1 2 282 Chapter 2 Analytic Trigonometry 4. p(t) = 1 p (t) + 30p (t) + p (t) + p (t) + 30p (t) 1.4 1.4 p1(t) p2(t) (a) p1(t) = sin(524πt) 1 −0.006 0.006 −0.006 0.006 p2 (t) = p3(t) = p5 (t) = sin(1048πt) 2 1 sin(1572πt) 3 1 sin(2620πt) 5 1.4 p3(t) −1.4 1.4 p5(t) −1.4 1.4 p6 (t) p6 (t) = 1 sin(3144πt) 6 −0.006 0.006 −0.006 0.006 −0.006 0.006 The graph of −1.4 −1.4 −1.4 p(t) = 1 sin(524πt) + 15 sin(1048πt) + 1 sin(1572πt) + 1 sin(2620πt) + 5 sin(3144πt) 4π 3 5  yields the graph shown in the text below. y 1.4 y = p(t) t 0.006 (b) −1.4 Function Period p (t) 2π 524π p (t) 2π 1 = ≈ 0.0038 262 = 1 ≈ 0.0019 (c) 1.4 Max 0 0.00382 p3(t) 1048π 2π 524 = 1 ≈ 0.0013 −1.4 Min 1 1572π 2π 786 1 Over one cycle, 0 ≤ t < , you have five t-intercepts: 262 p5(t) p6(t) 2620π 2π 3144π = ≈ 0.0008 1310 1 = ≈ 0.0006 1572 t = 0, t ≈ 0.00096, t ≈ 0.00191, t ≈ 0.00285, t ≈ 0.00382 (d) The absolute maximum value of p over one cycle is p ≈ 1.1952, and the absolute minimum value The graph of p appears to be periodic with a period of 1 ≈ 0.0038. 262 of p over one cycle is p ≈ −1.1952.
  • 126.  2 2 = − b Problem Solving for Chapter 2 283 5. From the figure, it appears that u + v = w. Assume that u, v, and w are all in Quadrant I. From the figure: tan u = s = 1 3s 3 tan v = s = 1 2s 2 tan w = s = 1 s tan u + v tan u + tan v 1 3 + 1 2 5 6 = = = = 1 = tan w. ( ) 1 − tan u tan v 1 − (1 3)(1 2) 1 − (1 6) So, tan(u + v) = tan w. Because u, v, and w are all in Quadrant I, you have arctantan(u + v) = arctan[tan w]u + v = w. 6. y = − 16 x2 + (tan θ)x + h0 Let h0 v0 2 cos2 θ = 0 and take half of the horizontal distance: 1 1 v sin 2θ = 1 v 2 sin θ cos θ 1 = v sin θ cos θ 2 2 32 0 0 ( ) 0 2 64 32 Substitute this expression for x in the model. 2 y = − 16 1 v 2 sin θ cos θ  sin θ 1  + v sin θ cos θ v 2 cos2 θ 32 0 cos θ 32 0 0  1 v 2 sin2 θ + 1 v 2 sin2 θ 64 0 1 = v0 2 sin2 θ 64 32 0 7. (a) 10 θ 10 h sin θ b 1 b = 2 1 2 and cos θ = h 2 10 2 10 b = 20 sin θ h = 10 cos θ 2 2 A = 1 bh 2 1 θ θ  = 20 sin 10 cos 2 2 2
  • 127. 2 (b)  = 100 sin θ cos θ 2 2 θ θ  A = 502 sin cos 2 2 θ  = 50 sin 2   = 50 sin θ Because sin π = 1 is a maximum, θ = π .So, the area is a maximum at A = 50 sin π = 50 square meters. 2 2 2