SlideShare a Scribd company logo
1 of 11
Download to read offline
“Why should I Trust You?”
Explaining the Predictions of Any Classifier
神嶌 敏弘
KDD2016勉強会,2016/10/01
1
概要
2
説明 (explanation):複雑な分類器の判断基準を,人間にも解釈可
能 (interpretable) になるように提示する
人間が見て分かるほど単純なモデルでは予測精度に難
カーネルや深層ネットなど複雑なモデルでは解釈不可能
↓
内部構造がブラックボックスの任意の分類器に適用可能
ある事例の分類結果に,各特徴がどれくらい影響を与えているかを
調べて説明とする
いくつかの事例についての説明を見せることで,モデル全体への説
明とする
↓
クラウドソーシングを使った被験者実験で説明の有効性を確認
クラウドワーカーで,特徴の前処理ができた
個別の予測についての説明
3
ホールドアウトデータでの予測指標は過大評価になりやすい
leakage や,訓練とテストで分布が違うデータ集合シフトへの対策
個別の予測についての説明
事例の構成要素(テキスト中の語や画像の一部)とモデルの予測の関
係を定性的に理解できるようにテキストや可視化
20Newsgroup文書の分類
元の文書
アルゴリズム
を比較
分類結果と
正解・不正解
分類に影響
した特徴
とその影響度
説明に必要な要素
4
解釈可能性:入力変数と応答との間の定性的理解を与える
人間の理解力の限界,理解の容易さ:数100個の特徴は無理
対象利用者:専門家 or 非専門家
局所的忠実性:モデル全体を詳細に述べることができなくても,予測
対象の事例に関連した部分だけでも最低限は説明できる
局所的忠実性は大域的忠実性を含意しない:大域的に重要な特徴が
局所的にはそうでない場合がある
モデル不可知性:任意のモデルを説明可能で,モデル自体をブラック
ボックスとして扱う
多くの分類器は解釈不能であり,将来出てくる分類器も扱えるよう
に
大域的観点:モデル全体を代表するような事例を選んでモデルを説明
Local Interpretable Model-
agnostic Explanations (LIME)
5
ブラックボックスな分類器に局所的に忠実 & 利用者に解釈可能
↓
事例 x の周辺からサンプリングした事例で解釈可能な分類器を訓練
サンプルは x への類似度 πx(z) で, z を重み付けしているので頑健
サンプリングした事例 z を説明する分類器に与えてラベル f(z) を得る
説明用
分類器
負ラベル
の事例
正ラベル
の事例
説明する
の事例
Local Interpretable Model-
agnostic Explanations (LIME)
6
⇠(x) = arg min
gÀG
L(f, g, ⇡x) + ⌦(g)
疎な線形説明
g(z’) = wg・z’
事例の類似度
πx(z) = exp(−D(x, z)2
/ σ2
)
損失
Σz πx( f(z) − g(z) )2
最適化問題を解いて事例 x についての説明を得る
説明する分類器
f(z)
説明 g の複雑さ
利用する特徴がたかだか K 個
K-lasso:正則化パスを用いて K 個を選ぶ
例:20NewsgroupをSVMで分類
7
キリスト教徒と無神論者の投稿を分類する問題
Algorithm2の予測精度は一見94%と高く,一見すると信頼できそう
NetNewsのヘッダ情報が
有力な特徴となっていて
他の文書でキリスト教徒・
無神論者を分類するには
使えなさそう
分類した文書
深層ネットで分類した画像
8
Google の Inception NN で分類した結果
上位三つのクラスラベルについて,その説明となる領域を示した
アコギをエレキと間違
えたのは fretboard の
存在が大きい
エレキギター アコースティックギター ラブラドール
元画像
モデルの説明 (SP-LIME)
9
複数の事例に対する説明を示すことでモデルの説明とする
↓
モデルをうまく説明できる事例の集合を選ぶ
f1 f2 f3 f4 f5
できるだけ多くの重要な特徴を被覆
するように,B個の事例を選ぶ
↓
集合の最大被覆なので,劣モジュラ
性を使い貪欲法で解く
事例の分類にとって重要な特徴
人工的な利用者実験
10
評判分析用ベンチマークを用いたオフライン実験
LIME(提案),parzen,greedy,random
説明はモデルに対して忠実か?
元分類器で最も重要な10個の特徴を説明で復元させた
random < parzen < greedy < LIME(90%以上)
説明によって個々の予測への信頼は高まるか?
信頼できない特徴を決めておいて,それを使わないと予測が変化す
る場合は信用できないとして,信用できないことに対する識別率
F1尺度で評価して,LIMEは他より有意に良かった
説明はモデル全体の評価に有用か?
信頼できない特徴を埋め込んで,それが説明に取り上げられたらモ
デルから除外して,最終モデルを作って,その予測精度で評価
ランダムに事例を選ぶより劣モジュラに基づく選択がよかった
被験者による評価
11
AMT で 20Newsgroup とわざと作った背景が雪原だったら狼と判
別する狼・ハスキー分類器 を使い被験者実験
利用者が最良の分類器を選択できるか?
説明をみてまともなモデルを選ぶ割合 → LIMEで劣モ選択がよい
非専門家が分類器を改良できるか?
説明を見て,無関係と思う特徴(単語)を段階的に除去して分類器
を再構築し,新たなキリスト教・無神論データで評価
被験者は分類器の性能を向上させることができた
説明は洞察を与えるのか?
狼識別器で説明を見せる前後で,実際に使ってみてうまくいきそう
かどうか,またその理由を尋ねてみた
背景に依存しているため,この分類器はダメだと被験者は認識した

More Related Content

What's hot

グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知Yuya Takashina
 
『自由エネルギー原理入門』勉強会1章&2章前半
『自由エネルギー原理入門』勉強会1章&2章前半『自由エネルギー原理入門』勉強会1章&2章前半
『自由エネルギー原理入門』勉強会1章&2章前半大地 紺野
 
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...西岡 賢一郎
 
テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明tmtm otm
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリングmlm_kansai
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性Satoshi Hara
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習Mitsuhisa Ohta
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )cvpaper. challenge
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向ohken
 
Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Toshihiro Kamishima
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定Akira Masuda
 
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報Takayuki Itoh
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森Masashi Komori
 
1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIClogics-of-blue
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化gree_tech
 
文献調査をどのように行うべきか?
文献調査をどのように行うべきか?文献調査をどのように行うべきか?
文献調査をどのように行うべきか?Yuichi Goto
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeTakami Sato
 

What's hot (20)

グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
 
『自由エネルギー原理入門』勉強会1章&2章前半
『自由エネルギー原理入門』勉強会1章&2章前半『自由エネルギー原理入門』勉強会1章&2章前半
『自由エネルギー原理入門』勉強会1章&2章前半
 
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
ブラックボックスからXAI (説明可能なAI) へ - LIME (Local Interpretable Model-agnostic Explanat...
 
テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明テーブル・テキスト・画像の反実仮想説明
テーブル・テキスト・画像の反実仮想説明
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
 
coordinate descent 法について
coordinate descent 法についてcoordinate descent 法について
coordinate descent 法について
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
TensorFlowで逆強化学習
TensorFlowで逆強化学習TensorFlowで逆強化学習
TensorFlowで逆強化学習
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
 
Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理Pythonによる機械学習実験の管理
Pythonによる機械学習実験の管理
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
 
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報
SIX ABEJA 講演資料 もうブラックボックスとは呼ばせない~機械学習を支援する情報
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
 
1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIC
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
 
文献調査をどのように行うべきか?
文献調査をどのように行うべきか?文献調査をどのように行うべきか?
文献調査をどのように行うべきか?
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
 

Viewers also liked

機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価Shintaro Fukushima
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計Takahiro Kubo
 
主成分分析 (pca)
主成分分析 (pca)主成分分析 (pca)
主成分分析 (pca)Ji Wang
 
サーバーレスの今とこれから
サーバーレスの今とこれからサーバーレスの今とこれから
サーバーレスの今とこれから真吾 吉田
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)sleepy_yoshi
 
機械学習の理論と実践
機械学習の理論と実践機械学習の理論と実践
機械学習の理論と実践Preferred Networks
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 

Viewers also liked (8)

KDD2016論文読み会資料(DeepIntent)
KDD2016論文読み会資料(DeepIntent) KDD2016論文読み会資料(DeepIntent)
KDD2016論文読み会資料(DeepIntent)
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計
 
主成分分析 (pca)
主成分分析 (pca)主成分分析 (pca)
主成分分析 (pca)
 
サーバーレスの今とこれから
サーバーレスの今とこれからサーバーレスの今とこれから
サーバーレスの今とこれから
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)
 
機械学習の理論と実践
機械学習の理論と実践機械学習の理論と実践
機械学習の理論と実践
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 

More from Toshihiro Kamishima

RecSys2018論文読み会 資料
RecSys2018論文読み会 資料RecSys2018論文読み会 資料
RecSys2018論文読み会 資料Toshihiro Kamishima
 
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用機械学習研究でのPythonの利用
機械学習研究でのPythonの利用Toshihiro Kamishima
 
Considerations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items TaskConsiderations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items TaskToshihiro Kamishima
 
Model-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced RecommendationModel-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced RecommendationToshihiro Kamishima
 
科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要Toshihiro Kamishima
 
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Toshihiro Kamishima
 
Correcting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityCorrecting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityToshihiro Kamishima
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないToshihiro Kamishima
 
The Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersThe Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersToshihiro Kamishima
 
Efficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationEfficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationToshihiro Kamishima
 
Absolute and Relative Clustering
Absolute and Relative ClusteringAbsolute and Relative Clustering
Absolute and Relative ClusteringToshihiro Kamishima
 
Consideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningConsideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningToshihiro Kamishima
 
Fairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerFairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerToshihiro Kamishima
 
Enhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationEnhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationToshihiro Kamishima
 
OpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングOpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングToshihiro Kamishima
 
Fairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachFairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachToshihiro Kamishima
 

More from Toshihiro Kamishima (20)

RecSys2018論文読み会 資料
RecSys2018論文読み会 資料RecSys2018論文読み会 資料
RecSys2018論文読み会 資料
 
WSDM2018読み会 資料
WSDM2018読み会 資料WSDM2018読み会 資料
WSDM2018読み会 資料
 
Recommendation Independence
Recommendation IndependenceRecommendation Independence
Recommendation Independence
 
機械学習研究でのPythonの利用
機械学習研究でのPythonの利用機械学習研究でのPythonの利用
機械学習研究でのPythonの利用
 
Considerations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items TaskConsiderations on Recommendation Independence for a Find-Good-Items Task
Considerations on Recommendation Independence for a Find-Good-Items Task
 
Model-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced RecommendationModel-based Approaches for Independence-Enhanced Recommendation
Model-based Approaches for Independence-Enhanced Recommendation
 
科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要科学技術計算関連Pythonパッケージの概要
科学技術計算関連Pythonパッケージの概要
 
WSDM2016勉強会 資料
WSDM2016勉強会 資料WSDM2016勉強会 資料
WSDM2016勉強会 資料
 
ICML2015読み会 資料
ICML2015読み会 資料ICML2015読み会 資料
ICML2015読み会 資料
 
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
Future Directions of Fairness-Aware Data Mining: Recommendation, Causality, a...
 
Correcting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation NeutralityCorrecting Popularity Bias by Enhancing Recommendation Neutrality
Correcting Popularity Bias by Enhancing Recommendation Neutrality
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
 
The Independence of Fairness-aware Classifiers
The Independence of Fairness-aware ClassifiersThe Independence of Fairness-aware Classifiers
The Independence of Fairness-aware Classifiers
 
Efficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced RecommendationEfficiency Improvement of Neutrality-Enhanced Recommendation
Efficiency Improvement of Neutrality-Enhanced Recommendation
 
Absolute and Relative Clustering
Absolute and Relative ClusteringAbsolute and Relative Clustering
Absolute and Relative Clustering
 
Consideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data MiningConsideration on Fairness-aware Data Mining
Consideration on Fairness-aware Data Mining
 
Fairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover RegularizerFairness-aware Classifier with Prejudice Remover Regularizer
Fairness-aware Classifier with Prejudice Remover Regularizer
 
Enhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in RecommendationEnhancement of the Neutrality in Recommendation
Enhancement of the Neutrality in Recommendation
 
OpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシングOpenOpt の線形計画で圧縮センシング
OpenOpt の線形計画で圧縮センシング
 
Fairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization ApproachFairness-aware Learning through Regularization Approach
Fairness-aware Learning through Regularization Approach
 

KDD2016勉強会 資料