SlideShare a Scribd company logo

機械学習で泣かないためのコード設計

機械学習におけるコード設計のベストプラクティスについて

1 of 30
Download to read offline
Copyright © 2016 TIS Inc. All rights reserved.
機械学習で泣かないためのコード設計
戦略技術センター
久保隆宏
2
Agenda
• Who are you
• TIS株式会社について
• 戦略技術センターについて
• 機械学習あるある物語
• 機械学習で泣かないための設計(案)
• Model
• Trainer
• DataProcessor
• ModelAPI
• Resource
• Appendix: API一覧
3
Who are you
4
業務コンサルタント出身。
化学系メーカーへのパッケージ導入や周辺業務システム開発
を手掛ける(ASP.NET VB.NET/C#)。
現在は「人のパートナーとなれるアプリケーション」の研究
開発(Python/機械学習)。
サイボウズ公認kintoneエヴァンジェリスト
Qiitaのストック数ランキング
機械学習: 1位
Python: 2位
(8/18時点)
icoxfog417
後輩
5
TISとは?
6
会社紹介
TISはTISインテックグループの中核会社となります。
TISインテックグループは多様な得意分野をもつ企業の総体であり、一体感のあるグル
ープフォーメーションの下お客様のニーズにお応えします。
TIS INTEC GROUP(59社 19,393名)
お客様
7
TISとは?
8
戦略技術センターについて(1/2)
ミッション
・中長期(3~10年)的な視点からのサービスのプロトタイプ開発・検証
・技術プレゼンスの向上(=研究活動の対外発信)
サービスのプロトタイプ開発
技術プレゼンスの向上
薬剤師BOT
会議診断AI
観光ルート自動生成
etc・・・
カンファレンスへの
登壇、ハッカソンへ
の参加、勉強会の開
催etc・・・
9
戦略技術センターについて(2/2)
ロボット 販売員
店頭での呼び込み、
定型的な商品説明を
担当
自動応答と遠隔操作の組み合わせで、接客の分業を実現
遠隔操作による
応対の引き継ぎ
ロボットから応対を
引き継ぎ、一人一人
に合った接客を行う
ダッシュボード
ロボットの接客状況
(顧客数、商品説明へ
の反応など)を確認
自動応答の
状況を報告
・自動応答により、人の接客負荷を低減
・遠隔操作により、東京にいながら北海道の店舗の応対を行う、と
いったことが可能になる+多言語対応が可能な販売員が様々な店舗で
応対するといったことも可能になります。
10
機械学習あるある物語
11
MNISTとかのExampleを動かしてうまく動いているとき
→NEXT: 自分のデータで試してみよう!
12
自分で集めたデータでうまく動かなくて戸惑っている時
→NEXT: でもここから本番、がんばるぞい!
13
修正したら繰り出される謎の例外
初期化の方法・学習率・レイヤ数・・・いろいろなパラメーター
精度が出ない・・・データがないせい?モデルが自分のデータに合わないせい?
データの前処理→こんにちは線形代数
14
まあ(Example)動いたしな?
中途半端だけどおしまいにする(完)
15
機械学習の難しさ
機械学習は、うまくうごかないときに考えられる理由がたくさんある。
・データが悪いのか
・そもそものデータが良くない(データの量・データの質)
・前処理に問題がある
・モデルが悪いのか
・バグがある(伝搬が上手くいっていないなど)
・構成が悪い
・(逆に間違っててもそれなりに動くことがあり、混乱を助長する)
・学習方法が悪いのか
・ノードの初期化方法、学習率、学習率低減のタイミングetc→職人芸
・辛抱が足りない(明日になれば学習が進んでるかも?)
モデルや学習方法の書き換えには、機械学習の理論的な理解が必要になる場
面も多い。それぞれのフレームワークのクセにもかなり翻弄される(Example
だけでなく、ライブラリ内部のコードを読まないといけないことになること
も多い)。
16
ただでさえ難しい+原因の切り分けができない
17
機械学習で泣かないための設計(案)
18
ただでさえ難しい+原因の切り分けができない
まずこっちを解決
19
構成
Model
DataProcessor
Resource
ModelAPI Trainer
・Modelは、機械学習モデルの定義を行う
・ModelAPIは、外部に向けて予測機能などのAPIを公開する。
・Trainerは、Modelの学習を担当する。
・DataProcessorは、データの読み込みと前処理を担当する
・Resouceは、全体で必要になるパラメーターを管理する
20
構成のポイント(1/2)
・TrainerとDataProcessorの分離
Trainerからデータに関する処理を独立させる。
忘れがちだが、予測を行う際もデータの前処理は必要
になる(例:画像の平均化など)。この処理を
Trainerに含めていると、学習以外の処理でもTrainer
を呼び出すことになるほか、Trainerはおおむねバッ
チでデータを入れるので予測処理(データ一件)と処理
が合わない。
・パラメーターはResourceで一元管理を行う
learning rateを始めとした学習パラメーター、また
学習モデルの保存先、データのロード元など、機械学
習では色々なパラメーターが必要になる。
これらはyamlやjsonといったファイルにまとめて管
理するようにし、その読出しを行う担当として
Resourceを置く。
最重要
21
構成のポイント(2/2)
・学習はTrainerが管理し、Modelは関与しない
具体的には、lossやoptimizerの定義をModelに含めな
い。これをModel管轄にしてしまうと、予測しかしな
いときにもbatch sizeやlearning rateを指定する羽目
になる。これは好ましくない。
・アプリケーションからModelを隠蔽する
直接Modelを利用すると、ChainerならVariable、
TensorFlowならTensor/Sessionとフレームワーク依
存のコードがアプリケーションに混ざることになり、
実装担当者の負担が大きくなるほかフレームワークの
スイッチが難しくなる。
そのため外部公開するAPIはModelとは別個に作成し、
アプリケーションからModel本体を隠蔽する。
※predictのコードがTrainerとModelAPIで重複するが、
この重複は許容する(思ったよりは違った実装になる)
重要
22
テストの実施
・モデルのテスト
ModelAPIと一体でテストし、入力からきちんと値が出力されることを確認。
・データ、またデータ前処理のテスト
DataProcessorを単独でテストする。可能であれば、baselineとなるモデル
(SVMなど)でデータそのものの分類性能を測ったりする。scikit-learnの
Feature Selectionを使えばこのあたりのテストを簡単に実装できる。
・学習のテスト
モデル、およびデータ処理のテストがパスすることを確認した後にテストす
る(これによりモデルのバグ・データ処理に起因するバグを想定から外せる)。
lossがきちんと下がるかなどを確認する。このあたりでGPUがないと辛抱が
足りない問題が顕在化するので、GPUの使い方(Amazon GPU Instanceな
ど)はしっかりマスターしておく(Terraform/Ansibleはこの助けになる)。
複数パラメーターの設定でいろいろ回すことになるので、この際Resourceと
いう形で、どこでどのパラメーターの学習が動いているのかがわかるのはと
ても安心できる。
23
ただでさえ難しい+原因の切り分けができない
だいぶ解決
これで・・・
24
ただでさえ難しい+原因の切り分けができない
・・・
25
おすすめ
単純なモデルからはじめる(scikit-learnなど)
• どのみちDataProcessorのところで必要になる
• 最終的にChainerやTensorFlowでやるにしても、ベースラインのモデルは
必要になる
• 自分でデータを用意するなら、Deepの恩恵が得られるほど集められないこ
とが多い(=使うだけ徒労になる可能性も高い)。
基礎知識はCourseraのMachine
Learningをおすすめ(英語という壁はあ
るが、現時点出ているどの書籍よりもわ
かりやすい+日本語字幕もある)
26
ぜひ
new
machine learning
life!
THANK YOU
28
Appendix: API一覧(1/3)
Model
• constructor: モデルに必要な構成要素(隠れ層)などの定義
• forward(inference): constructorで定義した構成要素を利用し、入力を出
力にする(伝搬)プロセスを定義する。
• 学習中とそうでない場合で構成が変わる場合(Dropoutなど)、それを引数
に取る。※ここでlossを出さないこと(出してもいいが、outputもちゃんと
返す)
ModelAPI
• constructor: 最低限Modelのパスを取得し、読み込む
• predict: 配列などの一般的な変数から、Modelを利用した予測値を返す
29
Appendix: API一覧(2/3)
Trainer
• constructor: modelと学習に必要なパラメーターを受け取る。
DataProcessorは、この段階か、trainのメソッド内で作成する。
• calc_loss: 最適化の対象となる誤差の計算プロセスを定義する
(TensorFlow的にはtrain_op)
• set_optimizer(build): calc_lossの最適化プロセスを定義する
• train: 学習データ、または作成済みDataProcessorを受け取り、学習の実
行(set_optimizerで作成したoptimizerのupdate)を行う。この過程で、進
捗状況を定期的にreportする。
• report: 学習の進捗状況の出力、また学習モデルの保存などを行う
DataProcessor
• constructor: データへのパスなど
• prepare: データを読み込み、後処理で必要な統計量(平均など)を計算する
• format(preprocess): 生のデータを学習・予測用にフォーマットする
• batch_iter(feed): batch size/shuffleするかどうかなどを受け取り、要求
に応じたデータを返す。iteratorとして機能する。
30
Appendix: API一覧(3/3)
Resource
• constructor: 設定ファイルの保存先パスを受け取る
• get_xxxx: 設定ファイル内の所定の項目を取得する。※get(“data_path”)
というように、文字列でパラメータを受け取らないこと(利用側が環境変数
名を覚えていないといけなくなるので)。
• get_data_root
• get_model_path
• get_log_folder
• などなど
• create_trainer/create_dataprocessorという感じで、読み込んだパ
ラメーターを元に各インスタンスを生成するメソッドを持たせるとい
う手もある。

Recommended

機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018Takahiro Kubo
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用Hiroyuki Masuda
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
最適化超入門
最適化超入門最適化超入門
最適化超入門Takami Sato
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するTakahiro Kubo
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情Yuta Kikuchi
 

More Related Content

What's hot

Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選Yusuke Uchida
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual FeaturesARISE analytics
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法Deep Learning JP
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2Preferred Networks
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピTakahiro Kubo
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説tancoro
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?Fumihiko Takahashi
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision TransformerYusuke Uchida
 

What's hot (20)

研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
ゼロから始める転移学習
ゼロから始める転移学習ゼロから始める転移学習
ゼロから始める転移学習
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ
 
Ml system in_python
Ml system in_pythonMl system in_python
Ml system in_python
 
MLOpsはバズワード
MLOpsはバズワードMLOpsはバズワード
MLOpsはバズワード
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
Triplet Loss 徹底解説
Triplet Loss 徹底解説Triplet Loss 徹底解説
Triplet Loss 徹底解説
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 

Viewers also liked

kintone evangelist meetup 2017
kintone evangelist meetup 2017kintone evangelist meetup 2017
kintone evangelist meetup 2017Takahiro Kubo
 
10分で見る人工知能
10分で見る人工知能10分で見る人工知能
10分で見る人工知能kwp_george
 
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumiTokoroten Nakayama
 
「人工知能」をあなたのビジネスで活用するには
「人工知能」をあなたのビジネスで活用するには「人工知能」をあなたのビジネスで活用するには
「人工知能」をあなたのビジネスで活用するにはTakahiro Kubo
 
Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱Junya Kamura
 
主成分分析 (pca)
主成分分析 (pca)主成分分析 (pca)
主成分分析 (pca)Ji Wang
 
サーバーレスの今とこれから
サーバーレスの今とこれからサーバーレスの今とこれから
サーバーレスの今とこれから真吾 吉田
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)sleepy_yoshi
 
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4shakezo
 
機械学習の理論と実践
機械学習の理論と実践機械学習の理論と実践
機械学習の理論と実践Preferred Networks
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 

Viewers also liked (12)

kintone evangelist meetup 2017
kintone evangelist meetup 2017kintone evangelist meetup 2017
kintone evangelist meetup 2017
 
10分で見る人工知能
10分で見る人工知能10分で見る人工知能
10分で見る人工知能
 
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
 
KDD2016勉強会 資料
KDD2016勉強会 資料KDD2016勉強会 資料
KDD2016勉強会 資料
 
「人工知能」をあなたのビジネスで活用するには
「人工知能」をあなたのビジネスで活用するには「人工知能」をあなたのビジネスで活用するには
「人工知能」をあなたのビジネスで活用するには
 
Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱Deep learningの世界に飛び込む前の命綱
Deep learningの世界に飛び込む前の命綱
 
主成分分析 (pca)
主成分分析 (pca)主成分分析 (pca)
主成分分析 (pca)
 
サーバーレスの今とこれから
サーバーレスの今とこれからサーバーレスの今とこれから
サーバーレスの今とこれから
 
SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)SVM実践ガイド (A Practical Guide to Support Vector Classification)
SVM実践ガイド (A Practical Guide to Support Vector Classification)
 
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
プロトタイプで終わらせない死の谷を超える機械学習プロジェクトの進め方 #MLCT4
 
機械学習の理論と実践
機械学習の理論と実践機械学習の理論と実践
機械学習の理論と実践
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 

Similar to 機械学習で泣かないためのコード設計

TIS 戦略技術センター AI技術推進室紹介
TIS 戦略技術センター AI技術推進室紹介TIS 戦略技術センター AI技術推進室紹介
TIS 戦略技術センター AI技術推進室紹介Takahiro Kubo
 
Machine Learning Bootstrap
Machine Learning BootstrapMachine Learning Bootstrap
Machine Learning BootstrapTakahiro Kubo
 
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理Takahiro Kubo
 
機械学習を用いた会議診断システムの開発
機械学習を用いた会議診断システムの開発機械学習を用いた会議診断システムの開発
機械学習を用いた会議診断システムの開発Takahiro Kubo
 
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料BrainPad Inc.
 
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだこと
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだことSIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだこと
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだことyagizo
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習Preferred Networks
 
Chainerで知るdeep learning進化の歴史
Chainerで知るdeep learning進化の歴史Chainerで知るdeep learning進化の歴史
Chainerで知るdeep learning進化の歴史Hideto Masuoka
 
Machine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubMachine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubJunya Kamura
 
Machine learningbootstrap For Business
Machine learningbootstrap For BusinessMachine learningbootstrap For Business
Machine learningbootstrap For BusinessTakahiro Kubo
 
みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様Takeshi Akutsu
 
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)uchan_nos
 
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介Recruit Technologies
 
IT勉強会を支えるコミュニケーション
IT勉強会を支えるコミュニケーションIT勉強会を支えるコミュニケーション
IT勉強会を支えるコミュニケーションKoji Shiraishi
 
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~ISAO_Corp
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!デベロッパーネットワーク
 
ROSの紹介とPepperでの活用例
ROSの紹介とPepperでの活用例ROSの紹介とPepperでの活用例
ROSの紹介とPepperでの活用例Yuta Koga
 
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-Takahiro Kubo
 
Reinforcement Learning Inside Business
Reinforcement Learning Inside BusinessReinforcement Learning Inside Business
Reinforcement Learning Inside BusinessTakahiro Kubo
 
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」AINOW
 

Similar to 機械学習で泣かないためのコード設計 (20)

TIS 戦略技術センター AI技術推進室紹介
TIS 戦略技術センター AI技術推進室紹介TIS 戦略技術センター AI技術推進室紹介
TIS 戦略技術センター AI技術推進室紹介
 
Machine Learning Bootstrap
Machine Learning BootstrapMachine Learning Bootstrap
Machine Learning Bootstrap
 
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
kintone Cafe Japan 2016: kintone x 機械学習で実現する簡単名刺管理
 
機械学習を用いた会議診断システムの開発
機械学習を用いた会議診断システムの開発機械学習を用いた会議診断システムの開発
機械学習を用いた会議診断システムの開発
 
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料
2018.08.21-機械学習工学研究会 現場を交えた勉強会発表資料
 
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだこと
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだことSIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだこと
SIer出身のエンジニアが 機械学習を取り入れた ASPサービス開発で学んだこと
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習
 
Chainerで知るdeep learning進化の歴史
Chainerで知るdeep learning進化の歴史Chainerで知るdeep learning進化の歴史
Chainerで知るdeep learning進化の歴史
 
Machine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubMachine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hub
 
Machine learningbootstrap For Business
Machine learningbootstrap For BusinessMachine learningbootstrap For Business
Machine learningbootstrap For Business
 
みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様みんなのPython勉強会#21 澪標アナリティクス 井原様
みんなのPython勉強会#21 澪標アナリティクス 井原様
 
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)
業務時間で書いたパッチは誰のもの?OSS活動にまつわる罠 (builderscon tokyo 2018)
 
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
 
IT勉強会を支えるコミュニケーション
IT勉強会を支えるコミュニケーションIT勉強会を支えるコミュニケーション
IT勉強会を支えるコミュニケーション
 
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~
20180119 AI で業務効率化 ~B To Employee ではじめる Chat Bot~
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
 
ROSの紹介とPepperでの活用例
ROSの紹介とPepperでの活用例ROSの紹介とPepperでの活用例
ROSの紹介とPepperでの活用例
 
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-
言葉のもつ広がりを、モデルの学習に活かそう -one-hot to distribution in language modeling-
 
Reinforcement Learning Inside Business
Reinforcement Learning Inside BusinessReinforcement Learning Inside Business
Reinforcement Learning Inside Business
 
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」
[ML15]Class Cat佐々木さん「いち早く人工知能テクノロジーを取り入れた製品・サービスを市場に展開するには?」
 

More from Takahiro Kubo

自然言語処理による企業の気候変動対策分析
自然言語処理による企業の気候変動対策分析自然言語処理による企業の気候変動対策分析
自然言語処理による企業の気候変動対策分析Takahiro Kubo
 
国際会計基準(IFRS)適用企業の財務評価方法
国際会計基準(IFRS)適用企業の財務評価方法国際会計基準(IFRS)適用企業の財務評価方法
国際会計基準(IFRS)適用企業の財務評価方法Takahiro Kubo
 
自然言語処理で新型コロナウィルスに立ち向かう
自然言語処理で新型コロナウィルスに立ち向かう自然言語処理で新型コロナウィルスに立ち向かう
自然言語処理で新型コロナウィルスに立ち向かうTakahiro Kubo
 
財務・非財務一体型の企業分析に向けて
財務・非財務一体型の企業分析に向けて財務・非財務一体型の企業分析に向けて
財務・非財務一体型の企業分析に向けてTakahiro Kubo
 
自然言語処理で読み解く金融文書
自然言語処理で読み解く金融文書自然言語処理で読み解く金融文書
自然言語処理で読み解く金融文書Takahiro Kubo
 
arXivTimes Review: 2019年前半で印象に残った論文を振り返る
arXivTimes Review: 2019年前半で印象に残った論文を振り返るarXivTimes Review: 2019年前半で印象に残った論文を振り返る
arXivTimes Review: 2019年前半で印象に残った論文を振り返るTakahiro Kubo
 
ESG評価を支える自然言語処理基盤の構築
ESG評価を支える自然言語処理基盤の構築ESG評価を支える自然言語処理基盤の構築
ESG評価を支える自然言語処理基盤の構築Takahiro Kubo
 
Expressing Visual Relationships via Language: 自然言語による画像編集を目指して
Expressing Visual Relationships via Language: 自然言語による画像編集を目指してExpressing Visual Relationships via Language: 自然言語による画像編集を目指して
Expressing Visual Relationships via Language: 自然言語による画像編集を目指してTakahiro Kubo
 
あるべきESG投資の評価に向けた、自然言語処理の活用
あるべきESG投資の評価に向けた、自然言語処理の活用あるべきESG投資の評価に向けた、自然言語処理の活用
あるべきESG投資の評価に向けた、自然言語処理の活用Takahiro Kubo
 
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章nlpaper.challenge NLP/CV交流勉強会 画像認識 7章
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章Takahiro Kubo
 
Curiosity may drives your output routine.
Curiosity may drives  your output routine.Curiosity may drives  your output routine.
Curiosity may drives your output routine.Takahiro Kubo
 
2018年12月4日までに『呪術廻戦』を読む理由
2018年12月4日までに『呪術廻戦』を読む理由2018年12月4日までに『呪術廻戦』を読む理由
2018年12月4日までに『呪術廻戦』を読む理由Takahiro Kubo
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention NetworkTakahiro Kubo
 
ACL2018の歩き方
 ACL2018の歩き方 ACL2018の歩き方
ACL2018の歩き方Takahiro Kubo
 
TISにおける、研究開発の方針とメソッド 2018
TISにおける、研究開発の方針とメソッド 2018TISにおける、研究開発の方針とメソッド 2018
TISにおける、研究開発の方針とメソッド 2018Takahiro Kubo
 
感情の出どころを探る、一歩進んだ感情解析
感情の出どころを探る、一歩進んだ感情解析感情の出どころを探る、一歩進んだ感情解析
感情の出どころを探る、一歩進んだ感情解析Takahiro Kubo
 
機械学習の力を引き出すための依存性管理
機械学習の力を引き出すための依存性管理機械学習の力を引き出すための依存性管理
機械学習の力を引き出すための依存性管理Takahiro Kubo
 
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...Takahiro Kubo
 
技術文書を書く際の、心技体<改訂版>
技術文書を書く際の、心技体<改訂版>技術文書を書く際の、心技体<改訂版>
技術文書を書く際の、心技体<改訂版>Takahiro Kubo
 

More from Takahiro Kubo (20)

自然言語処理による企業の気候変動対策分析
自然言語処理による企業の気候変動対策分析自然言語処理による企業の気候変動対策分析
自然言語処理による企業の気候変動対策分析
 
国際会計基準(IFRS)適用企業の財務評価方法
国際会計基準(IFRS)適用企業の財務評価方法国際会計基準(IFRS)適用企業の財務評価方法
国際会計基準(IFRS)適用企業の財務評価方法
 
自然言語処理で新型コロナウィルスに立ち向かう
自然言語処理で新型コロナウィルスに立ち向かう自然言語処理で新型コロナウィルスに立ち向かう
自然言語処理で新型コロナウィルスに立ち向かう
 
財務・非財務一体型の企業分析に向けて
財務・非財務一体型の企業分析に向けて財務・非財務一体型の企業分析に向けて
財務・非財務一体型の企業分析に向けて
 
自然言語処理で読み解く金融文書
自然言語処理で読み解く金融文書自然言語処理で読み解く金融文書
自然言語処理で読み解く金融文書
 
arXivTimes Review: 2019年前半で印象に残った論文を振り返る
arXivTimes Review: 2019年前半で印象に残った論文を振り返るarXivTimes Review: 2019年前半で印象に残った論文を振り返る
arXivTimes Review: 2019年前半で印象に残った論文を振り返る
 
ESG評価を支える自然言語処理基盤の構築
ESG評価を支える自然言語処理基盤の構築ESG評価を支える自然言語処理基盤の構築
ESG評価を支える自然言語処理基盤の構築
 
Expressing Visual Relationships via Language: 自然言語による画像編集を目指して
Expressing Visual Relationships via Language: 自然言語による画像編集を目指してExpressing Visual Relationships via Language: 自然言語による画像編集を目指して
Expressing Visual Relationships via Language: 自然言語による画像編集を目指して
 
あるべきESG投資の評価に向けた、自然言語処理の活用
あるべきESG投資の評価に向けた、自然言語処理の活用あるべきESG投資の評価に向けた、自然言語処理の活用
あるべきESG投資の評価に向けた、自然言語処理の活用
 
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章nlpaper.challenge NLP/CV交流勉強会 画像認識 7章
nlpaper.challenge NLP/CV交流勉強会 画像認識 7章
 
Curiosity may drives your output routine.
Curiosity may drives  your output routine.Curiosity may drives  your output routine.
Curiosity may drives your output routine.
 
EMNLP2018 Overview
EMNLP2018 OverviewEMNLP2018 Overview
EMNLP2018 Overview
 
2018年12月4日までに『呪術廻戦』を読む理由
2018年12月4日までに『呪術廻戦』を読む理由2018年12月4日までに『呪術廻戦』を読む理由
2018年12月4日までに『呪術廻戦』を読む理由
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention Network
 
ACL2018の歩き方
 ACL2018の歩き方 ACL2018の歩き方
ACL2018の歩き方
 
TISにおける、研究開発の方針とメソッド 2018
TISにおける、研究開発の方針とメソッド 2018TISにおける、研究開発の方針とメソッド 2018
TISにおける、研究開発の方針とメソッド 2018
 
感情の出どころを探る、一歩進んだ感情解析
感情の出どころを探る、一歩進んだ感情解析感情の出どころを探る、一歩進んだ感情解析
感情の出どころを探る、一歩進んだ感情解析
 
機械学習の力を引き出すための依存性管理
機械学習の力を引き出すための依存性管理機械学習の力を引き出すための依存性管理
機械学習の力を引き出すための依存性管理
 
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...
画像認識モデルを自動的に作る。1日以内に。~Simple And Efficient Architecture Search for Convolutio...
 
技術文書を書く際の、心技体<改訂版>
技術文書を書く際の、心技体<改訂版>技術文書を書く際の、心技体<改訂版>
技術文書を書く際の、心技体<改訂版>
 

機械学習で泣かないためのコード設計